The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.
Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties. Trailer assist systems are known that may determine an angle of a trailer hitched at a vehicle. Examples of such known systems are described in U.S. Pat. Nos. 9,085,261 and/or 6,690,268, which are hereby incorporated herein by reference in their entireties.
The present invention provides a driver assistance system or vision system or imaging system for a vehicle that utilizes a camera disposed at a rear portion of a vehicle and having a field of view exterior of the vehicle, the field of view encompassing at least a portion of a trailer hitched to the vehicle. The system also includes a control comprising an image processor operable to process image data captured by the camera, with the image data captured by the camera representative of the trailer hitched to the vehicle. The control, responsive to image processing of captured image data of a portion of the trailer hitched at the trailer hitch, transforms an image of the trailer hitch from a pivoting orientation of the portion of the trailer that pivots about the trailer hitch to a vertical orientation of the portion of the trailer that moves laterally across the transformed image. The control transforms pivotal movement of the portion of the trailer that pivots about the trailer hitch to lateral movement of the trailer hitch in the transformed image. The control determines a trailer angle of the trailer relative to the vehicle based on the lateral position of the trailer hitch in the image data.
These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.
A vehicle and trailer maneuvering system or maneuver assist system and/or driving assist system operates to capture images exterior of the vehicle and of a trailer being towed by the vehicle and may process the captured image data to determine a path of travel for the vehicle and trailer and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle and trailer in a rearward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and that may provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a display, such as a rearview display or a top down or bird's eye or surround view display or the like.
Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes a trailer maneuver assist system 12 that is operable to assist in backing up or reversing the vehicle with a hitched trailer that is hitched at the rear of the vehicle via a hitch 14, and the system may maneuver the vehicle 10 and trailer 16 toward a desired or selected location. The trailer maneuver assist system 12 includes at least one exterior viewing vehicle-based imaging sensor or camera, such as a rearward viewing imaging sensor or camera 18, which captures image data representative of the scene exterior and rearward of the vehicle 10, with the field of view of the camera encompassing the hitch 14 and/or trailer 16, and with the camera 18 having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (
The rearward viewing camera 18 may comprise the rear backup camera of the vehicle that captures image data during a reversing maneuver of the vehicle for display of video images derived from the captured image data for viewing by the driver of the vehicle during the reversing maneuver of the vehicle. The system may optionally include multiple exterior viewing imaging sensors or cameras, such as sideward/rearward viewing cameras at respective sides of the vehicle. Optionally, a forward viewing camera may be disposed at the windshield of the vehicle 10 and view through the windshield and forward of the vehicle 10, such as for a machine vision system (such as for traffic sign recognition, headlamp control, pedestrian detection, collision avoidance, lane marker detection and/or the like).
Object detection has become ubiquitous in vehicle vision systems. However, vision based detection of objects that move in a circular motion around a pivot (e.g., rear camera-based trailer angle detection, determining the speed of a dial in an analog speedometer, etc.) are difficult to detect as they pivot or move in the circular motion. This is because the pose, angle, and rotation of the objects alter features and feature points present at the object (and as viewed by the camera) that the vision system uses to detect the objects. The movement of these features increases the difficulty of detection of the features.
The present invention provides a system and method for warping an image around a pivot position so that, instead of moving around the pivot position, objects move laterally in the image. This approach is capable of eliminating challenges in pose and orientation due to the rotation of objects in images and video. The present invention also provides a platform to more readily detect such objects because the objects to not undergo pose and scale variance. Deformations caused from the rotation of the objects above the pivot axis are also removed.
The control 11 determines a pivot position of the trailer 16 (i.e., the point that the trailer 16 rotates around relative to the vehicle 10). For example, and as shown in
Referring now to
For example, as illustrated in
Thus, the system of the present invention provides for warping an image around a pivot position so that instead of moving or pivoting around the pivot position (i.e., radial movement around the pivot position) in the image, objects move laterally across the image. This is advantageous for any application that requires the detection of objects moving around a pivot position. For example, and with reference to
Therefore, the trailer assist system determines when a trailer is hitched at a vehicle and determines the angle of the trailer relative to the vehicle. Because the system knows that the trailer is hitched and will pivot about the trailer hitch at the rear of the vehicle, the system determines the pivot point and transforms the pivoting movement of the trailer to lateral translational movement of the trailer based on the pivot point in the image data to ease processing of the image data in determining the trailer angle, which may be used in assisting the ECU in controlling the vehicle during a reversing maneuver of the vehicle and trailer.
The system may utilize aspects of the trailering assist systems or trailer angle detection systems or trailer hitch assist systems described in U.S. Pat. No. 6,690,268, and/or U.S. Publication Nos. US-2020-0017143; US-2019-0297233; US-2019-0347825; US-2019-0118860; US-2019-0064831; US-2019-0042864; US-2019-0039649; US-2019-0143895; US-2019-0016264; US-2018-0276839; US-2018-0276838; US-2018-0253608; US-2018-0215382; US-2017-0254873; US-2017-0217372; US-2017-0050672; US-2015-0217693; US-2014-0160276; US-2014-0085472 and/or US-2015-0002670, and/or U.S. provisional applications, Ser. No. 62/844,834, filed on May 8, 2019, and/or Ser. No. 62/868,051, filed on Jun. 28, 2019, which are all hereby incorporated herein by reference in their entireties.
The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an image processing chip selected from the EYEQ family of image processing chips available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.
The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.
For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 9,233,641; 9,146,898; 9,174,574; 9,090,234; 9,077,098; 8,818,042; 8,886,401; 9,077,962; 9,068,390; 9,140,789; 9,092,986; 9,205,776; 8,917,169; 8,694,224; 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or U.S. Publication Nos. US-2014-0340510; US-2014-0313339; US-2014-0347486; US-2014-0320658; US-2014-0336876; US-2014-0307095; US-2014-0327774; US-2014-0327772; US-2014-0320636; US-2014-0293057; US-2014-0309884; US-2014-0226012; US-2014-0293042; US-2014-0218535; US-2014-0218535; US-2014-0247354; US-2014-0247355; US-2014-0247352; US-2014-0232869; US-2014-0211009; US-2014-0160276; US-2014-0168437; US-2014-0168415; US-2014-0160291; US-2014-0152825; US-2014-0139676; US-2014-0138140; US-2014-0104426; US-2014-0098229; US-2014-0085472; US-2014-0067206; US-2014-0049646; US-2014-0052340; US-2014-0025240; US-2014-0028852; US-2014-005907; US-2013-0314503; US-2013-0298866; US-2013-0222593; US-2013-0300869; US-2013-0278769; US-2013-0258077; US-2013-0258077; US-2013-0242099; US-2013-0215271; US-2013-0141578 and/or US-2013-0002873, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO 2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. Pat. No. 9,126,525, which are hereby incorporated herein by reference in their entireties.
Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device, such as by utilizing aspects of the video display systems described in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187; 6,690,268; 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,501; 6,222,460; 6,513,252 and/or 6,642,851, and/or U.S. Publication Nos. US-2014-0022390; US-2012-0162427; US-2006-0050018 and/or US-2006-0061008, which are all hereby incorporated herein by reference in their entireties.
Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.
The present application claims the filing benefits of U.S. provisional application Ser. No. 62/836,243, filed Apr. 19, 2019, which is hereby incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5550677 | Schofield et al. | Aug 1996 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5949331 | Schofield et al. | Sep 1999 | A |
6498620 | Schofield et al. | Dec 2002 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7855755 | Weller et al. | Dec 2010 | B2 |
9085261 | Lu et al. | Jul 2015 | B2 |
9264672 | Lynam | Feb 2016 | B2 |
9446713 | Lu et al. | Sep 2016 | B2 |
9558409 | Pliefke et al. | Jan 2017 | B2 |
9950738 | Lu | Apr 2018 | B2 |
10071687 | Ihlenburg et al. | Sep 2018 | B2 |
10086870 | Gieseke et al. | Oct 2018 | B2 |
10099614 | Diessner | Oct 2018 | B2 |
10127459 | Hu | Nov 2018 | B2 |
10160382 | Pliefke et al. | Dec 2018 | B2 |
10532698 | Potnis et al. | Jan 2020 | B2 |
10552976 | Diessner et al. | Feb 2020 | B2 |
10586119 | Pliefke et al. | Mar 2020 | B2 |
10638025 | Gali et al. | Apr 2020 | B2 |
10706291 | Diessner et al. | Jul 2020 | B2 |
10733757 | Gupta et al. | Aug 2020 | B2 |
10755110 | Bajpai | Aug 2020 | B2 |
20020149673 | Hirama | Oct 2002 | A1 |
20080044061 | Hongo | Feb 2008 | A1 |
20140063197 | Yamamoto et al. | Mar 2014 | A1 |
20140085472 | Lu et al. | Mar 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20150002670 | Bajpai | Jan 2015 | A1 |
20150217693 | Pliefke | Aug 2015 | A1 |
20160049020 | Kuehnle et al. | Feb 2016 | A1 |
20170050672 | Gieseke et al. | Feb 2017 | A1 |
20170174128 | Hu et al. | Jun 2017 | A1 |
20170217372 | Lu et al. | Aug 2017 | A1 |
20170254873 | Koravadi | Sep 2017 | A1 |
20170280091 | Greenwood et al. | Sep 2017 | A1 |
20170341583 | Zhang et al. | Nov 2017 | A1 |
20180215382 | Gupta et al. | Aug 2018 | A1 |
20180253608 | Diessner et al. | Sep 2018 | A1 |
20180276838 | Gupta et al. | Sep 2018 | A1 |
20180276839 | Diessner et al. | Sep 2018 | A1 |
20190016264 | Potnis et al. | Jan 2019 | A1 |
20190039649 | Gieseke et al. | Feb 2019 | A1 |
20190042864 | Pliefke et al. | Feb 2019 | A1 |
20190064831 | Gali et al. | Feb 2019 | A1 |
20190118860 | Gali et al. | Apr 2019 | A1 |
20190143895 | Pliefke et al. | May 2019 | A1 |
20190241126 | Murad et al. | Aug 2019 | A1 |
20190297233 | Gali et al. | Sep 2019 | A1 |
20190329821 | Ziebart et al. | Oct 2019 | A1 |
20190339704 | Yu | Nov 2019 | A1 |
20190347498 | Herman et al. | Nov 2019 | A1 |
20190347825 | Gupta et al. | Nov 2019 | A1 |
20200017143 | Gali | Jan 2020 | A1 |
20200334475 | Joseph et al. | Oct 2020 | A1 |
20200356788 | Joseph et al. | Nov 2020 | A1 |
20200361397 | Joseph et al. | Nov 2020 | A1 |
20200406967 | Yunus et al. | Dec 2020 | A1 |
20210078634 | Jalalmaab et al. | Mar 2021 | A1 |
20210094473 | Gali et al. | Apr 2021 | A1 |
20210170820 | Zhang | Jun 2021 | A1 |
20210170947 | Yunus et al. | Jun 2021 | A1 |
Entry |
---|
Caup et al. “Video-based Trailer Detection and Articulation Estimation” 2013 IEEE Intelligent Vehicles Symposium (IV) Jun. 23-26, 2013, Gold Coast, Australia 6 Pages. |
Number | Date | Country | |
---|---|---|---|
20200334475 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62836243 | Apr 2019 | US |