Vehicular vision system with construction zone recognition

Information

  • Patent Grant
  • 12139063
  • Patent Number
    12,139,063
  • Date Filed
    Wednesday, November 23, 2022
    2 years ago
  • Date Issued
    Tuesday, November 12, 2024
    10 days ago
Abstract
A vehicular vision system includes an image processor and a camera that views through the windshield of the vehicle. The camera captures image data as the vehicle travels along a road, and the image processor processes image data captured by the camera. The vehicular vision system, responsive at least in part to processing by the image processor of image data captured by the camera, determines when the vehicle is at a construction zone. Responsive to determining that the vehicle is at the construction zone, the vehicular vision system adjusts a vehicular driver assistance system of the vehicle. The vehicular vision system determines that the vehicle exits the construction zone based at least in part on processing by the image processor of image data captured by the camera.
Description
FIELD OF THE INVENTION

The present invention relates to automatic headlamp control systems for vehicles and, more particularly, to automatic headlamp control systems that automatically adjust the beam illumination state of a vehicle headlamp, such as between different beam illumination states, such as between higher and lower beam illumination states of the vehicle headlamps.


BACKGROUND OF THE INVENTION

Automotive forward lighting systems are evolving in several areas including the use of image-based sensors, typically referred to as Automatic High Beam (AHB) control systems, to maximize the use of high beam road illumination when appropriate, the use of steerable beam systems, typically referred to as Adaptive Front Lighting (AFL) systems, to provide a greater range of beam pattern options particularly for driving on curved roads or during turn maneuvers wherein the beam pattern may be biased or supplemented in the direction of the curve or turn, and the combination of such AHB and AFL systems.


Automatic high beam control system are known that utilize an optical system, an image sensor, and signal processing including spectral, spatial and temporal techniques to determine ambient lighting conditions, the road environment, and the presence of other road users in order to automatically control the selection of the appropriate forward lighting state such that user forward vision is optimized while minimizing the impact of headlamp caused glare on other road users in all lighting conditions. Examples of such systems are described in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,396,397; 6,822,563 and 7,004,606, which are hereby incorporated herein by reference in their entireties.


While AHB systems that utilize the features and concepts described within the above identified U.S. patents have achieved performance levels that have resulted in considerable commercial success, it is desired to provide additional features and techniques, which may increase the utility, improve the performance, facilitate the manufacture, and simplify the installation of such systems.


SUMMARY OF THE INVENTION

The present invention provides an automatic headlamp control system that is operable to automatically control or adjust the beam illumination state of a vehicle's headlamps, such as from one beam illumination state (such as a lower beam illumination state) to another or different beam illumination state (such as a higher beam illumination state). The headlamp control system is operable to determine when the vehicle is traveling along a substantially curved section of road, such as an on-ramp or off-ramp of an expressway or the like, and may adjust the image processing and/or headlamp beam illumination state decision responsive to such a determination. Optionally, the system may be operable to detect when the vehicle is approaching or entering or driving along a construction zone, and may adjust the headlamp beam illumination state decision or trigger/switch threshold responsive to such detection. Optionally, the system may be adjustable to tailor the image processing (such as by adjusting the algorithm or decision thresholds or the like) to the particular vehicle equipped with the headlamp control system and/or to the particular type of headlamp of the equipped vehicle, such as to more readily discern or discriminate between detected oncoming headlamps of approaching vehicles and reflections of light emitted by the headlamps of the equipped vehicle. Optionally, the system may be operable to determine if the camera or image sensor is blocked or partially blocked (such as by debris or dirt or ice or the like at the vehicle windshield), and may adjust the determination parameters depending on the location and/or driving conditions of the vehicle.


These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevation of a portion of a vehicle embodying the present invention;



FIG. 2 is a partial side elevation view and block diagram of a vehicle headlight dimming control system according to the present invention; and



FIG. 3 is a schematic of an imaging array suitable for use with the control system of the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an automatic vehicle headlamp control system or vehicle headlamp dimming control system 12, which includes a forward facing camera or image sensor 14 that senses light from a scene forward of vehicle 10, an imaging processor or control circuit 13 that receives data from image sensor 14 and processes the image data, and a vehicle lighting control logic module 16 that exchanges data with control circuit 13 and controls the headlamps 18 (such as by changing or retaining the beam illumination state of the headlamps, such as between a higher beam state and a lower beam state) of vehicle 10 for the purpose of modifying the beam illumination state of the headlamps of the vehicle (FIGS. 1 and 2). The headlamps are operable to selectively emit a light output via a higher beam or high beam lighting element and a lower beam or low beam lighting element. Headlamp dimming control 12 is operable to determine whether light sources in the image captured by the image sensor are or may be indicative of headlamps of oncoming vehicles or taillights of leading vehicles and is operable to adjust the headlamps of the controlled vehicle between different beam illumination states (such as a higher beam state or high beam state and a lower beam state or low beam state) in response to such a determination. Headlamp dimming control 12 may utilize the principles disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,396,397; 6,822,563 and/or 7,004,606, which are hereby incorporated herein by reference in their entireties. Headlamp control 12 is operable to distinguish the light sources captured in the image between light sources representing headlamps and/or taillights of other vehicles, as discussed below.


The imaging sensor for the headlamp control of the present invention may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,038,577 and/or 7,004,606, and/or U.S. patent application Ser. No. 12/190,698, filed Aug. 13, 2008 and published Feb. 19, 2009 as U.S. Patent Publication No. US-2009-0045323, and/or U.S. patent application Ser. No. 11/315,675, filed Dec. 22, 2005 and published Aug. 17, 2006 as U.S. Patent Publication No. US-2006-0184297A1, and/or U.S. provisional application, Ser. No. 61/083,222, filed Jul. 24, 2008, and/or PCT Application No. PCT/US2008/076022, filed Sep. 11, 2008, and published Mar. 19, 2009 as International Publication No. WO 2009036176, and/or PCT Application No. PCT/US2008/078700, filed Oct. 3, 2008, and published Apr. 9, 2009 as International Publication No. WO 2009/046268, and/or PCT Application No. PCT/US2007/075702, filed Aug. 10, 2007, and published Feb. 28, 2008 as PCT Publication No. WO 2008/024639, and/or PCT Application No. PCT/US2003/036177, filed Nov. 14, 2003, and published Jun. 3, 2004 as PCT Publication No. WO 2004/047421 A3, which are all hereby incorporated herein by reference in their entireties. The control 12 may include a lens element or optic 20 between the image sensor and the forward scene to substantially focus the scene at an image plane of the image sensor. Optionally, the optic may comprise an asymmetric optic, which focuses a generally central portion of the scene onto the image sensor, while providing classical distortion on the periphery of the scene or field of view. The imaging device and control and image processor may comprise any suitable components, and may utilize aspects of the vision systems of the text described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and 6,824,281, which are all hereby incorporated herein by reference in their entireties. The imaging device and/or control may be part of or share components or circuitry with other image or imaging or vision systems of the vehicle, such as headlamp control systems and/or rain sensing systems and/or cabin monitoring systems and/or the like.


Such imaging sensors or cameras are pixelated imaging array sensors having a photosensing array 15 of a plurality of photon accumulating or photosensing light sensors or pixels 15a (FIG. 3), which are arranged in a two-dimensional array of rows and columns on a semiconductor substrate. The camera established on the substrate or circuit board includes circuitry which is operable to individually access each photosensor pixel or element of the array of photosensor pixels and to provide an output or image data set associated with the individual signals to the control circuit 13, such as via an analog to digital converter (not shown). As camera 14 receives light from objects and/or light sources in the target scene, the control circuit 13 may process the signal from at least some of the pixels to analyze the image data of the captured image.


For example, and as shown in FIG. 3, the control may process one or more sub-arrays 15b of the photosensor array 15, where a particular sub-array may be representative of a zone or region of interest in the forward field of view of the camera. The control may process the sub-array of pixels while ignoring other pixels or processing other pixels at a reduced level (such as by utilizing aspects of the systems described in U.S. Pat. No. 7,038,577, which is hereby incorporated herein by reference in its entirety), and/or the control may process the sub-array of pixels in a particular manner (such as to determine if a light source is a vehicle lamp in the regions forward of the vehicle and near the host vehicle's path of travel, such as a headlamp of an oncoming vehicle in a lane adjacent to (such as to the left of) the host vehicle or other vehicle lamp forward and/or to the left or right of the host vehicle) while processing other sub-arrays or pixels in a different manner.


In order to take advantage of the environmental protection offered by the vehicle cabin, the frequently cleaned optically clear path offered by the vehicle windshield (which is cleaned or wiped by the windshield wipers when the wipers are activated), and the relatively high vantage point offered at the upper region or top of the windshield, the headlamp control system 12 or at least the imaging device or camera 14 is preferably mounted centrally at or near the upper inside surface of the front windshield of a vehicle and with a forward field of view through the region cleaned or wiped by the windshield wipers (such as shown in FIG. 1). The imaging device may be mounted at an interior rearview mirror assembly (such as at a mounting bracket or base of the mirror assembly) or at an accessory module or windshield electronics module (such as by utilizing aspects of the accessory modules described in U.S. Pat. Nos. 6,824,281 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties) disposed at or near the interior rearview mirror assembly and at or near the interior surface of the vehicle windshield.


Optionally, and desirably, the control system may be operable to determine when there is a blockage or partial blockage in front of the forward facing camera or image sensor, such as when dirt or ice or snow or debris accumulates on the windshield in the area in front of the camera. The control system may be operable to determine if some or all of the pixels of the imaging array are blocked (such as via an object or dirt or debris at the vehicle windshield or the like) and may adapt the image processing accordingly or notify or alert the driver of the vehicle that such blockage has been detected. The blockage or partial blockage detection algorithm or algorithms may vary depending on the driving conditions or the like. For example, a partial or total daytime blockage algorithm may be run during daytime lighting conditions, such as in response to an ambient light sensor or a user input or on demand, while a partial or total nighttime blockage algorithm may be run when the ambient condition is indicative of nighttime lighting conditions, such as by utilizing aspects of the systems described in U.S. patent application Ser. No. 12/190,698, filed Aug. 13, 2008, now U.S. Pat. No. 8,017,898, which is hereby incorporated herein by reference in its entirety.


When the total blockage algorithm is run, the number of pixels above an intensity threshold may be counted for a captured image or frame, and if, over a number of captured frames, the count of the bright pixels is continuously below a threshold level, the control system may conclude that the imaging device is substantially or totally blocked. When the partial blockage algorithm is run, the control system may perform region-based processing to take into account intensity variations in different regions of the pixelated imaging array. Based on intensity variations with neighboring or adjacent regions and the continuity of the variations over time, the control may determine that the imaging array is partially blocked. The control system may process the blocked pixel region in a night mode to reduce or substantially preclude the possibility of a false blockage detection.


If either partial or total blockage is detected or determined, the system may adapt the image processing to accommodate the blocked pixels, or the system may alert the driver of the vehicle that the pixels are blocked so that the driver or user may unblock the imaging device (such as via cleaning the windshield of the vehicle), or the system may actuate the vehicle windshield wipers to clear the windshield at the imaging device or the like, or the system may actuate a blower system (such as a defogger system or the like) of the vehicle to direct or force or blow air toward the detected blockage to clear the windshield or window or area in the forward field of view of the imaging device. Optionally, the control system may detect that at least a portion of the imaging device or photosensor array is blocked and may switch to a lower or low beam mode in response to the blockage detection (so as to allow the system to confirm the existence of the blockage without the high beams on during this period of time), and the system may at least one of (a) alert the driver of the subject vehicle of the detected blockage so that he or she can clean the windshield or sensor or otherwise remove the blockage or actuate the wipers and/or related system of the vehicle to remove the blockage; (b) automatically actuate a wiper (such as the windshield wipers) of the vehicle to remove the blockage from the forward field of view of the imaging device; and (c) automatically actuate a blower system of the vehicle to remove or dissipate the blockage from the forward field of view. The control system may also detect that the blockage has been removed from the forward field of view and may resume the normal functionality of the headlamp control system and/or the wiper system of the vehicle and/or the blower system of the vehicle.


Optionally, the control system of the present invention may be operable to adjust or reconfigure the processing or algorithms for detecting sensor blockage in response to a low temperature detection (because ice or snow may linger at the camera location because the defrosting blower may not provide sufficient air flow at the camera to melt such ice and snow on the windshield at that location), in order to provide enhanced blockage detection during cold ambient temperature conditions where ice or snow may accumulate on the windshield in front of the sensor, and to limit high or higher beam actuation during conditions where the camera may be blocked and thus not detecting leading or oncoming vehicles. Such cold weather blockage of sensor may result in high beam flashing of other drivers as the camera or sensor detects nothing and the system concludes that no vehicles are present in front of the equipped vehicle.


Thus, the control system of the present invention may use an outside air temperature input and may switch to cold weather processing or a cold weather algorithm when the air temperature is detected to be below a threshold temperature (such as near 32 degrees F. or thereabouts), in order to enhance blockage detection of snow or ice that typically occurs in cold weather conditions. For example, the windshield may be blocked by frost or snow or ice from cold night temperatures, and the morning temperatures may be warmer than 32 degrees F., but the blockage may still remain, thus the threshold temperature may be close to, but above 32 degrees F. The control system may also monitor detection behavior and switch to a constant lower beam illumination state when the system detects evidence of poor or erroneous detection behavior. Optionally, for example, the control system may switch to an initial lower beam state when the temperature is below the threshold temperature level and may exit the initial lower beam state (or other situations where the system is operating at a constant lower beam illumination state) in response to monitoring of the detections when the monitoring evidences good or accurate detection behavior (and/or optionally following a period of time that should be sufficient for the vehicle climate control system to have melted any ice or snow that may be or may have been present on the windshield), whereby the system may return to normal automatic behavior or performance.


For example, the control system may be responsive to a temperature input that is indicative of the outside or ambient temperature at the vehicle. When the outside temperature falls below a specified or threshold level, the system may enable enhancements to the current blockage detection algorithms. For example, the system may enable more-aggressive blockage detection parameters (to transition to a ‘blocked’ state or mode quicker), or a delay time may be added to the ‘blocked’ state prior to enabling transition to the ‘unblocked/ready’ state. The minimum blockage time (the time a blockage or low light is detected by the sensor before the system recognizes a blocked or partially blocked condition) may be increased by an incremental amount each time the system transitions from its ‘waiting to clear’ state back to its ‘blocked’ state. Optionally, the system may count the number of blockage or weather mode events that occur over a period of time and may adjust the image processing and/or control of the headlamps in response to such counting.


When the temperature is above a specified or threshold level, the system may revert to standard or higher temperature blockage detection parameters, revert to standard “blocked to unblocked/ready” transition delay, and/or suspend counting of the number of blockage or weather mode events that occur over a period of time (but the system may not clear the count). If a temperature signal is not received by the control system, the control system or algorithms may default to their normal operation (in other words, the system may interpret a “no temperature signal” in the same manner as a temperature signal that is indicative of a detected temperature that is greater than the low temperature threshold).


When a specified or threshold number of blockage or weather mode events occur, the control system may adjust or configure the transition to the ‘blocked’ state or mode for the remainder of the ignition cycle of the equipped vehicle (if the duration threshold or time period is set to the vehicle ignition cycle) or until the detected ambient temperature is greater than a high temperature threshold (if the duration threshold is set to a temperature threshold). The number of blockages and weather events may be reset with every power-on reset of the vehicle and/or control system.


If the temperature blockage detection configuration is enabled, the control system will not perform automatic high beam activations when the temperature falls below a specified or threshold level. In such applications, the system may return or be switched to automatic control of the headlamps when the detected temperature is greater than a higher temperature threshold (a temperature threshold that is greater than the low temperature threshold that triggers a switch to a constant lower beam illumination state). The temperature shutdown status may be reset with each power-on reset of the vehicle and/or system.


Optionally, the system may include a blockage detection ‘supervisory’ algorithm (configurable on/off) that is operable to monitor a degradation in detection distances and transition to the ‘blocked’ state after a specified configurable number of ‘short’ detections. While in the ‘blocked’ state, the system may continue to monitor detection distances and transition to the ‘unblocked’ state after a specified configurable number of ‘long’ detections. When the supervisory algorithm is configured or activated or on, the supervisory algorithm may run continuously, independent of the “outside air temperature” signal and the “temperature blockage duration” setting. Optionally, additional supplier-range DIDs may be added for the threshold number of ‘short’ detections required prior to transitioning to the ‘blocked’ state, to define the parametric ‘short’ detection threshold, while such DIDs may be added for the threshold number of ‘long’ detections required prior to transitioning out of the ‘blocked’ state, to define the parametric ‘long’ detection threshold.


Optionally, the control system may include other blockage detection algorithms or parameters depending on the driving conditions of the vehicle. For example, during end of line vehicle testing at a vehicle assembly plant, the vehicle is “driven” on rollers to check engine performance and the like. When a vehicle equipped with a headlamp control system of the types described herein is so tested, the control system may falsely or erroneously detect a partial blockage condition due to the low lighting conditions at the assembly plant and the “driving” of the vehicle on the rollers (which the system may detect as the vehicle being driven along a road while the image sensor detects the same low light pattern, which may be indicative of a blocked or partially blocked sensor), whereby the system may switch to the lower beam illumination state. Such false blockage detections may result in warranty issues and/or further testing and evaluation of the vehicle and/or headlamp control system.


Thus, the automatic headlamp control system of the present invention may utilize a blockage detection algorithm that is tuned to recognize such a condition and not generate a false blockage detection during such end of line testing. For example, the control system may process the captured image data for different parameters to reduce the possibility of a false blockage detection, such as by altering the comparison of different regions or areas of the captured image data during such testing. Optionally, the system may function to limit blockage testing during an initial start-up period or the like.


As discussed above, during normal vehicle operation, the headlamp control system is operable to adjust the beam illumination state of the vehicle headlamps responsive to processing of the image data captured by the forward facing camera. Optionally, the control system may adjust the decision thresholds or parameters responsive to the image processing or responsive to other inputs. For example, the control system may adjust the image processing responsive to a determination that the equipped vehicle is traveling along a curved road or section of road that is indicative of or representative of an on-ramp or off-ramp of an expressway or freeway or the like.


During normal driving conditions (such as along a road having leading traffic ahead of the equipped vehicle and oncoming traffic ahead of and in a lane adjacent to the lane traveled by the equipped vehicle), the control system may switch to the higher beam state responsive to a determination that there are no leading or oncoming vehicles ahead of the equipped vehicle (by determining if detected light sources in the field of view ahead of the equipped vehicle are headlamps or taillights of other vehicles). The switch to the higher beam state may occur following a period of time during which no oncoming headlamps or leading taillights are detected by the control system (to reduce the possibility of rapid switching of the headlamp state between the higher and lower beam states).


When the vehicle equipped with headlamp control system 12 is driven along a curved section of road, such as a curved on-ramp or off-ramp of a freeway or expressway, taillights of leading vehicles may not be detected by the forward facing camera 14 of the equipped vehicle 10, because the leading vehicle may be far enough ahead of the equipped vehicle along the curved road so that the leading taillights are outside of the field of view of the forward facing camera. In such a driving condition or situation, it is desirable to limit switching to the higher beam illumination state of the headlamps of the equipped vehicle because the higher beam illumination may be bothersome to a driver of an undetected leading vehicle that is ahead of the equipped vehicle along the curved road.


Thus, the automatic headlamp control system of the present invention is operable to detect the driving conditions (such as the road curvature and/or steering wheel angle) and, responsive to a detection of a driving condition representative of a substantial curve in the road (such as a curve that results in the vehicle changing direction by about 270 degrees or thereabouts, which may be indicative of a freeway on-ramp or off-ramp or the like), may adjust the decision threshold to limit or delay switching to a different beam illumination state, such as from a lower beam state to a higher beam state. For example, the system may determine the road curvature responsive to image processing (where the camera may capture lane markers or the like along the center or side of the road surface) or a steering wheel sensor (that detects the steering wheel angle and/or turning angle of the vehicle and/or that may detect or determine that the vehicle is turning at a substantial turning angle or maintains a similar turning angle for a substantial distance or period of time) or a global positioning system (GPS) or navigational system or the like (that detects a geographical location of the vehicle and can determine if the vehicle is on an on-ramp or off-ramp or the like and/or that may determine the turning radius of the vehicle and/or the distance or period of time during which the vehicle is traveling at such a turning radius). When a threshold degree of road curvature is detected (such as a threshold turning radius and/or threshold distance along which the vehicle travels along a detected curved section of road), the control system may limit or delay switching to a higher beam state such that the headlamps of the equipped vehicle remain in the lower beam state during the turn (such as until the vehicle completes the turn or the steering wheel angle is returned toward a zero angle or straight path of travel) to limit or substantially preclude glare to a driver of a vehicle that may be in front of the equipped vehicle (yet outside of the field of view of the forward facing camera of the equipped vehicle) along the curved road or section of road.


Optionally, the headlamp control system may be operable to adjust the threshold switching parameter responsive to a situation where a detected taillight moves to one side of the equipped vehicle (such as to the right side as the leading vehicle travels along a curve to the right) and when such detected movement and subsequent non-detection of the leading vehicle taillights is followed by a detection or determination that the equipped vehicle is traveling along a curvature in the road (such as a curve to the right and thus following the direction that the leading vehicle was last headed when still detected by the system), whereby the control system may limit the switching to the higher beam illumination state due to the likelihood that the leading vehicle is still ahead of the equipped vehicle, but is not detectable along the road curvature. Such a delayed or limited high beam switching function provides enhanced performance of the headlamp control system and limits activating the higher beam illumination state in situations where such activation would lead to glare to the driver of a leading vehicle.


Optionally, the automatic headlamp control system may be operable to detect when the equipped vehicle is approaching or entering or driving through a construction zone, such as responsive to traffic sign recognition (such as by detecting orange signs or the like) or character recognition (such as by determining that a detected sign includes characters or indicia or text that is/are indicative of the vehicle approaching or driving through or along a construction zone) or object detection and recognition (such as detection and identification of barrels or cones or the like that are typically disposed at construction zones) or spectral recognition (such as by recognizing or discriminating between orange and red) or spatial recognition (such as by recognizing or discerning construction zone signs by the location and/or number of signs along the side of the road being traveled) or the like. If the system detects that the equipped vehicle is at or in a construction zone and does not detect taillights of leading vehicles ahead of the equipped vehicle, the system may switch the headlamps to a different beam illumination state, such as to a higher beam illumination state.


Because construction zone signs are typically orange, they present potential difficulties to the system in discriminating between the construction zone signs and taillights of leading vehicles (which are red) when reflection off of the signs is detected at a distance ahead of the equipped vehicle. Thus, the image processing may be operable to discriminate between reflection of light off an orange sign and red light emitted by a vehicle taillight, and may make such a determination based on the color of the detected light source or object, the location of the detected light source or object relative to the equipped vehicle, a recognition of a reflection of the headlamps of the equipped vehicle (such as by superimposing a signature or code or pattern on an output of the headlamps of the equipped vehicle such as described in U.S. Pat. No. 7,004,606, which is hereby incorporated herein by reference in its entirety), or the like. Optionally, for example, the headlamp control system may detect a construction zone by any of the above approaches and/or via an output of a traffic sign recognition (TSR) system (that identifies construction zone signs), a lane departure warning (LDW) system (that may identify traffic shifts or lane changes and/or the like along a construction zone), a forward collision warning system or object detection system (that may identify objects of interest ahead of the equipped vehicle, such as traffic cones and/or barrels and/or the like that are typically disposed at construction zones), a GPS and/or navigating system (that may identify when the detected geographic location of the vehicle corresponds to a construction zone) and/or the like. When it is detected or determined that the vehicle is approaching or at or in a construction zone, the system may discriminate between orange construction zone signs and leading taillights and may readily switch (so long as no leading taillights or oncoming headlamps are detected by the control system) to the higher beam illumination state (or remain at the higher beam illumination state) to provide enhanced illumination to the driver of the equipped vehicle while the equipped vehicle is driving through or along the construction zone. When the system subsequently detects that the equipped vehicle is exiting the construction zone, the headlamp control system may return to its normal operation and function to switch the beam illumination state between higher and lower beam illumination states responsive to detection of oncoming headlamps and/or leading taillights.


Optionally, automatic headlamp control system 12 may be operable to adjust the image processing to tailor or tune the image processing to the particular vehicle that is equipped with the automatic headlamp control system. For example, a common or universal automatic headlamp control system may be provided by a headlamp control system manufacturer or supplier (and such a common headlamp control system may be provided or supplied to one or more vehicle manufacturers for implementation on two or more vehicle programs), and the system may be adjusted or preset to a particular processing level or regime, depending on the type of headlamps used by the vehicle that is eventually equipped with the headlamp control system. The control system thus may be programmed or configured or adjusted, such as at a vehicle assembly plant or such as at a dealership or at an aftermarket installation facility or the like, to correlate the system with the type of headlamps (such as halogen headlamps, HID headlamps, light emitting diodes, and/or the like) of the equipped vehicle. For example, the calibration parameters for the control system (such as the decision making or switching parameters) may be selected depending on the type of headlamps of the vehicle.


Such an adjustment or configuration of the image processor and/or control enhances the system's ability to recognize reflections of light emitted by the equipped vehicle's headlamps and to discern such reflections from headlamps of other vehicles and/or taillights of other vehicles. For example, for headlamps that have a particular spectral signature, the control system or image processor may be configured (such as during an end of line calibration at the vehicle assembly plant) to tune the image processing to the equipped vehicle's headlamp color spectrum. The control system thus may be more sensitive (or less sensitive) to particular spectral regions and may be tuned or configured to recognize the equipped vehicle's headlamp spectral signature to enhance recognition of reflections of the equipped vehicle's headlamps off signs and the like. The system thus may be adjusted or configured to better detect red taillights by adjusting or tuning the system for the particular headlamps (since some types of headlamps may output more or less light in the red spectrum range than other types of headlamps).


Changes and modifications to the specifically described embodiments may be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims as interpreted according to the principles of patent law including the doctrine of equivalents.

Claims
  • 1. A vehicular vision system, the vehicular vision system comprising: a camera disposed at an upper in-cabin side of a windshield of a vehicle equipped with the vehicular vision system, wherein the camera views through the windshield of the equipped vehicle and forward of the equipped vehicle;an image processor;wherein the camera captures image data as the equipped vehicle travels along a road;wherein the image processor processes image data captured by the camera;wherein the vehicular vision system, responsive at least in part to processing by the image processor of image data captured by the camera, determines when the equipped vehicle is at a construction zone;wherein, responsive to determining that the equipped vehicle is at the construction zone, the vehicular vision system adjusts a vehicular driver assistance system of the equipped vehicle;wherein the vehicular driver assistance system comprises a vehicular headlamp control system of the equipped vehicle;wherein, responsive at least in part to determining that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust a light beam emitted by a headlamp of the equipped vehicle;wherein adjustment of the light beam comprises changing a beam state of the light beam emitted by the headlamp of the equipped vehicle;wherein, responsive to determination that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust the beam state of the headlamp of the equipped vehicle when no taillights of leading vehicles are present at the construction zone; andwherein the vehicular vision system determines that the equipped vehicle exits the construction zone based at least in part on processing by the image processor of image data captured by the camera.
  • 2. The vehicular vision system of claim 1, wherein determination that the equipped vehicle is at the construction zone comprises determining that the equipped vehicle is approaching the construction zone.
  • 3. The vehicular vision system of claim 1, wherein determination that the equipped vehicle is at a construction zone comprises determining that the equipped vehicle is entering the construction zone.
  • 4. The vehicular vision system of claim 1, wherein determination that the equipped vehicle is at the construction zone comprises determining that the equipped vehicle is driving along the construction zone.
  • 5. The vehicular vision system of claim 1, wherein, responsive to determining that the equipped vehicle exits the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust the light beam emitted by the headlamp of the equipped vehicle responsive to determination of headlamps of approaching vehicles and taillights of leading vehicles.
  • 6. The vehicular vision system of claim 1, wherein, responsive to determination that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust the light beam emitted by the headlamp of the equipped vehicle to a higher beam state when no taillights of leading vehicles are present at the construction zone.
  • 7. The vehicular vision system of claim 1, wherein the vehicular vision system recognizes cones indicative of a construction zone.
  • 8. The vehicular vision system of claim 1, wherein the vehicular vision system recognizes barrels indicative of a construction zone.
  • 9. The vehicular vision system of claim 1, wherein the vehicular vision system recognizes a traffic shift.
  • 10. The vehicular vision system of claim 1, wherein the vehicular vision system, at least when processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates orange from red.
  • 11. The vehicular vision system of claim 10, wherein the vehicular vision system, at least when the processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates between reflection of light off an orange sign and red light emitted by a vehicle taillight.
  • 12. The vehicular vision system of claim 11, wherein the vehicular vision system, at least when the processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates between reflection of light off an orange sign and red light emitted by a taillight of a leading vehicle based on at least one selected from the group consisting of (i) color of a detected light source, (ii) location of a detected light source relative to the equipped vehicle, (iii) recognition of a reflection of a headlamp of the equipped vehicle and (iv) recognition of a reflection of a headlamp of the equipped vehicle by superimposing a pattern on an output of the headlamp of the equipped vehicle.
  • 13. The vehicular vision system of claim 1, wherein determination that the equipped vehicle is at the construction zone comprises recognition of a construction zone sign at the construction zone based at least in part on processing by the image processor of image data captured by the camera.
  • 14. The vehicular vision system of claim 13, wherein the vehicular vision system recognizes the construction zone sign by at least one selected from the group consisting of (i) a location of the construction zone sign along the road traveled by the equipped vehicle and (ii) a number of construction zone signs along the road traveled by the equipped vehicle.
  • 15. The vehicular vision system of claim 1, wherein the vehicular vision system, responsive at least in part to a global positioning system, identifies when the current geographic location of the equipped vehicle corresponds to the construction zone.
  • 16. The vehicular vision system of claim 1, wherein the vehicular vision system, responsive at least in part to a navigation system of the equipped vehicle, identifies when the current geographic location of the equipped vehicle corresponds to the construction zone.
  • 17. The vehicular vision system of claim 1, wherein the vehicular vision system determines that the equipped vehicle is at the construction zone responsive at least in part to (a) a traffic sign recognition system of the equipped vehicle, (b) a forward collision warning system of the equipped vehicle, (c) an object detection system of the equipped vehicle, (d) a global positioning system and (e) a navigation system of the equipped vehicle.
  • 18. The vehicular vision system of claim 1, wherein the image processor processes image data captured by the camera for at least one selected from the group consisting of (a) a traffic sign recognition system of the equipped vehicle, (b) a lane departure warning system of the equipped vehicle, (c) a forward collision warning system of the equipped vehicle and (d) an object detection system of the equipped vehicle.
  • 19. The vehicular vision system of claim 1, wherein the camera is disposed at one selected from the group consisting of (i) an interior rearview mirror assembly of the equipped vehicle and (ii) a windshield electronics module of the equipped vehicle.
  • 20. The vehicular vision system of claim 1, wherein the camera views through the windshield of the equipped vehicle at a location that is swept by a windshield wiper of the equipped vehicle.
  • 21. The vehicular vision system of claim 1, wherein processing by the image processor comprises traffic sign recognition.
  • 22. The vehicular vision system of claim 1, wherein processing by the image processor comprises character recognition.
  • 23. The vehicular vision system of claim 1, wherein processing by the image processor comprises object detection.
  • 24. The vehicular vision system of claim 1, wherein processing by the image processor comprises object recognition.
  • 25. The vehicular vision system of claim 1, wherein processing by the image processor comprises spectral discrimination.
  • 26. The vehicular vision system of claim 1, wherein processing by the image processor comprises spatial recognition.
  • 27. The vehicular vision system of claim 1, wherein processing by the image processor comprises lane marker detection.
  • 28. A vehicular vision system, the vehicular vision system comprising: a camera disposed at an upper in-cabin side of a windshield of a vehicle equipped with the vehicular vision system, wherein the camera views through the windshield of the equipped vehicle and forward of the equipped vehicle;an image processor;wherein the camera captures image data as the equipped vehicle travels along a road;wherein the image processor processes image data captured by the camera;wherein the image processor processes image data captured by the camera for a vehicular headlamp control system of the equipped vehicle and for at least one selected from the group consisting of (a) a traffic sign recognition system of the equipped vehicle, (b) a lane departure warning system of the equipped vehicle, (c) a forward collision warning system of the equipped vehicle and (d) an object detection system of the equipped vehicle;wherein the vehicular vision system, responsive at least in part to processing by the image processor of image data captured by the camera, determines when the equipped vehicle is at a construction zone;wherein, responsive to determining that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system of the equipped vehicle;wherein, responsive at least in part to determining that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to change a beam state of a light beam emitted by a headlamp of the equipped vehicle;wherein, responsive to determination that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to change the beam state to a higher beam state when no taillights of leading vehicles are present at the construction zone;wherein the vehicular vision system determines that the equipped vehicle exits the construction zone based at least in part on processing by the image processor of image data captured by the camera; andwherein, responsive to determining that the equipped vehicle exits the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to change the beam state responsive to determination of headlamps of approaching vehicles and taillights of leading vehicles.
  • 29. The vehicular vision system of claim 28, wherein determination that the equipped vehicle is at the construction zone comprises determining that the equipped vehicle is approaching the construction zone.
  • 30. The vehicular vision system of claim 28, wherein determination that the equipped vehicle is at a construction zone comprises determining that the equipped vehicle is entering the construction zone.
  • 31. The vehicular vision system of claim 28, wherein determination that the equipped vehicle is at the construction zone comprises determining that the equipped vehicle is driving along the construction zone.
  • 32. The vehicular vision system of claim 28, wherein the vehicular vision system recognizes cones indicative of a construction zone.
  • 33. The vehicular vision system of claim 28, wherein the vehicular vision system recognizes barrels indicative of a construction zone.
  • 34. The vehicular vision system of claim 28, wherein the vehicular vision system recognizes a traffic shift.
  • 35. The vehicular vision system of claim 28, wherein the vehicular vision system, at least when processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates orange from red.
  • 36. The vehicular vision system of claim 35, wherein the vehicular vision system, at least when the processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates between reflection of light off an orange sign and red light emitted by a vehicle taillight.
  • 37. The vehicular vision system of claim 36, wherein the vehicular vision system, at least when the processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates between reflection of light off an orange sign and red light emitted by a taillight of a leading vehicle based on at least one selected from the group consisting of (i) color of a detected light source, (ii) location of a detected light source relative to the equipped vehicle, (iii) recognition of a reflection of the headlamp of the equipped vehicle and (iv) recognition of a reflection of the headlamp of the equipped vehicle by superimposing a pattern on an output of the headlamp of the equipped vehicle.
  • 38. The vehicular vision system of claim 28, wherein determination that the equipped vehicle is at the construction zone comprises recognition of a construction zone sign at the construction zone based at least in part on processing by the image processor of image data captured by the camera.
  • 39. The vehicular vision system of claim 38, wherein the vehicular vision system recognizes the construction zone sign by at least one selected from the group consisting of (i) a location of the construction zone sign along the road traveled by the equipped vehicle and (ii) a number of construction zone signs along the road traveled by the equipped vehicle.
  • 40. The vehicular vision system of claim 28, wherein the vehicular vision system, responsive at least in part to a global positioning system, identifies when the current geographic location of the equipped vehicle corresponds to the construction zone.
  • 41. The vehicular vision system of claim 28, wherein the vehicular vision system, responsive at least in part to a navigation system of the equipped vehicle, identifies when the current geographic location of the equipped vehicle corresponds to the construction zone.
  • 42. The vehicular vision system of claim 28, wherein the vehicular vision system determines that the equipped vehicle is at the construction zone responsive at least in part to (a) the traffic sign recognition system of the equipped vehicle, (b) the forward collision warning system of the equipped vehicle, (c) the object detection system of the equipped vehicle, (d) a global positioning system and (e) a navigation system of the equipped vehicle.
  • 43. The vehicular vision system of claim 28, wherein the camera is disposed at one selected from the group consisting of (i) an interior rearview mirror assembly of the equipped vehicle and (ii) a windshield electronics module of the equipped vehicle.
  • 44. The vehicular vision system of claim 28, wherein the camera views through the windshield of the equipped vehicle at a location that is swept by a windshield wiper of the equipped vehicle.
  • 45. The vehicular vision system of claim 28, wherein processing by the image processor comprises traffic sign recognition.
  • 46. The vehicular vision system of claim 28, wherein processing by the image processor comprises character recognition.
  • 47. The vehicular vision system of claim 28, wherein processing by the image processor comprises object detection.
  • 48. The vehicular vision system of claim 28, wherein processing by the image processor comprises object recognition.
  • 49. The vehicular vision system of claim 28, wherein processing by the image processor comprises spectral discrimination.
  • 50. The vehicular vision system of claim 28, wherein processing by the image processor comprises spatial recognition.
  • 51. The vehicular vision system of claim 28, wherein processing by the image processor comprises lane marker detection.
  • 52. A vehicular vision system, the vehicular vision system comprising: a camera disposed at an upper in-cabin side of a windshield of a vehicle equipped with the vehicular vision system, wherein the camera views through the windshield of the equipped vehicle and forward of the equipped vehicle;wherein the camera views through the windshield of the equipped vehicle at a location that is swept by a windshield wiper of the equipped vehicle;an image processor;wherein the camera captures image data as the equipped vehicle travels along a road;wherein the image processor processes image data captured by the camera;wherein the image processor processes image data captured by the camera for at least two vehicular driver assistance systems of the equipped vehicle, and wherein the at least two vehicular driver assistance systems comprise (i) a vehicular headlamp control system of the equipped vehicle and (ii) at least one selected from the group consisting of (a) a traffic sign recognition system of the equipped vehicle, (b) a lane departure warning system of the equipped vehicle, (c) a forward collision warning system of the equipped vehicle and (d) an object detection system of the equipped vehicle;wherein the vehicular vision system, responsive at least in part to processing by the image processor of image data captured by the camera, determines when the equipped vehicle is at a construction zone;wherein, responsive to determining that the equipped vehicle is at the construction zone, the vehicular vision system adjusts at least one vehicular driver assistance system of the at least two vehicular driver assistance systems of the equipped vehicle;wherein, responsive at least in part to determining that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust a light beam emitted by a headlamp of the equipped vehicle;wherein adjustment of the light beam comprises changing a beam state of the light beam emitted by the headlamp of the equipped vehicle;wherein, responsive to determination that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust the beam state of the headlamp of the equipped vehicle when no taillights of leading vehicles are present at the construction zone; andwherein the vehicular vision system determines that the equipped vehicle exits the construction zone based at least in part on processing by the image processor of image data captured by the camera.
  • 53. The vehicular vision system of claim 52, wherein determination that the equipped vehicle is at the construction zone comprises determining that the equipped vehicle is approaching the construction zone.
  • 54. The vehicular vision system of claim 52, wherein determination that the equipped vehicle is at a construction zone comprises determining that the equipped vehicle is entering the construction zone.
  • 55. The vehicular vision system of claim 52, wherein determination that the equipped vehicle is at the construction zone comprises determining that the equipped vehicle is driving along the construction zone.
  • 56. The vehicular vision system of claim 52, wherein, responsive to determining that the equipped vehicle exits the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust the light beam emitted by the headlamp of the equipped vehicle responsive to determination of headlamps of approaching vehicles and taillights of leading vehicles.
  • 57. The vehicular vision system of claim 52, wherein, responsive to determination that the equipped vehicle is at the construction zone, the vehicular vision system adjusts the vehicular headlamp control system to adjust the light beam emitted by the headlamp of the equipped vehicle to a higher beam state when no taillights of leading vehicles are present at the construction zone.
  • 58. The vehicular vision system of claim 52, wherein the vehicular vision system recognizes cones indicative of a construction zone.
  • 59. The vehicular vision system of claim 52, wherein the vehicular vision system recognizes barrels indicative of a construction zone.
  • 60. The vehicular vision system of claim 52, wherein the vehicular vision system recognizes a traffic shift.
  • 61. The vehicular vision system of claim 52, wherein the vehicular vision system, at least when processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates orange from red.
  • 62. The vehicular vision system of claim 61, wherein the vehicular vision system, at least when the processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates between reflection of light off an orange sign and red light emitted by a vehicle taillight.
  • 63. The vehicular vision system of claim 62, wherein the vehicular vision system, at least when the processing by the image processor of captured image data is operating to discriminate construction zone signs from taillights of leading vehicles, discriminates between reflection of light off an orange sign and red light emitted by a taillight of a leading vehicle based on at least one selected from the group consisting of (i) color of a detected light source, (ii) location of a detected light source relative to the equipped vehicle, (iii) recognition of a reflection of a headlamp of the equipped vehicle and (iv) recognition of a reflection of a headlamp of the equipped vehicle by superimposing a pattern on an output of the headlamp of the equipped vehicle.
  • 64. The vehicular vision system of claim 52, wherein determination that the equipped vehicle is at the construction zone comprises recognition of a construction zone sign at the construction zone based at least in part on processing by the image processor of image data captured by the camera.
  • 65. The vehicular vision system of claim 64, wherein the vehicular vision system recognizes the construction zone sign by at least one selected from the group consisting of (i) a location of the construction zone sign along the road traveled by the equipped vehicle and (ii) a number of construction zone signs along the road traveled by the equipped vehicle.
  • 66. The vehicular vision system of claim 52, wherein the vehicular vision system, responsive at least in part to a global positioning system, identifies when the current geographic location of the equipped vehicle corresponds to the construction zone.
  • 67. The vehicular vision system of claim 52, wherein the vehicular vision system, responsive at least in part to a navigation system of the equipped vehicle, identifies when the current geographic location of the equipped vehicle corresponds to the construction zone.
  • 68. The vehicular vision system of claim 52, wherein the vehicular vision system determines that the equipped vehicle is at the construction zone responsive at least in part to (a) the traffic sign recognition system of the equipped vehicle, (b) the forward collision warning system of the equipped vehicle, (c) the object detection system of the equipped vehicle, (d) a global positioning system and (e) a navigation system of the equipped vehicle.
  • 69. The vehicular vision system of claim 52, wherein the camera is disposed at one selected from the group consisting of (i) an interior rearview mirror assembly of the equipped vehicle and (ii) a windshield electronics module of the equipped vehicle.
  • 70. The vehicular vision system of claim 52, wherein processing by the image processor comprises traffic sign recognition.
  • 71. The vehicular vision system of claim 52, wherein processing by the image processor comprises character recognition.
  • 72. The vehicular vision system of claim 52, wherein processing by the image processor comprises object detection.
  • 73. The vehicular vision system of claim 52, wherein processing by the image processor comprises object recognition.
  • 74. The vehicular vision system of claim 52, wherein processing by the image processor comprises spectral discrimination.
  • 75. The vehicular vision system of claim 52, wherein processing by the image processor comprises spatial recognition.
  • 76. The vehicular vision system of claim 52, wherein processing by the image processor comprises lane marker detection.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/947,774, filed Aug. 17, 2020, now U.S. Pat. No. 11,511,668, which is a continuation of U.S. patent application Ser. No. 16/016,815, filed Jun. 25, 2018, now U.S. Pat. No. 10,744,940, which is a continuation of U.S. patent application Ser. No. 14/942,088, filed Nov. 16, 2015, now U.S. Pat. No. 10,005,394, which is a continuation of U.S. patent application Ser. No. 13/767,208, filed Feb. 14, 2013, now U.S. Pat. No. 9,187,028, which is a continuation of U.S. patent application Ser. No. 12/781,119, filed May 17, 2010, now U.S. Pat. No. 8,376,595, which claims the benefits of U.S. provisional application Ser. No. 61/178,565, filed May 15, 2009.

US Referenced Citations (396)
Number Name Date Kind
5182502 Slotkowski et al. Jan 1993 A
5184956 Langlais et al. Feb 1993 A
5189561 Hong Feb 1993 A
5193000 Lipton et al. Mar 1993 A
5193029 Schofield et al. Mar 1993 A
5204778 Bechtel Apr 1993 A
5208701 Maeda May 1993 A
5245422 Borcherts et al. Sep 1993 A
5253109 O'Farrell et al. Oct 1993 A
5255442 Schierbeek et al. Oct 1993 A
5276389 Levers Jan 1994 A
5285060 Larson et al. Feb 1994 A
5289182 Brillard et al. Feb 1994 A
5289321 Secor Feb 1994 A
5305012 Faris Apr 1994 A
5307136 Saneyoshi Apr 1994 A
5309137 Kajiwara May 1994 A
5313072 Vachss May 1994 A
5325096 Pakett Jun 1994 A
5325386 Jewell et al. Jun 1994 A
5329206 Slotkowski et al. Jul 1994 A
5331312 Kudoh Jul 1994 A
5336980 Levers Aug 1994 A
5341437 Nakayama Aug 1994 A
5351044 Mathur et al. Sep 1994 A
5355118 Fukuhara Oct 1994 A
5374852 Parkes Dec 1994 A
5386285 Asayama Jan 1995 A
5394333 Kao Feb 1995 A
5406395 Wilson et al. Apr 1995 A
5410346 Saneyoshi et al. Apr 1995 A
5414257 Stanton May 1995 A
5414461 Kishi et al. May 1995 A
5416313 Larson et al. May 1995 A
5416318 Hegyi May 1995 A
5416478 Morinaga May 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5430431 Nelson Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5440428 Hegg et al. Aug 1995 A
5444478 Lelong et al. Aug 1995 A
5451822 Bechtel et al. Sep 1995 A
5457493 Leddy et al. Oct 1995 A
5461357 Yoshioka et al. Oct 1995 A
5461361 Moore Oct 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475494 Nishida et al. Dec 1995 A
5497306 Pastrick Mar 1996 A
5498866 Bendicks et al. Mar 1996 A
5500766 Stonecypher Mar 1996 A
5510983 Lino Apr 1996 A
5515448 Nishitani May 1996 A
5521633 Nakajima et al. May 1996 A
5528698 Kamei et al. Jun 1996 A
5529138 Shaw et al. Jun 1996 A
5530240 Larson et al. Jun 1996 A
5530420 Tsuchiya et al. Jun 1996 A
5535314 Alves et al. Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5539397 Asanuma et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5555555 Sato et al. Sep 1996 A
5567360 Varaprasad et al. Oct 1996 A
5568027 Teder Oct 1996 A
5574443 Hsieh Nov 1996 A
5581464 Woll et al. Dec 1996 A
5594222 Caldwell Jan 1997 A
5610756 Lynam et al. Mar 1997 A
5614788 Mullins Mar 1997 A
5619370 Guinosso Apr 1997 A
5632092 Blank et al. May 1997 A
5634709 Iwama Jun 1997 A
5642299 Hardin et al. Jun 1997 A
5648835 Uzawa Jul 1997 A
5650944 Kise Jul 1997 A
5660454 Mori et al. Aug 1997 A
5661303 Teder Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5677851 Kingdon et al. Oct 1997 A
5699044 Van Lente et al. Dec 1997 A
5715093 Schierbeek et al. Feb 1998 A
5724316 Brunts Mar 1998 A
5737226 Olson et al. Apr 1998 A
5760826 Nayar Jun 1998 A
5760828 Cortes Jun 1998 A
5760931 Saburi et al. Jun 1998 A
5760962 Schofield et al. Jun 1998 A
5761094 Olson et al. Jun 1998 A
5765116 Wilson-Jones et al. Jun 1998 A
5781437 Wiemer et al. Jul 1998 A
5786772 Schofield et al. Jul 1998 A
5790403 Nakayama Aug 1998 A
5790973 Blaker et al. Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5798575 O'Farrell et al. Aug 1998 A
5823654 Pastrick et al. Oct 1998 A
5835255 Miles Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5844682 Kiyomoto et al. Dec 1998 A
5845000 Breed et al. Dec 1998 A
5848802 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5850254 Takano et al. Dec 1998 A
5867591 Onda Feb 1999 A
5877707 Kowalick Mar 1999 A
5877897 Schofield et al. Mar 1999 A
5878370 Olson Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5884212 Lion Mar 1999 A
5890021 Onoda Mar 1999 A
5896085 Mori et al. Apr 1999 A
5899956 Chan May 1999 A
5910854 Varaprasad et al. Jun 1999 A
5914815 Bos Jun 1999 A
5923027 Stam et al. Jul 1999 A
5924212 Domanski Jul 1999 A
5929786 Schofield et al. Jul 1999 A
5940120 Frankhouse et al. Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956181 Lin Sep 1999 A
5959367 O'Farrell et al. Sep 1999 A
5959555 Furuta Sep 1999 A
5963247 Banitt Oct 1999 A
5971552 O'Farrell et al. Oct 1999 A
5986796 Miles Nov 1999 A
5990469 Bechtel et al. Nov 1999 A
5990649 Nagao et al. Nov 1999 A
6020704 Buschur Feb 2000 A
6049171 Stam Apr 2000 A
6066933 Ponziana May 2000 A
6084519 Coulling et al. Jul 2000 A
6087953 DeLine et al. Jul 2000 A
6097023 Schofield et al. Aug 2000 A
6097024 Stam et al. Aug 2000 A
6116743 Hoek Sep 2000 A
6139172 Bos et al. Oct 2000 A
6144022 Tenenbaum et al. Nov 2000 A
6154306 Varaprasad et al. Nov 2000 A
6172613 DeLine et al. Jan 2001 B1
6175164 O'Farrell et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6178034 Allemand et al. Jan 2001 B1
6198409 Schofield et al. Mar 2001 B1
6201642 Bos Mar 2001 B1
6222447 Schofield et al. Apr 2001 B1
6227689 Miller May 2001 B1
6250148 Lynam Jun 2001 B1
6259412 Duroux Jul 2001 B1
6266082 Yonezawa et al. Jul 2001 B1
6266442 Laumeyer et al. Jul 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6294989 Schofield et al. Sep 2001 B1
6297781 Turnbull et al. Oct 2001 B1
6302545 Schofield et al. Oct 2001 B1
6310611 Caldwell Oct 2001 B1
6313454 Bos et al. Nov 2001 B1
6317057 Lee Nov 2001 B1
6320176 Schofield et al. Nov 2001 B1
6320282 Caldwell Nov 2001 B1
6323942 Bamji Nov 2001 B1
6326613 Heslin et al. Dec 2001 B1
6333759 Mazzilli Dec 2001 B1
6341523 Lynam Jan 2002 B2
6353392 Schofield et al. Mar 2002 B1
6370329 Teuchert Apr 2002 B1
6392315 Jones et al. May 2002 B1
6411204 Bloomfield et al. Jun 2002 B1
6411328 Franke et al. Jun 2002 B1
6420975 DeLine et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6430303 Naoi et al. Aug 2002 B1
6433676 DeLine et al. Aug 2002 B2
6442465 Breed et al. Aug 2002 B2
6477464 McCarthy et al. Nov 2002 B2
6485155 Duroux et al. Nov 2002 B1
6497503 Dassanayake et al. Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6513252 Schierbeek et al. Feb 2003 B1
6516664 Lynam Feb 2003 B2
6523964 Schofield et al. Feb 2003 B2
6539306 Turnbull Mar 2003 B2
6547133 Devries, Jr. et al. Apr 2003 B1
6553130 Lemelson et al. Apr 2003 B1
6559435 Schofield et al. May 2003 B2
6574033 Chui et al. Jun 2003 B1
6580496 Bamji et al. Jun 2003 B2
6589625 Kothari et al. Jul 2003 B1
6590719 Bos Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611610 Stam et al. Aug 2003 B1
6627918 Getz et al. Sep 2003 B2
6636258 Strumolo Oct 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6650455 Miles Nov 2003 B2
6657410 Berger et al. Dec 2003 B1
6672731 Schnell et al. Jan 2004 B2
6674562 Miles Jan 2004 B1
6678614 McCarthy et al. Jan 2004 B2
6680792 Miles Jan 2004 B2
6690268 Schofield et al. Feb 2004 B2
6700605 Toyoda et al. Mar 2004 B1
6703925 Steffel Mar 2004 B2
6704621 Stein et al. Mar 2004 B1
6710908 Miles et al. Mar 2004 B2
6711474 Treyz et al. Mar 2004 B1
6714331 Lewis et al. Mar 2004 B2
6717610 Bos et al. Apr 2004 B1
6735506 Breed et al. May 2004 B2
6741377 Miles May 2004 B2
6744353 Sjonell Jun 2004 B2
6757109 Bos Jun 2004 B2
6762867 Lippert et al. Jul 2004 B2
6794119 Miles Sep 2004 B2
6795221 Urey Sep 2004 B1
6802617 Schofield et al. Oct 2004 B2
6806452 Bos et al. Oct 2004 B2
6819231 Berberich et al. Nov 2004 B2
6822563 Bos et al. Nov 2004 B2
6823241 Shirato et al. Nov 2004 B2
6824281 Schofield et al. Nov 2004 B2
6831261 Schofield et al. Dec 2004 B2
6882287 Schofield Apr 2005 B2
6889161 Winner et al. May 2005 B2
6891563 Schofield et al. May 2005 B2
6902284 Hutzel et al. Jun 2005 B2
6909753 Meehan et al. Jun 2005 B2
6946978 Schofield Sep 2005 B2
6953253 Schofield et al. Oct 2005 B2
6968736 Lynam Nov 2005 B2
6975775 Rykowski et al. Dec 2005 B2
6989736 Berberich et al. Jan 2006 B2
7004593 Weller et al. Feb 2006 B2
7004606 Schofield Feb 2006 B2
7005974 McMahon et al. Feb 2006 B2
7012727 Hutzel et al. Mar 2006 B2
7030738 Ishii Apr 2006 B2
7038577 Pawlicki et al. May 2006 B2
7062300 Kim Jun 2006 B1
7065432 Moisel et al. Jun 2006 B2
7079017 Lang et al. Jul 2006 B2
7085637 Breed et al. Aug 2006 B2
7092548 Laumeyer et al. Aug 2006 B2
7111968 Bauer et al. Sep 2006 B2
7116246 Winter et al. Oct 2006 B2
7123168 Schofield Oct 2006 B2
7145519 Takahashi et al. Dec 2006 B2
7149613 Stam et al. Dec 2006 B2
7161616 Okamoto et al. Jan 2007 B1
7167796 Taylor et al. Jan 2007 B2
7195381 Lynam et al. Mar 2007 B2
7202776 Breed Apr 2007 B2
7205904 Schofield Apr 2007 B2
7227459 Bos et al. Jun 2007 B2
7227611 Hull et al. Jun 2007 B2
7311406 Schofield et al. Dec 2007 B2
7325934 Schofield et al. Feb 2008 B2
7325935 Schofield et al. Feb 2008 B2
7338177 Lynam Mar 2008 B2
7339149 Schofield et al. Mar 2008 B1
7344261 Schofield et al. Mar 2008 B2
7355524 Schofield Apr 2008 B2
7380948 Schofield et al. Jun 2008 B2
7388182 Schofield et al. Jun 2008 B2
7402786 Schofield et al. Jul 2008 B2
7423248 Schofield et al. Sep 2008 B2
7425076 Schofield et al. Sep 2008 B2
7446650 Scholfield et al. Nov 2008 B2
7459664 Schofield et al. Dec 2008 B2
7460951 Altan Dec 2008 B2
7480149 DeWard et al. Jan 2009 B2
7490007 Taylor et al. Feb 2009 B2
7492281 Lynam et al. Feb 2009 B2
7526103 Schofield et al. Apr 2009 B2
7561181 Schofield et al. Jul 2009 B2
7565006 Stam et al. Jul 2009 B2
7581859 Lynam Sep 2009 B2
7592928 Chinomi et al. Sep 2009 B2
7613327 Stam et al. Nov 2009 B2
7616781 Schofield et al. Nov 2009 B2
7619508 Lynam et al. Nov 2009 B2
7639149 Katoh Dec 2009 B2
7650864 Hassan et al. Jan 2010 B2
7720580 Higgins-Luthman May 2010 B2
7855755 Weller et al. Dec 2010 B2
7881496 Camilleri et al. Feb 2011 B2
7914187 Higgins-Luthman et al. Mar 2011 B2
7965336 Bingle et al. Jun 2011 B2
8027029 Lu et al. Sep 2011 B2
8045760 Stam et al. Oct 2011 B2
8058977 Lynam Nov 2011 B2
8063759 Bos et al. Nov 2011 B2
8184159 Luo May 2012 B2
8217830 Lynam Jul 2012 B2
8254635 Stein et al. Aug 2012 B2
8314689 Schofield et al. Nov 2012 B2
8325986 Schofield et al. Dec 2012 B2
8376595 Higgins-Luthman Feb 2013 B2
8379923 Ishikawa Feb 2013 B2
8605947 Zhang et al. Dec 2013 B2
9187028 Higgins-Luthman Nov 2015 B2
10005394 Higgins-Luthman Jun 2018 B2
10744940 Higgins-Luthman Aug 2020 B2
11511668 Higgins-Luthman Nov 2022 B2
20020015153 Downs Feb 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020113873 Williams Aug 2002 A1
20020159270 Lynam et al. Oct 2002 A1
20030072471 Otsuka Apr 2003 A1
20030137586 Lewellen Jul 2003 A1
20030222982 Hamdan et al. Dec 2003 A1
20030227777 Schofield Dec 2003 A1
20040012488 Schofield Jan 2004 A1
20040016870 Pawlicki et al. Jan 2004 A1
20040032321 McMahon et al. Feb 2004 A1
20040051634 Schofield et al. Mar 2004 A1
20040086153 Tsai et al. May 2004 A1
20040114381 Salmeen et al. Jun 2004 A1
20040128065 Taylor et al. Jul 2004 A1
20040143380 Stam Jul 2004 A1
20040164228 Fogg et al. Aug 2004 A1
20040200948 Bos et al. Oct 2004 A1
20050035926 Takenaga Feb 2005 A1
20050078389 Kulas et al. Apr 2005 A1
20050134966 Burgner Jun 2005 A1
20050134983 Lynam Jun 2005 A1
20050146792 Schofield et al. Jul 2005 A1
20050169003 Lindahl et al. Aug 2005 A1
20050189493 Bagley et al. Sep 2005 A1
20050195488 McCabe et al. Sep 2005 A1
20050200700 Schofield et al. Sep 2005 A1
20050232469 Schofield et al. Oct 2005 A1
20050264891 Uken et al. Dec 2005 A1
20060018511 Stam et al. Jan 2006 A1
20060018512 Stam et al. Jan 2006 A1
20060028731 Schofield et al. Feb 2006 A1
20060050018 Hutzel et al. Mar 2006 A1
20060061008 Karner et al. Mar 2006 A1
20060091813 Stam et al. May 2006 A1
20060103727 Tseng May 2006 A1
20060157639 Shaffer et al. Jul 2006 A1
20060164230 DeWind et al. Jul 2006 A1
20060171704 Bingle et al. Aug 2006 A1
20060228001 Tsukamoto Oct 2006 A1
20060250501 Wildmann et al. Nov 2006 A1
20070013495 Suzuki et al. Jan 2007 A1
20070023613 Schofield et al. Feb 2007 A1
20070024724 Stein et al. Feb 2007 A1
20070102214 Wittorf May 2007 A1
20070104476 Yasutomi et al. May 2007 A1
20070109406 Schofield et al. May 2007 A1
20070109651 Schofield et al. May 2007 A1
20070109652 Schofield et al. May 2007 A1
20070109653 Schofield et al. May 2007 A1
20070109654 Schofield et al. May 2007 A1
20070115357 Stein et al. May 2007 A1
20070120657 Schofield et al. May 2007 A1
20070150196 Grimm Jun 2007 A1
20070176080 Schofield et al. Aug 2007 A1
20070242339 Bradley Oct 2007 A1
20070293996 Mori Dec 2007 A1
20080043099 Stein et al. Feb 2008 A1
20080137908 Stein et al. Jun 2008 A1
20080180529 Taylor et al. Jul 2008 A1
20080221767 Ikeda et al. Sep 2008 A1
20090109061 McNew Apr 2009 A1
20090113509 Tseng et al. Apr 2009 A1
20090182690 Stein Jul 2009 A1
20090185716 Kato et al. Jul 2009 A1
20090208058 Schofield et al. Aug 2009 A1
20090243824 Peterson et al. Oct 2009 A1
20090244361 Gebauer et al. Oct 2009 A1
20090254247 Osanai Oct 2009 A1
20090295181 Lawlor et al. Dec 2009 A1
20100020170 Higgins-Luthman et al. Jan 2010 A1
20100045797 Schofield et al. Feb 2010 A1
20100097469 Blank et al. Apr 2010 A1
20100156617 Nakada Jun 2010 A1
20100171642 Hassan et al. Jul 2010 A1
20100172542 Stein et al. Jul 2010 A1
20110043624 Haug Feb 2011 A1
20110273582 Gayko et al. Nov 2011 A1
20120019940 Lu et al. Jan 2012 A1
20120062743 Lynam et al. Mar 2012 A1
20120116632 Bechtel May 2012 A1
20120162427 Lynam Jun 2012 A1
20120233841 Stein Sep 2012 A1
20130124038 Naboulsi May 2013 A1
20140211013 Drummond et al. Jul 2014 A1
Foreign Referenced Citations (4)
Number Date Country
2008127752 Oct 2008 WO
2009073054 Jun 2009 WO
2010099416 Sep 2010 WO
2011014497 Feb 2011 WO
Related Publications (1)
Number Date Country
20230100684 A1 Mar 2023 US
Provisional Applications (1)
Number Date Country
61178565 May 2009 US
Continuations (5)
Number Date Country
Parent 16947774 Aug 2020 US
Child 18058284 US
Parent 16016815 Jun 2018 US
Child 16947774 US
Parent 14942088 Nov 2015 US
Child 16016815 US
Parent 13767208 Feb 2013 US
Child 14942088 US
Parent 12781119 May 2010 US
Child 13767208 US