The present invention relates generally to a vehicle sensing system for a vehicle and, more particularly, to a vehicle sensing system that utilizes one or more radar sensors at a vehicle.
Use of radar sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 6,587,186; 6,710,770 and/or 8,013,780, which are hereby incorporated herein by reference in their entireties.
The present invention provides a method for managing power of a sensing system (such as a radar or lidar sensing system) for a vehicle. The method includes providing power to each lidar or laser rangefinder of the lidar sensing system. Each lidar includes one or more lidar sensors that is associated with a corresponding field of sensing. The method also includes determining a current velocity or speed of the vehicle and, responsive to determining the current velocity of the vehicle, providing an initial level of electrical power to each lidar sensor. The initial power level may provide at least one selected from the group consisting of (i) an initial range of each lidar sensor and (ii) an initial duty cycle of each lidar sensor. The method includes determining a change in a driving condition of the vehicle and, responsive to determining the change in the driving condition, adjusting the power provided to at least one lidar sensor.
The power provided to the at least one of the lidar sensors thus may be adjusted to adjust a size or duty cycle of the associated fields of sensing. The system may operate to adjust power and thus control temperatures of the sensors for the sensing system (or optionally control temperatures of lidar sensors of a lidar sensing system or radar sensors of a radar sensing system or the like).
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 (
The sensing system may also include a radar sensor that includes plurality of transmitters that transmit radio signals via plurality of antennas. The radar sensor also includes a plurality of receivers that receive radio signals via the plurality of antennas. The received radio signals are transmitted radio signals that are reflected from an object. The ECU or processor is operable to process the received radio signals to sense or detect the object that the received radio signals reflected from.
The ECU or sensing system 12 may be part of a driving assist system of the vehicle, with the driving assist system controls at least one function or feature of the vehicle (such as to provide autonomous driving control of the vehicle) responsive to processing of the data captured by the radar or lidar sensors. The data transfer or signal communication from the sensor to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.
In automotive radar system or lidar systems, thermal management is a significant issue. For example, power consumption of some systems may exceed 17 W before including or integration of computer vision processing (e.g., within a compute module), which may, for example, utilize four laser rangefinder (LRF) sources. Such a system may provide four (or however many LRF sources are desired or appropriate for the particular application) approximately 30 degree field of view or field of sensing (FOV) areas that combine to give a total FOV of 120 degree. Other systems may utilize three LRFs and three micro-electro-mechanical systems (MEMS) mirrors in a single package. This configuration may allow a central zone(s) with approximately 30 to 35 degree FOV (
In accordance with the present invention, a power management and thermal management system includes a variable power mode as part of an overall thermal management plan. Referring now to
For example, when a vehicle is traveling at high speed along a highway (such as at a speed greater than 60 mph), the central area 20b FOV is the most relevant in this scenario. That is, due to the speed and direction of the vehicle, the central area 20b (i.e., the area extending directly in front of the vehicle) requires the greatest range. The system may take into consideration time-to-collision (TTC) proportional to the velocity of the car (relative to stationary targets), and linked to the maximum oncoming traffic speed. For example, the central area 20b may have a range of at least 300 m and the range may be dynamically adapted to a base level set by or responsive to the current vehicle velocity. The range may be increased (i.e., beyond the base level) when oncoming traffic is observed. That is, the power management and thermal management system may adjust the power and duty cycle of one or more LRFs based on the velocity of the vehicle and object detection (i.e., the detection of other vehicles). For example, when the vehicle is travelling at 70 mph, the base level maybe be 300 m, which is less than a maximum range of the system. The base level requires a lower amount of power than the maximum range of the system. However, when the system determines that another vehicle is in front of the equipped vehicle, the system may increase the power in order to increase the range to 350 m. Optionally, the power may be adjusted to increase the range responsive to the vehicle traveling at a greater speed, such as greater than a threshold speed, and/or to decrease the range (to use less power) responsive to the vehicle traveling at a slower speed, such as less than a threshold speed. In another example, when maneuvering along a limited access roadway, the left/right areas 20a, 20c may be filled with information of negligible value and thus power (i.e., range) and/or duty cycle may be reduced. Certain other scenarios (e.g., intersections) may intermittently increase range based on navigation information (e.g., mapping and destination/intention) gathered, for example, from a GPS sensor, V2X (external alerts), or onboard perception observations.
Thus, the system may adjust the range (by adjusting power) and/or duty cycle of one or more regions or FOVs based on vehicle direction, speed, location, or any other environmental condition (e.g., weather, time of day, traffic level, road type, pedestrians, etc.). For example, the system determines that, under the current driving scenario, one or more regions of the FOV may operate at less than maximum range (i.e., less than maximum power) and/or duty cycle. By reducing the range or duty cycle of the one or more FOV sensing regions, the system reduces power drawn by the system and subsequently reduces the amount of heat generated by the system.
The system may dynamically select a range and/or duty cycle for each FOV sensing region based on any number of factors (e.g., vehicle speed, location, road type, traffic, etc.). The selected range may be less than the maximum range and the selected duty cycle may be less than a maximum duty cycle. As the driving situation or environment changes, the system may dynamically adjust the range/duty cycle of each sensing region. For example, when the vehicle speeds up, the range and/or duty cycle of one or more regions may be increased while the range and/or duty cycle of one or more other regions may be reduced. When the vehicle slows down, the range/duty cycle of one or more regions may be reduced while similarly the range/duty cycle of one or more other regions may be increased. As another example, sensing other vehicles (or other objects) may increase/decrease the range and/or duty cycle as appropriate.
Thus, the system may provide electrical power to one or more lidar sensors of a vehicular lidar sensing system (e.g., based on a determined speed of the vehicle as the vehicle travels along a road). The system determines a change in a driving condition and, responsive to the determined change in the driving condition, adjusts electrical power provided to the lidar sensor. Adjusting the electrical power to the lidar sensor may adjust a sensing range and/or a duty cycle of the lidar. The system may provide an initial level of electrical power to the lidar sensor that includes an initial range and/or an initial duty cycle of the lidar/lidar sensor. The change in the driving condition may be based on a change in speed of the vehicle, the detection and/or speed of other vehicles or objects, a change in temperature of the lidar, a change in the road type of the road along which the vehicle is traveling, a change in the weather conditions at the vehicle, etc. The system may include a controller that receives electrical power from a power source of the vehicle (e.g., a battery) and proportionally provides the electrical power to the lidar/lidar sensor(s) based on the received electrical power from the power source. The controller may determine the speed of the vehicle via, for example, a wheel speed sensor of the vehicle, GPS, etc.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ultrasonic sensors or the like. The system may include an imaging sensor or camera that captures image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 9,233,641; 9,146,898; 9,174,574; 9,090,234; 9,077,098; 8,818,042; 8,886,401; 9,077,962; 9,068,390; 9,140,789; 9,092,986; 9,205,776; 8,917,169; 8,694,224; 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or U.S. Publication Nos. US-2014-0340510; US-2014-0313339; US-2014-0347486; US-2014-0320658; US-2014-0336876; US-2014-0307095; US-2014-0327774; US-2014-0327772; US-2014-0320636; US-2014-0293057; US-2014-0309884; US-2014-0226012; US-2014-0293042; US-2014-0218535; US-2014-0218535; US-2014-0247354; US-2014-0247355; US-2014-0247352; US-2014-0232869; US-2014-0211009; US-2014-0160276; US-2014-0168437; US-2014-0168415; US-2014-0160291; US-2014-0152825; US-2014-0139676; US-2014-0138140; US-2014-0104426; US-2014-0098229; US-2014-0085472; US-2014-0067206; US-2014-0049646; US-2014-0052340; US-2014-0025240; US-2014-0028852; US-2014-005907; US-2013-0314503; US-2013-0298866; US-2013-0222593; US-2013-0300869; US-2013-0278769; US-2013-0258077; US-2013-0258077; US-2013-0242099; US-2013-0215271; US-2013-0141578 and/or US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in U.S. Pat. Nos. 10,071,687; 9,900,490; 9,126,525 and/or 9,036,026, which are hereby incorporated herein by reference in their entireties.
The system may utilize sensors, such as radar or lidar sensors or the like. The sensing system may utilize aspects of the systems described in U.S. Pat. Nos. 9,761,142; 9,753,121; 9,689,967; 9,599,702; 9,575,160; 9,146,898; 9,036,026; 8,027,029; 8,013,780; 7,053,357; 7,408,627; 7,405,812; 7,379,163; 7,379,100; 7,375,803; 7,352,454; 7,340,077; 7,321, 111; 7,310,431; 7,283,213; 7,212,663; 7,203,356; 7,176,438; 7,157,685; 6,919,549; 6,906,793; 6,876,775; 6,710,770; 6,690,354; 6,678,039; 6,674,895 and/or 6,587,186, and/or International Publication Nos. WO 2018/007995 and/or WO 2011/090484, and/or U.S. Publication Nos. US-2018-0231635; US-2018-0045812; US-2018-0015875; US-2017-0356994; US-2017-0315231; US-2017-0276788; US-2017-0254873; US-2017-0222311 and/or US-2010-0245066, which are hereby incorporated herein by reference in their entireties.
The radar sensors of the sensing system each comprise a plurality of transmitters that transmit radio signals via a plurality of antennas, a plurality of receivers that receive radio signals via the plurality of antennas, with the received radio signals being transmitted radio signals that are reflected from an object present in the field of sensing of the respective radar sensor. The system includes an ECU or control that includes a data processor for processing sensor data captured by the radar sensors. The ECU or sensing system may be part of a driving assist system of the vehicle, with the driving assist system controls at least one function or feature of the vehicle (such as to provide autonomous driving control of the vehicle) responsive to processing of the data captured by the radar sensors.
The system may also communicate with other systems, such as via a vehicle-to-vehicle communication system or a vehicle-to-infrastructure communication system or the like. Such car2car or vehicle to vehicle (V2V) and vehicle-to-infrastructure (car2X or V2X or V2I or a 4G or 5G broadband cellular network) technology provides for communication between vehicles and/or infrastructure based on information provided by one or more vehicles and/or information provided by a remote server or the like. Such vehicle communication systems may utilize aspects of the systems described in U.S. Pat. Nos. 6,690,268; 6,693,517 and/or 7,580,795, and/or U.S. Publication Nos. US-2014-0375476; US-2014-0218529; US-2013-0222592; US-2012-0218412; US-2012-0062743; US-2015-0251599; US-2015-0158499; US-2015-0124096; US-2015-0352953; US-2016-0036917 and/or US-2016-0210853, which are hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application claims the filing benefits of U.S. provisional application Ser. No. 62/976,574, filed Feb. 14, 2020, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6587186 | Bamji et al. | Jul 2003 | B2 |
6674895 | Rafii et al. | Jan 2004 | B2 |
6678039 | Charbon | Jan 2004 | B2 |
6690354 | Sze | Feb 2004 | B2 |
6710770 | Tomasi et al. | Mar 2004 | B2 |
6876775 | Torunoglu | Apr 2005 | B2 |
6906793 | Bamji et al. | Jun 2005 | B2 |
6919549 | Bamji et al. | Jul 2005 | B2 |
7053357 | Schwarte | May 2006 | B2 |
7157685 | Bamji et al. | Jan 2007 | B2 |
7176438 | Bamji et al. | Feb 2007 | B2 |
7203356 | Gokturk et al. | Apr 2007 | B2 |
7212663 | Tomasi | May 2007 | B2 |
7283213 | O'Connor et al. | Oct 2007 | B2 |
7310431 | Gokturk et al. | Dec 2007 | B2 |
7321111 | Bamji et al. | Jan 2008 | B2 |
7340077 | Gokturk et al. | Mar 2008 | B2 |
7352454 | Bamji et al. | Apr 2008 | B2 |
7375803 | Bamji | May 2008 | B1 |
7379100 | Gokturk et al. | May 2008 | B2 |
7379163 | Rafii et al. | May 2008 | B2 |
7405812 | Bamji | Jul 2008 | B1 |
7408627 | Bamji et al. | Aug 2008 | B2 |
8013780 | Lynam | Sep 2011 | B2 |
8027029 | Lu et al. | Sep 2011 | B2 |
9036026 | Dellantoni et al. | May 2015 | B2 |
9146898 | Ihlenburg et al. | Sep 2015 | B2 |
9575160 | Davis et al. | Feb 2017 | B1 |
9599702 | Bordes et al. | Mar 2017 | B1 |
9689967 | Stark et al. | Jun 2017 | B1 |
9753121 | Davis et al. | Sep 2017 | B1 |
9761142 | Pflug | Sep 2017 | B2 |
20010052844 | Shirai | Dec 2001 | A1 |
20020071126 | Shirai | Jun 2002 | A1 |
20100245066 | Sarioglu et al. | Sep 2010 | A1 |
20100277713 | Mimeault | Nov 2010 | A1 |
20150009485 | Mheen | Jan 2015 | A1 |
20150041598 | Nugent | Feb 2015 | A1 |
20170222311 | Hess et al. | Aug 2017 | A1 |
20170254873 | Koravadi | Sep 2017 | A1 |
20170276788 | Wodrich | Sep 2017 | A1 |
20170315231 | Wodrich | Nov 2017 | A1 |
20170356994 | Wodrich et al. | Dec 2017 | A1 |
20180015875 | May et al. | Jan 2018 | A1 |
20180045812 | Hess | Feb 2018 | A1 |
20180059228 | Raina | Mar 2018 | A1 |
20180113200 | Steinberg | Apr 2018 | A1 |
20180164439 | Droz | Jun 2018 | A1 |
20180231635 | Woehlte | Aug 2018 | A1 |
20230014401 | Hess et al. | Jan 2023 | A1 |
Number | Date | Country |
---|---|---|
102008043481 | May 2010 | DE |
04355390 | Jun 1991 | JP |
Number | Date | Country | |
---|---|---|---|
20210253048 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62976574 | Feb 2020 | US |