The present invention relates to a vehicular lighting apparatus which is, for example, attached to a moving body such as an automobile and which emits light onto a road surface when the automobile is running during the night or in such a dark place as tunnel, and particularly relates to a vehicular lighting apparatus which utilizes, as a light source, a solid-state light-emitting element typified by an LED.
The solid-state light-emitting element typified by an LED has been developed remarkably in recent years. For example, already known in Patent Document 1 has been a vehicular lighting apparatus that is different from a head lamp, but utilizes, to a part of a rear combination lamp attached to a rear side of a vehicle, the LED as its light source.
Then, in Patent Document 2, it has also been already known that a vehicular lighting apparatus has a structure suitable for being used as a head lamp in place of a conventional halogen lamp and utilizes an LED source.
Patent Document 1: Japanese Patent Application Laid-open No. 2007-227356
Patent Document 2: Japanese Patent Application Laid-open No. 2010-182554
However, the above vehicular lighting apparatuses as conventional techniques have problems. Particularly, it is difficult to use the vehicular lighting apparatus of the former Patent Document 1 as the head lamp attached to a front side of the vehicle. The vehicular lighting apparatus of the latter Patent Document 2 utilizes, as its light source, an LED light source in place of the conventional halogen lamp. This does not necessarily offer a specific advantage over the head lamp provided by the conventional technique.
Namely, in the conventional head lamp attached to the front side of the vehicle, the halogen lamp serving as its light source has a light emission point shape which is small and almost spherical. Therefore, to effectively capture and use all generated beams of emitted light, the substantially overall shape or partial shape of the head lamp is similar to the shape of the halogen lamp. This has been one of important components for a design constituting a front of the vehicle.
Recently, however, has been seen the advent of such vehicles as hybrid cars and electric cars that are equipped with power sources different from internal-combustion engines. These vehicles have ushered in a new field. Together with this, a degree of freedom also in automobile design drafts has been demanded including drafts of the head lamps of the automobiles.
Accordingly, the present invention is achieved in view of the problems posed by the above conventional techniques. It is specifically an object of the invention to provide a vehicular lighting apparatus which uses the solid-state light source as the head lamp in place of the conventional halogen lamp and simultaneously makes the most of its characteristics, and which particularly has a structure superior in a design property.
According to the present invention, to achieve the above object, provided is a vehicular lighting apparatus that can be attached to a front end part of a vehicle, and that comprises: a light guide element constructed by molding a translucent resin into a substantially plate-like shape; a planar light-emitting unit that emits illumination light; an optical system that transforms planar light from the light-emitting unit into liner light and that causes the liner light to be incident on one side face of the light guide element; and a lens means formed on the one side face of the light guide element on which the transformed liner light is incident, the lens means condensing or diffusing the liner light, wherein the light condensed and diffused by the lens means is emitted, onto a road surface in front of the vehicle, from the other side face opposite to the one side face of the light guide element.
According to the present invention described above, use of the solid-state light source as the head lamp brings provision of a vehicular lighting apparatus which: is relatively small; can be manufactured at low cost; is superior in mountability to the automobile; and has the structure superior in the design property. Thus, the vehicular lighting apparatus extremely useful in practical applications is provided.
Hereinafter, a vehicular lighting apparatus that is an embodiment (Embodiment 1) according to the present invention will be detailed in reference to the accompanying drawings.
Firstly,
Secondly, hereinafter will be explained the above-mentioned head lamp that is the vehicular lighting apparatus of the present invention, i.e., specifically, a detailed structure of the composite light 101 shown on a left side in the exterior view of the automobile of
In this example, a plurality of (two in this example) light sources 2-1 and 2-2, which are composed of respective individual LEDs and emit beams of light different in color, are attached to one end face (left end face in this example) in the longitudinal direction of the composite lens element 3 that is the above flat light guide element. The above end of the composite lens element 3 has a “V-shaped” groove formed for separating beams of light. As a result, two inner surfaces of the light guide element that are counter to the “V-shaped” groove each function as a light reflection surface (surface 3-4 in
As clearly shown also by
On the front side face of the composite lens element 3 are formed a plurality of so-called light diffusion portions 3-5 which are, for example, vertically extending grooves each having a substantially “V-shaped” section. These light diffusion portions 3-5 as the grooves are formed irregularly on the front side face of the composite lens element 3. The portions are arranged relatively sparsely (with larger inter-groove distance) in the vicinity of ends to which the light sources 2-1 and 2-2 are attached, and are arranged relatively densely (with smaller inter-groove distance) in the vicinity of the other end opposite to the above ends. The light diffusion portions 3-5 are not always limited to be the above vertical grooves, but may uniformly diffuse light as a whole, and may be, for example, dot-like grooves, dot-like projections, and vertical projections as other shapes.
Under the reflection mirror 1, a planer light source (light-emitting unit) 5 that emits white light with a high intensity is disposed in place of the conventional halogen lamp etc., and a lens 4 is provided between the planer light source 5 and the reflection mirror 1. In this example, although describe later as one example, the planer light source 5 with a high light emission intensity is constructed by arranging a plurality of (two in this example) composite light sources 5-1 and 5-2 each having a plurality of LEDs. For example, a lenticular lens with a substantially columnar outline is used as the lens 4 in order to condense planar light into linear light and to change the shape of a beam of light. The lens 4 is disposed above the planar light source 5 in such a way as to almost cover the whole of its light emission surface. The lens 4 for condensing the beam of light from the composite light source (planar light source) 5 or changing the shape of the beam may have a toroidal, aspherical, or free-curved surface shape besides the lenticular lens.
The reflection mirror 1, as seen apparently also from the above Figure, has a curved reflection surface with, for example, a spherical or aspherical, parabolic, or free-curved surface shape. The reflection mirror 1: reflects and condenses, on its reflection surface, light which has been emitted from the planar light source 5 and transformed into substantially linear light through the lens 4; and guides the reflected light to an incident surface that is a rear side face of the composite lens element 3.
Provided on the rear side face extending in the longitudinal direction of the composite lens element 3 and used as the incident surface of the composite lens element 3 is an optical means which transforms the light reflected from the reflection mirror 1 into a given shape to create a desired illumination area (light distribution) on a road surface in front of the vehicle. For example, such an optical means may be formed as a lens surface of a Fresnel lens etc. or as a diffraction grating (brazed diffraction grating). Forming the Fresnel lens or diffraction grating allows avoiding an increase in thickness or outline of the composite lens element 3, and is therefore particularly preferable. In this example, a plurality of (three in this example) diffraction gratings 3-1, 3-2, and 3-3 are formed as indicated by broken lines in
The above example is described as the composite light source composed of M×N=6×3 high output power LED elements (semiconductor light-emitting elements). Each light-emitting element, however, may be composed of an array of more minute light-emitting elements. In short, the light-emitting element may be a planar light source that offers the desired light emission intensity.
Functions and operations of the vehicular lighting apparatus according to the present invention having the above configuration, in particular, those of a head lamp will hereinafter be described.
<Running Lamp Function>
This is a so-called daytime running lamp (DRL) function of causing a part of the head light of the automobile to emit a linear beam of light during traveling of the vehicle.
When the running lamp function is exerted, the one light source 2-1 attached to an end face (left end face in Figure) of the composite lens element 3 making up the head lamp is caused to emit light, as shown in
<Direction Indicator Lamp Function>
This is a so-called turn signal lamp function of causing a part of the head light to emit light for indicating the traveling direction of the automobile.
When the direction indicator lamp function is exerted, the other light source 2-2 attached to the end face (left end face in Figure) of the composite lens element 3 making up the above head lamp is caused to emit light, as shown in
The beam of (white) light emitted from the light source 2-1 for the above running lamp function and the beam of (yellow) light emitted from the light source 2-2 for the direction indicator lamp function are separated from each other by the two internal surfaces of the light guide element that are counter to the “V-shaped” groove formed on the end of the composite lens element 3. Internal surfaces work as light reflection surfaces (surfaces 3-4 in Figure), respectively. This prevents both beams of light from mixing with each other inside the light guide element of the composite lens element 3.
<Head Lamp Function>
A major function of the head lamp is a function of emitting illumination light onto the road surface on which the automobile travels.
In this case, as indicated by arrows in
Then, a light emission area and a light emission intensity of the planar light source 5 are controlled to obtain the desired light distribution characteristics, as described below.
A case in which illuminated light from the composite lens element 3 is switched between so-called high beam emission and low beam emission will first be described. In this case, for example, the plurality of light-emitting elements making up the planar light source 5 are driven selectively. More specifically, for example, the light-emitting elements located near a line-directional planar light source 5 among the light-emitting elements making up the planar light source 5 (two composite light sources 5-1 and 5-2 each having the configuration shown in
For example, if the two composite light sources 5-1 and 5-2 making up the planar light source 5 are switched selectively (when the light source 5 is a single sheet of planar element, its left and right areas are switched), the light illuminated in front of the vehicle from the front side face of the composite lens element 3 used as the light guide element can be moved left and right. In other words, a light emission area (pattern) of the planar light source 5 is changed to obtain a desired light distribution pattern.
This achieves a function of selecting one of the above high beam, low beam, and wide low beam, as well as a function of automatically directing a beam of light from the head light in the direction of travel of the vehicle, based on signals detected by a steering angle detecting means, a detecting means for a deviation amount Δ from a course, and a traveling speed detecting means which are mounted to the automobile body 100 (not detailed herein), as shown in
In addition, a light distribution pattern that enables the safer driving can be obtained also by changing the light emission area (pattern) of the planar light source 5, based on a detection signal transmitted from the means for detecting a front view such as the CCD camera. For example, when the vehicle detects an oncoming car in its front view, the vehicle turns off the light-emitting elements in an area of the beams of light emitted toward the oncoming car or reduces the light emission intensity of the light-emitting elements; or shifts the light distribution direction of light from the head lamp. Therefore, it is also possible to avoid dazzling occurrence to the oncoming car by the light emitted out of the head lamp.
One embodiment of the present invention has been described above in detail. The embodiment can achieve the superior vehicular lighting apparatus which, as clearly indicated by its exterior shape, is relatively small; can be attached freely to the front end part of the vehicle; allows a significant improvement in a degree of freedom in drafting the vehicle including its head lamp; and, by an integral configuration including the running lamp and direction indicator lamp, can reduce manufacturing costs and simplify assembling work of assembling the lighting apparatus into the vehicle body.
The embodiment of applying the vehicular lighting apparatus of the present invention, particularly, to the head lamp has been described above in detail. The present invention is, however, not limited to this embodiment and, for example, may be used as a tail lamp attached to the rear of the vehicle body. When the vehicular lighting apparatus is used as a brake lamp, in particular, the planar light source with a high light emission intensity and the reflection mirror are unnecessary. Therefore, the vehicular lighting apparatus can be achieved with a simple structure and at a low price. In this case, red LEDs that emit red light may be preferably used as the semiconductor light-emitting elements.
Secondly, another embodiment (Embodiment 2) will be explained below by referring to the accompanying
The coaxial lens system 22 is a retro-focus type lens system composed of a group of lenses (lens L1 to lens L3) having positive refraction power and a group of lenses (lens L4 to lens L7) having negative refraction power.
These respective groups of lenses are arranged in order from a side of the image display element 25, and comprises: a glass lens L1 having positive refraction power and a surface with a small radius of curvature facing the image display element 25; a plastic aspherical lens L2 of a meniscus having a convex surface facing the image display element 25; a glass lens L3 having positive refraction power and both convex surfaces; a glass lens L4 of a meniscus having positive refraction power and a concave surface facing the image display element 25; a glass lens L5 having negative refraction power and both concave surfaces; a glass lens L6 of a meniscus having positive refraction power and a concave surface facing the image display element 25; and a plastic, odd-powered polynomial aspherical lens L7 of a meniscus having a concave surface facing the image display element 25. The lenses L1 to L7 have a common optical axis 27.
The free-curved surface lens 23 is a plastic free-curved surface lens L8 of a meniscus having a concave surface facing the image display element 25.
A distance in a vertical direction (Z-axis in Figure) between a center of the optical axis of the free-curved mirror 24, which is an optical element on an emission side, and the image plane 28, namely, a projection distance is 700 mm, and a size of an image in a direction of its long sides is 9519 mm (=10061−542), thereby realizing a large display size. A detail of the projection size will be described later in a description of an aberration of lens distortion.
Eccentricity is expressed as a value on the Y-axis, and tilt represents a rotation around the X-axis in the Y-Z plane. The eccentricity and tilt affect the applicable surface in an order of the eccentricity and tilt. In the case of “ordinary eccentricity”, the next surface is located at a position of an inter-surface distance on new coordinates affected by the eccentricity and tilt. “DAR” is an abbreviation of decenter and return, in which case the eccentricity and tilt affect only the surface and do not affect the next surface. PMMA, which is a name of a glass material, represents a plastic acrylic glass.
Odd-powered polynomial aspherical surface factors listed in a table of
As optical performance of Embodiment 2,
If a distance from the head light apparatus to the driver's eyes is assumed to be 2 m and is added to a distance in the Y-axis direction from the head light apparatus to the image plane of 542 to 10061 mm shown in
Also in a light Quantity distribution chart of
The Y-axial size of 9520 mm and the average of 3410 mm of the maximum and minimum X-axial sizes give an aspect ratio of the whole projected image range of 9520/3410=2.8, thereby indicating that the projected image is widely elongated vertically.
Since this projection optical system is bilaterally symmetrical (symmetrical with respect to the Y-axis), the image display element 25 corresponds to an arrangement of 45 object points in total.
According to Embodiment 2, a length of a long side of the projection image range is 9520 mm relative to the projection distance of 700 mm. Therefore, a throw ratio is 700/9520=0.07, thereby achieving wide-angle projection never achieved before.
Thirdly, another embodiment (Embodiment 3) according to the present invention will be explained below by referring to the accompanying
A definition of the aspect ratio of a displayed image will be explained. Since a projected image is displayed on the road, vertical and horizontal sizes of the projected image vary depending on from which direction the projected image is observed. When only a part of an image display range is illuminated, the vertical and horizontal sizes of the apparent projected image also vary.
For this reason, the aspect ratio of the projected image seen from the driver is defined as the following:
[Aspect ratio]=[Vertical size of projected image seen from driver]/[Horizontal size of projected image seen from driver].
In
When the vehicle with this setup approaches a right-turn intersection etc. on this condition, the driver drops the speed of the vehicle. In response to this speed change of the vehicle, the aspect ratio of the projected image is reduced, as indicated by the displayed image. This reason is that: when the vehicle turns right at the intersection, allowing an oncoming vehicle from the right-turning side ahead and a pedestrian walking across a crosswalk to know the presence of the vehicle that is about to make the right turn is effective for preventing traffic accidents; and an indication readily recognizable to the driver of the oncoming vehicle and the pedestrian is displayed.
Simultaneously with change of the aspect ratio of the projected image, changing an image color of the right turn indication to a highly recognizable color, such as red, or blinking the projected image is also effective. In this Figure, reference numeral 40 denotes an automobile; reference numeral 41 denotes a head light; reference numeral 38 denotes illumination light; reference numeral 39 denotes a road surface and illumination light projected thereon; and reference numerals 81 and 82 denote indications (arrows) on the road surface, which are an image 1 and an image 2 projected on the road surface, respectively.
Embodiments of the present invention have been described in detail above. However, the present invention is not limited to the above Embodiments and may include various modifications. For example, the above Embodiments give the detailed descriptions of the vehicular lighting apparatus as a whole to help in understanding the present invention, and are not necessarily limited to the Embodiments including every constituent elements described above. Some of constituent elements of one embodiment may be replaced with constituent elements of another embodiment, and a constituent element of one embodiment may be added to a constituent element of another embodiment. Some of constituent elements of each embodiment may be deleted or replaced with other constituent elements or have other constituent elements added thereto.
101 . . . composite light; 1 . . . reflection mirror; 2-1,2-2 . . . light source; 3 . . . composite lens element (light guide element); 3-1,3-2,3-3 . . . diffraction granting; 3-4 . . . (V-shaped groove) reflection surface; 3-5 . . . light diffusion portion; 4 . . . lens; 5 . . . planar light source; 5-1,5-2 . . . composite light source; 5-4 . . . light guide; 25 . . . image display element; 26 . . . filter; 22 . . . coaxial lens system; 23 . . . free-curved surface lens; and 24 . . . free-curved mirror
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/076036 | 9/30/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/051490 | 4/7/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7581860 | Bogner et al. | Sep 2009 | B2 |
9714754 | Springer et al. | Jul 2017 | B2 |
20030090632 | Kim | May 2003 | A1 |
20040257790 | Tanaka | Dec 2004 | A1 |
20060152931 | Holman | Jul 2006 | A1 |
20070195540 | Misawa et al. | Aug 2007 | A1 |
20080030990 | Hanney | Feb 2008 | A1 |
20080055555 | Nakamura | Mar 2008 | A1 |
20080198372 | Pan | Aug 2008 | A1 |
20130027964 | Toyota | Jan 2013 | A1 |
20130039087 | Gasquet et al. | Feb 2013 | A1 |
20130272009 | Fujiu | Oct 2013 | A1 |
20130294101 | Brendle | Nov 2013 | A1 |
20140321142 | Albou | Oct 2014 | A1 |
20150167917 | Takahashi et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
2372234 | Oct 2011 | EP |
2006-521667 | Sep 2006 | JP |
2007-227356 | Sep 2007 | JP |
2008-512827 | Apr 2008 | JP |
2008-201407 | Sep 2008 | JP |
2010-182554 | Aug 2010 | JP |
2012-064535 | Mar 2012 | JP |
2012-119277 | Jun 2012 | JP |
2013-026008 | Feb 2013 | JP |
2013-225510 | Oct 2013 | JP |
2014-096368 | May 2014 | JP |
2014-117960 | Jun 2014 | JP |
2013037858 | Mar 2013 | WO |
2013160823 | Oct 2013 | WO |
Entry |
---|
International Search Report for WO 20161051490 A1, dated Dec. 9, 2014. |
Japanese Office Action dated Dec. 5, 2017 for the Japanese Application No. 2016-551376. |
Number | Date | Country | |
---|---|---|---|
20170227182 A1 | Aug 2017 | US |