The present invention relates to bumper parts absorbing impact energy generated at the time of a collision between an automobile or other vehicle and a pedestrian and contributing to the protection of the legs of the pedestrian.
At the present, in the laws of various countries and regions and in the NCAP (New Car Assessment Program), collision of automobiles is being regulated and assessed. Among these, in recent years, in addition to the protection of the heads of pedestrians, studies have been advanced regarding protection of the legs (see “European Enhanced Vehicle-safety Committee, Improved Test Methods to Evaluate Pedestrian Protection Afforded by Passenger Cars”, EEVC Working Group 17 Report, December 1998 etc.) Demand is rising for protection of the legs at the time of a collision between a pedestrian and an automobile.
In automobiles up until now, attempts have been made to design bumpers with impact resistance predicated on collision with other objects or other vehicles. However, when such a designed automobile collides with a pedestrian, there is a good chance of causing residual disability to the knee tendons and shin bones of the pedestrian's legs. For this reason, design of bumpers for reducing such problems is being sought.
As a measure for solving this, provision of a plastic absorber between the bumper fascia and reinforcement to absorb the impact energy generated at the time of collision with a pedestrian is disclosed in Japanese Patent Publication (A) No. 2004-322861 (Document 1).
Further, regarding a metal hat-shaped cross-sectional shape, as a vehicular collision reinforcement (bumper reinforcement), to prevent the web from buckling, a shape making the thickness of the web greater than the flange thickness of the center is disclosed in Japanese Patent Publication (A) No. 2005-178695 (Document 2).
Furthermore, in an automobile bumper beam, for the purpose of increasing the amount of energy absorbed at the time of a frontal collision, a structure provided with a front base sheet and a rear base sheet made of a metal material, two metal cores arranged vertically between these, and an energy absorber made of a metal material, the two cores provided with continuous projections and recesses extending in the front-back direction of the chassis, is described in Japanese Patent Publication (A) No. 2003-503272 (Document 3).
For an absorber provided between a fascia and a bumper beam and believed to be plastic, an energy absorber (absorber) having an upper horizontal part and lower horizontal part provided with continuous projections and recesses extending in the front-back direction of the chassis and an intermediate horizontal part connecting these, the upper horizontal part and lower horizontal part having an upper front nose part and lower front nose part extending out to the front of the intermediate horizontal part, is described in Japanese Patent Publication (A) No. 2005-534555 (Document 4).
Further, a plastic pedestrian-use energy absorber having, as one type of the projections, a plurality of collapsible lobes each comprised of a front lobe part with a small cross-sectional area and a rear lobe part with a large cross-sectional area in the front-back direction of the chassis and having a cross-sectional approximately hat shape is described in Japanese Patent Publication (A) No. 2005-536392 (Document 5).
Further, in a bent sheet used as a roofing material, a roll former forming a metal strip into a hat-shaped cross-sectional shape and producing a member having wave shapes of alternately repeating recesses and projections along the width direction along the longitudinal direction of the member is described in Japanese Patent Publication (A) No. 10-175020 (Document 6).
Further, a front structure of a vehicle comprised of a flared top energy absorber not having projections and recesses in the front-back direction of the chassis, but having bent parts in the middle of the front-back direction of the chassis and produced by press-forming a steel sheet and a bottom energy absorber with a front end part positioned to the rear from the top energy absorber is described in Japanese Patent Publication (A) No. 2006-232042 (Document 7).
However, for example, the plastic absorber disclosed in Document 1 requires a large amount of deformation and residual crush in absorbing the impact energy. For this reason, the plastic absorber body becomes larger, the dimensions between the bumper fascia and reinforcement become larger, and the minimum turning radius of the vehicle is increased. This is also not preferable in terms of aesthetic design. Further, the plastic absorber is one cause of a high material and production cost and deterioration of the cost of the vehicle as a whole.
Further, the bumper reinforcement disclosed in Document 2 strengthens the web so as to prevent web buckling and locally increase the absorbed energy at the time of collision, so from the viewpoint of pedestrian protection, conversely the pedestrian may be given greater injury, so this is not preferable.
Furthermore, the projections or recesses disclosed in Document 3 are shapes for enabling the sheet thicknesses of the two cores to be made thinner and simultaneously maintaining resistance to buckling (see Description, paragraph no. 0023). Again, from the viewpoint of pedestrian protection, conversely the pedestrian may be given greater injury, so this is not preferable.
Further, the invention disclosed in Document 4 absorbs relatively low energy by making either of the upper horizontal part or lower horizontal part move upward. However, the energy absorption by plastic deformation of a plastic, as explained later, is small at the initial period of deformation, so at the time of collision with a pedestrian at a speed of 40 km/hr, it is not possible to protect the pedestrian by a short stroke. The structure is also complicated, so there is the problem that this is not preferable in terms of aesthetic design.
Further, the invention disclosed in Document 5 is also a plastic, so in the same way as the invention disclosed in Document 4, when a pedestrian is collided with at a speed of 40 km/hr, there are the problems that the pedestrian cannot be protected by a short stroke and the impact energy cannot be absorbed by a small stroke.
Further, the invention disclosed in Document 6 has as its object to facilitate the plastic deformation of a roofing material to a curved state. Neither application of use for an automobile bumper absorber nor the problem of absorbing the impact energy received from the leg of a pedestrian is described.
Further, the invention disclosed in Document 7 is a complicated structure not having projections and recesses in the front-back direction of the chassis, but having a top energy absorber and bottom energy absorber, so has problems similar to Document 4.
The present invention has as its problem the provision of an automobile bumper absorber and automobile bumper system efficiently absorbing the impact energy received from a leg of a pedestrian by a short stroke and reducing residual crush to thereby protect the leg of the pedestrian at the time of a collision between a pedestrian and an automobile.
The present invention was made to solve this problem and has as its gist the following.
(1) A long vehicular metal absorber comprising a center flange, a top web and bottom web connected to the two sides of the center flange, a top flange connected to the top web, and a bottom flange connected to the bottom web and formed overall into a hat shaped cross-section, the vehicular metal absorber characterized in that in the hat-shaped cross-section, an internal angle α1 formed by the top web with a flange plane including the top flange and bottom flange and an internal angle α2 formed by the bottom web with the flange plane are respectively over 0 degree to less than 90 degrees and in that one or both of the top web and bottom web are provided with a recessed or projecting bead substantially parallel to a front-back direction of a vehicle.
(2) A vehicular metal absorber as set forth in (1), characterized in that, furthermore, in the hat-shaped cross-section, a bent part is provided in the middle of one or both of the top web and bottom web, an internal angle β1 formed by the bent part of the top web with the flange plane is over 0 degree to less than α1 degrees, and an internal angle β2 formed by the bent part of the bottom web with the flange plane is over 0 degree to less than α2 degrees.
(3) A vehicular metal absorber as set forth in (1) or (2), characterized in that when a front-back direction dimension of the absorber is H mm, the bead has a width of H/5 to H/2.5 mm, a pitch of H/2.5 to H/1.25 mm, and a depth of H/50 to H/10 mm.
(4) A vehicular metal absorber as set forth in any one of (1) to (3), characterized in that when the pitch of the beads is L mm, the arrangements of the beads at the top and bottom surface are offset by L/4 to L/2 mm above and below.
(5) A vehicular metal absorber as set forth in (3) or (4), characterized in that, when the maximum width of the top web and bottom web is W mm, H/3≦W≦H/1.5 mm is satisfied.
(6) A vehicular metal absorber as set forth in any one of (1) to (5), characterized in that a tensile strength (MPa) and sheet thickness (mm) of the material are set in a range obtained by successively connecting by lines the points of ATS (0.2,1200), BTS (0.2,400), CTS (0.4,400), DTS (0.4,200), ETS (1.6,200), FTS (1.6,400), GTS (1.4,400), HTS (1.4,600), ITS (1.2,600), JTS (1.2,800), KTS (1.0,800), LTS (1.0,1000), MTS (0.6,1000), NTS (0.6,1200), and ATS (0.2,1200) of (x,y) coordinates in an x-y orthogonal coordinate system having the tensile strength as the y-axis and the sheet thickness as the x-axis.
(7) A vehicular metal absorber as set forth in any one of (1) to (5), characterized in that a yield strength (MPa) and sheet thickness (mm) of the material are set in a range obtained by successively connecting by lines the points of AYS (0.2,1000), BYS (0.2,300), CYS (0.4,300), DYS (0.4,150), EYS (1.6,150), FYS (1.6,300), GYS (1.4,300), HYS (1.4,400), IYS (1.2,400), JYS (1.2,600), KYS (1.0,600), LYS (1.0,800), MYS (0.6,800), NYS (0.6,1000), and AYS (0.2,1000) of (x,y) coordinates in an x-y orthogonal coordinate system having the yield strength as the y-axis and the sheet thickness as the x-axis.
(8) A vehicular metal absorber as set forth in any one of (1) to (7), characterized in that α1=α2.
(9) A vehicular metal absorber as set forth in any one of (2) to (8), characterized in that β1 and β2 respectively satisfy α1−30<β1<α1−5 degrees and α2−30<β2<α2−5 degrees.
(10) A vehicular metal absorber as set forth in any one of (2) to (9), characterized in that β1=β2.
(11) A vehicular metal absorber as set forth in any one of (2) to (10), characterized in that, furthermore, in the hat-shaped cross-section, one or both of the top web and bottom web have a plurality of bent parts, an internal angle β1,n formed by a bent part of the top web with the flange plane satisfies. 0<β1,n<β1,n−1<α1 degrees, and an internal angle β2,n of a bent part of the bottom web with the flange plane satisfies 0<β2,n<β2,n−1α2 degrees:
(12) A vehicular metal absorber as set forth in (11) characterized in that β1,n=β2,n.
(13) A vehicular metal absorber as set forth in any one of (2) to (12), characterized in that when a front-back direction dimension (H) of the absorber is made H mm, a bent part is provided in a region satisfying 0.3H to 0.7H mm in the vehicle front-back direction from the top flange or bottom flange.
(14) A vehicular metal absorber as set forth in any one of (1) to (13), characterized in being for automobile bumper use.
(15) A vehicular metal absorber as set forth in any one of (1) to (14), characterized in that when making an impactor of a diameter of 70 mm, a length of 200 mm, and a mass of 8 kg impact an absorber as set forth in any one of claims 1 to 14 by an initial speed of 40 km/hr, a maximum force acting on the impactor is 2 kN to 12 kN, a force acting on the impactor is substantially constant, and a front-back direction dimension of the absorber necessary until the impactor stops is 50 mm or less.
(16) A vehicular bumper system characterized by providing a fascia and reinforcement before and after a vehicular metal absorber as set forth in any one of (1) to (15).
(17) An automobile bumper absorber made of metal provided between a fascia and reinforcement of an automobile bumper, the absorber characterized by comprising a hat shape with a top and bottom surface flaring out toward the rear direction of the vehicle and by having a recessed or projecting bead substantially parallel to the front-back direction of the vehicle at the top and bottom surfaces.
(18) An automobile bumper absorber as set forth in (17), characterized in that a flaring angle of the top and bottom surfaces changes in the middle of the front-back direction of the vehicle and the top and bottom surfaces have peak parts.
(19) An automobile bumper absorber as set forth in (17) or (18), characterized in that when a front-back direction dimension of the absorber is H mm, the bead has a width of H/5 to H/2.5 mm, a pitch of H/2.5 to H/1.25 mm, and a depth of H/50 to H/10 mm.
(20) An automobile bumper absorber as set forth in any one of (17) to (19), characterized in that when the pitch of the bead is L mm, the arrangements of the beads at the top and bottom surface are offset by L/4 to L/2 mm above and below.
(21) An automobile bumper absorber as set forth in any one of (17) to (20), characterized in that a tensile strength and sheet thickness of the material satisfy the range of the solid line 18 of
(22) An automobile bumper system characterized by providing a fascia and reinforcement before and after an automobile bumper absorber as set forth in any one of (17) to (21).
Further, in the present invention, “substantially parallel” means, when projecting the bead on a horizontal plane, the ridgeline of the bead is within a range of within ±10 degrees of the front-back direction of the chassis.
Further, the “force acting on the impactor is substantially constant” is defined as a width of fluctuation of the force acting on the impactor being not more than an average value±25% of the force from after the force acting on the impactor reaches the initial maximal value to right before the impactor stops.
Such a hat-shaped metal absorber of the present invention is crushed to become broader in the vertical direction at the time of a collision between a pedestrian and an automobile. Due to this, it becomes possible to efficiently absorb by a short stroke the impact energy received from the leg of a pedestrian and reduce the residual crush, so it becomes possible to protect the leg of a pedestrian by the smallest member dimension. Specifically, when colliding with a pedestrian at a speed of 40 km/hr, it becomes possible to absorb the impact energy by a stroke of 50 mm or less and protect the leg of the pedestrian.
Further, (b) is a view showing an absorber arranging beads of the top web and bottom web so that projecting beads and recessed beads face each other.
Further, (b) is a view showing the relationship of a force and stroke at the time of collision of an absorber arranging the beads of the top web and bottom web so that projecting beads and recessed beads face each other.
The aspects of the present invention of the above (1) to (22) will be successively explained next.
First, the aspect of the present invention according to (1) will be explained in detail.
The metal absorber according to the present invention may also be used along for a guard rail etc, but as shown by the outline when attaching a metal absorber 1 of the present invention to a reinforcement 2 in
This metal absorber is an approximately hat shape formed by pressing steel sheet. Its opening part is provided flaring out toward the rear direction of the chassis.
That is, the metal absorber according to the present invention, as shown in
Further, in the hat-shaped cross-section, an internal angle α1 formed by the top web 0204 with the flange plane 0208 including the top flange 0202 and bottom flange 0203 about an intersection 0206 of the top web 0204 and top flange 0202 and an internal angle α2 formed by the bottom web 0205 with the flange plane 0208 about an intersection 0207 of the bottom web 0205 and bottom flange 0203 are respectively made over 0 degree to less than 90 degrees.
To absorb the impact energy by the plastic deformation of the top web and bottom web, both α1 and α2 respectively must exceed 0 degree, preferably are at least 45 degrees, more preferably are at least 60 degrees. This is because if α1 and α2 are less than 45 degrees, the member cross-section will end up collapsing without the top web and the bottom web plastically deforming.
On the other hand, if α1 and α2 respectively become 90 degrees or more, when press forming the steel sheet, the projecting die tool and the recessed die tool will not be able to engage and formation will become impossible, so the angles are defined as less than 90 degrees, preferably are made 85 degrees or less.
Further, by making the absorber out of a metal, by making it flare out as explained above, and by providing one or both of the top web and bottom web with a recessed or projecting bead substantially parallel to the front-back direction of the vehicle, no matter what the position of the absorber a pedestrian is collided with, overall buckling easily occurs preferentially, so the impact energy can be absorbed without inflicting serious damage to the leg of the pedestrian.
As an example of the prior art, the mode of deformation of an absorber having a tensile strength of 300 MPa, a yield strength of 150 MPa, a sheet thickness of 1.0 mm, a vertical dimension of 40 mm, a front-back dimension of 80 mm, a left-right dimension of 500 mm, and a length (one side) of the top flange and bottom flange of 8 mm and having a rectangular cross-section web (see
As shown in
Therefore, a large stroke is required until finishing absorbing the energy. 50 mm does not enable the energy to be absorbed. On the other hand, if increasing the sheet thickness, the stroke can be reduced, but the weight of the member becomes greater, so the result is inferior to the present invention explained later.
As opposed to this, as shown in
The result is shown in
That is, in
The above actions and effects cannot be obtained with plastic. In the case of a plastic (polyester polycarbonate) member of the same shape as
Therefore, the automobile bumper absorber of the present invention is made using steel sheet, aluminum, titanium, or another metal. By this, it is possible to absorb the impact energy along with plastic deformation of the metal, so the invention is limited to a metal.
In the aspect of the present invention according to (2), the angles α1 and α2 of one or both of the top web and bottom web of the metal absorber are changed in the middle. The angles are changed, as shown in
To absorb impact energy by plastic deformation, the internal angle β1 of the bent part 1103 of the top web and the internal angle β2 of the bent part 1104 of the bottom web are preferably made over 0 degree, more preferably at least 45 degrees and still more preferably at least 60 degrees.
This is because when β1 and β2 are less than 45 degrees, the top web and the bottom web end up collapsing at the cross-sections of the members without plastic deformation. On the other hand, if β1 and β2 become α1 and α2 or more, the top web and bottom web fold inward toward the inside of the member starting at the bent parts and residual crush occurs, so less than α1 and less than α2 are preferable.
That is, the top web and the bottom web are preferably provided with bent parts at their middle parts so as to project outward.
By adopting such a structure, it becomes possible to stably secure a mode of deformation where the top and bottom surfaces fold outward, so the residual crush becomes smaller, it is possible to absorb the impact while maintaining the force acting on the impactor large (10 kN or more) even in the case of collision at a speed of 40 km/hr, and the stroke of the impactor can be made 50 mm or less, so the absorber can be made more compact.
The aspect of the present invention according to (3) defines the width of the bead as H/5 to H/2.5 mm, the pitch as H/2.5 to H/1.25 mm, and the depth as H/50 to H/10 mm, where the front-back direction dimension of the absorber is H mm. If the width of the bead is smaller than H/5 mm, the cost of fabrication of the absorber deteriorates, while if over H/2.5 mm, when the collision position between the leg of the pedestrian and the absorber changes, the damage to the pedestrian's leg varies, so the width of the bead is preferably made H/5 to H/2.5 mm.
Further, if the pitch of the bead is smaller than H/2.5 mm, the cost of fabrication of the absorber deteriorates, while if over H/1.25 mm, when the collision position between the leg of the pedestrian and the absorber changes, the damage to the pedestrian's leg varies, so the pitch of the bead is preferably made H/2.5 to H/1.25 mm.
Further, if the depth of the bead is less than H/50 mm, the impact energy at the time of collision cannot be sufficiently absorbed. If over H/10 mm, the strength of the absorber becomes too high and the damage to the pedestrian's leg becomes larger, so the depth of the bead is preferably made H/50 to H/10 mm.
The aspect of the present invention according to (4) is characterized by the arrangements of the beads at the top and bottom surfaces being offset by L/4 to L/2 mm at the top and bottom, where the pitch of the bead is L mm.
The aspect of the present invention according to (5) is characterized by satisfying H/3≦W≦H/1.5 mm where the maximum width of the top web 1101 and bottom web 1102 is W mm (see
In the same way as a hat-shaped cross-sectional shape with no bent parts, the top or bottom web ends up buckling at a location close to the top or bottom flange and the force can no longer be maintained, so the maximum width W is preferably made at least H/3 mm. On the other hand, if the maximum width W exceeds H/1.5 mm, the location of the top or bottom web close to the center flange buckles and the force can no longer be maintained, so the above range is preferable.
The aspect of the present invention according to (6) is characterized by the tensile strength and sheet of the material satisfying the range of the solid line in
If the tensile strength and sheet thickness are in the bottom left region offset from the range shown by the solid line of
Furthermore, the strength of the absorber may vary due to variations in the dimensions at the time of producing and working the material, so the range of the tensile strength and sheet thickness of the material is particularly preferably set within the range of the broken line 19 of
“Within the range of the broken line 19” means within the range obtained by connecting the (x,y) points (0.2,1000), (0.2,600), (0.4,600), (0.4,200), (1.2,200), (1.2,400), (1.0,400), (1.0,600), (0.8,600), (0.8,800), (0.6,800), (0.6,1000), and (0.2,1000) by lines in an x-y orthogonal coordinate system having the tensile strength as the y-axis and the sheet thickness as the x-axis.
Further, by making the material of the absorber a steel sheet, it is possible to inexpensively and efficiently realize energy absorption by plastic deformation accompanying elongation.
The aspect of the present invention according to (7) is characterized in that the yield strength and sheet thickness of the material satisfy the range of the solid line 1301 of
The aspect of the invention according to (8) features the fact that α1=α2. To ensure that when the impactor collides, the top web and bottom web similarly plastically deform, the member as a whole deforms symmetrically vertically, and the force is maintained and the impact energy is absorbed efficiently, the difference between α1 and α2 is preferably made 5 degrees or less. For the same reason, particularly preferably α1=α2.
The aspect of the invention according to (9) is characterized by setting the upper limits of β1 and β2 to α1−5 degrees and α2−5 degrees respectively, and setting the lower limits of β1 and β2 to α1−30 degrees and α2−30 degrees respectively.
If the upper limit of β1 is α1−5 degrees or less and the upper limit of β2 is α2−5 degrees or less, the mode of deformation becomes one where the top and bottom surfaces of the member stably fold outward starting from the bent parts, so this is preferable. Further, if the lower limit of β1 is α1−30 degrees or more and the lower limit of β2 is α2−30 degrees or more, the top web and bottom web suitably plastically deform and the collapse of the member cross-section can be prevented, so this is preferable.
The aspect of the invention according to (10) is characterized by β1=β2. The top web 1101 and the bottom web 1102 are provided with bent parts.
To ensure that when the impactor collides, the top web and bottom web similarly plastically deform, the member as a whole deforms symmetrically vertically, and the force is maintained and the impact energy is absorbed efficiently, the difference between β1 and β2 is preferably 5 degrees or less. For the same reason, particularly preferably β1=β2.
The aspect of the invention according to (11) is characterized in that, as shown in
To absorb the impact energy by plastic deformation, the internal angle β1,n of the bent part 1404 of the top web and the internal angle β2,n of the bent part 1406 of the bottom web are preferably made larger than 0 degree. On the other hand, to enable the projecting die tool and recessed die tool to engage when press forming the member, β1,n and β2,n must be made smaller than the internal angles β1,n−1 and β2,n−1 of the bent parts near the adjoining top flange or bottom flange, that is, near the flange plane 1407.
Further, to stably obtain a mode of deformation where the top web and bottom web fold outward starting from the plurality of bent parts of the top web and the plurality of bent parts of the bottom part at the time of collision by the impactor, the internal angles β1,n−1 and β2,n−1 are preferably smaller than α1 and α2.
That is, if providing the pluralities of bent parts so that the top web and bottom web project out, the effect is obtained that a mode of deformation where the top and bottom surfaces of the member stably fold outward is secured and the impact energy can be efficiently absorbed without residual crush.
The aspect of the invention according to (12) is the aspect of the invention according to (11) characterized in that β1,n=β2,n. To ensure that when the impactor collides, the top web and bottom web similarly plastically deform, the member as a whole deforms symmetrically vertically, and the force is maintained and the impact energy is absorbed efficiently, the difference between β1,n and β2,n is preferably 5 degrees or less. For the same reason, particularly preferably β1,n=β2,n.
The aspect of the invention according to (13) is characterized by providing a bent part in the region of 0.3H to 0.7H mm from the top flange or the bottom flange in the front-back direction of the chassis, where the front-back direction dimension of the absorber is H mm.
If providing one or both of the top web and bottom web with a bent part, to prevent the top web and bottom web from buckling at positions near the center flange, it is preferable to provide the bent part at a region of 0.3H mm or more from the top flange or the bottom flange in the front-back direction of the chassis (toward the center flange). On the other hand, if the position of provision of the bent part exceeds 0.7H mm from the top flange or bottom flange in the front-back direction of the chassis (toward the center flange), the top web and bottom web buckle at positions near the top flange and bottom flange and the member cross-section as a whole collapses, so it is preferable to provide the bent part in the above range.
The aspect of the invention according to (14) is characterized in that the vehicular metal bumper is an automobile metal bumper.
By making this an automobile bumper, it is possible to absorb impact when colliding at a speed of 40 km/hr (10 kN or more) and possible to make the stroke of the impactor 50 mm or less, so this is preferable for protection of the leg of a pedestrian.
The aspect of the invention according to (15) is characterized in that when making an impactor having a diameter of 70 mm, a length of 200 mm, and a mass of 8 kg collide with the absorber according to the aspects of the invention of the above (1) to (14) at an initial speed of 40 km/hr, the maximum force acting on the impactor is 2 kN to 12 kN, the force acting on the impactor is substantially constant, and the front-back direction dimension of the absorber required until the impactor stops is 50 mm or less.
By providing one or both of the top web and bottom web with a recessed or projecting bead substantially parallel to the front-back direction of the vehicle, the maximum force acting on the impactor becomes 2 kN to 12 kN and an absorber preferable for protection of pedestrians can be obtained.
Further, the force acting on the impactor becomes substantially uniform, so the effects can be obtained that the impact energy can be efficiently absorbed by a compact member and the member can be made light in weight.
Further, by making the front-back direction dimension of the absorber required for the impactor to stop 50 mm, even if a pedestrian is collided with at a speed of 40 km/hr, the pedestrian's leg can be prevented from being broken and the damage given to the pedestrian's legs can be kept to a minimum.
The aspect of the present invention according to (16) is an automobile bumper system providing a fascia and reinforcement before and after the automobile bumper absorber as set forth in any one of the above (1) to (5).
The fascia and reinforcement are not particularly limited. Known parts may be used. By providing the automobile bumper absorber of the present invention, when the automobile and pedestrian collide with each other at a speed of 40 km/hr, the bead part preferentially buckles and absorbs the impact energy, so the pedestrian's leg can be protected.
Next, the aspect of the present invention according to (17) will be concretely explained.
As shown by the outline when attaching an automobile bumper absorber of the present invention to a reinforcement in
The metal absorber forms an approximately hat shape obtained by press forming steel sheet. The opening part is provided to flare outward toward the rear direction of the chassis. “Toward the rear direction of the chassis” means, with respect to the bumper fascia arranged at the front side, toward the chassis direction at the opposite side to the bumper fascia. Therefore, even when attached to the rear bumper, the opening part is provided flaring outward toward the chassis direction at the opposite side to the bumper fascia.
By making the absorber a metal and by making it flare outward, overall buckling easily occurs preferentially, so the impact energy can be absorbed without giving serious damage to the leg of the pedestrian.
Further, as shown in
By making the automobile bumper absorber according to the present invention out of steel sheet, aluminum, titanium, or another metal, it is possible to absorb the impact energy accompanying the plastic deformation of the metal, so the invention is limited to a metal.
The aspect of the present invention according to (18) is characterized in that the flaring angle of the top and bottom surfaces of the metal absorber changes in the middle. The angle is made to change so that, as shown in
By using such a structure, a mode of deformation where the top and bottom surfaces fold outward is stably secured, so there is little residual crush and the absorber can be made compact.
The aspect of the present invention according to (19) defines the width of the bead as H/5 to H/2.5 mm, the pitch as H/2.5 to H/1.25 mm, and the depth as H/50 to H/10 mm when the front-back direction dimension of the absorber is H mm). The detailed explanation is the same as with the aspect of the invention according to (3), so is omitted.
The aspect of the present invention according to (20) is characterized by the arrangements of the beads at the top and bottom surfaces being offset by L/4 to L/2 mm above and below, where the pitch of the bead is L mm. The detailed explanation is the same as with the aspect of the invention according to (4), so is omitted.
The aspect of the present invention according to (21) is characterized by the tensile strength and sheet thickness of the material satisfying the range of the solid line of
The aspect of the present invention according to (22) is an automobile bumper system providing a fascia and reinforcement before and after the automobile bumper absorber as set forth in any one of the above (17) to (21). The detailed explanation is the same as with the aspect of the invention according to (16), so is omitted.
Next, the method of production of an absorber of the present invention will be explained.
As shown in
The die tools were fabricated by machining a steel material. In their surfaces, beads similar to the absorber shape of the present invention were cut. These die tools were attached to a bed and slide of a press machine, then a metal sheet 17 was placed between the recessed and projecting die tools 15, 16 and pressed from above and below. To secure formability by the shape and material of the absorber, sometimes a pad (not shown) is placed at the center part of the recessed die tool 15 and the front end of the absorber is pushed by a certain pressure.
Below, examples will be used to explain the present invention concretely.
As the metal absorber of the Invention Example 1, one of the following material, working method, and shape was tested.
Material: steel sheet of a tensile strength of the 440 MPa class and a sheet thickness of 0.6 mm was used.
Forming method: A die tool shown in
Shape
Further, as a Comparative Example 1, a solid plastic absorber using plastic foam (polypropylene) (top-bottom dimension of 90 mm, front-back dimension of 90 mm, and left-right dimension of 500 mm) was tested. Except for providing the top web and bottom web with bent parts at positions of 45 mm in the front-back direction and making the top-bottom dimension, front-back dimension, and left-right direction the above values, the dimensions were made the same as the above invention example.
As the performance evaluation, the impact was analyzed by numerical analysis using the finite element method. As shown in
As the metal absorber of the Invention Example 2, one of the following material, working method, and shape was tested.
Material: steel sheet of a tensile strength of the 590 MPa class and a sheet thickness of 0.6 mm was used.
Forming method: Pressed to an approximately hat shape.
Shape
As the performance evaluation, the impact was analyzed by numerical analysis using the finite element method. In the same way as in Example 1, an impactor 8 simulating a pedestrian leg (diameter of 70 mm, length of 200 mm, and mass of 8 kg) was made to collide with the absorber at an initial speed of 40 km/hr and the trends in the force acting on the impactor at the time of collision (force-stroke relationship) and the state of deformation of the absorber were confirmed.
b) shows the state of the absorber after deformation. The absorber was crushed with the top web is folded downward and the bottom web folded upward.
Below, an example will be used to explain the present invention concretely.
As the metal absorber of the Invention Example 3(a), one of the following material, working method, and shape was tested.
Material: steel sheet of a tensile strength of the 440 MPa class and a sheet thickness of 0.7 mm was used.
Forming method: A die tool shown in
Shape
Further, as the Invention Example 3(b), as shown in
As the performance evaluation, the impact was analyzed by numerical analysis using the finite element method. In the same way as in
The absorbers of the Invention Example 3(a) and the Invention Example 3(b) both are crushed to become broader in the vertical direction and have little residual crush (not shown).
According to the present invention, at the time of a collision between a pedestrian and an automobile, the hat-shaped metal absorber is crushed to spread in the vertical direction, whereby the impact energy received from the leg of the pedestrian is efficiently absorbed by a short stroke and residual crush becomes smaller, so the leg of the pedestrian can be protected by the smallest member dimension. Specifically, when colliding with a pedestrian at a speed of 40 km/hr, it is possible to absorb the impact energy by a stroke of 50 mm or less and protect the leg of the pedestrian.
Number | Date | Country | Kind |
---|---|---|---|
2007-084128 | Mar 2007 | JP | national |
2008-077278 | Mar 2008 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/056740 | 3/28/2008 | WO | 00 | 9/25/2009 |