The present invention relates to medical products and methods of their use, and more particularly to a needle guide assembly and method of venipuncture, through which needles can be easily and accurately placed into a patient's vein.
Intravenous access is a ubiquitous component of some of the most common medical treatments and procedures. Most common access is a percutaneous injection via piercing the skin with a hollow needle inserted into a vein, whether the vein is in the person's hand, arm, groin, neck or other body part. Venipuncture to obtain a blood sample is most commonly obtained from the median cubital vein, which lies within the cubital fossa anterior to the elbow, as this vein lies close to the surface of the skin so it is easily accessible while not surrounded by many nerves so as to minimize the pain for the individual.
Phlebotomy via venipuncture occurs hundreds of millions of time per year worldwide, if not a billion. Accessing a vein is critical, because veins are the conduit through which medical professionals draw blood from as well as inject fluids into a patient's circulatory system.
Most common reasons for venipuncture is to obtain blood for diagnostic purposes, to monitor levels of blood components, and to administer therapeutic treatments such as medications (e.g., intravenous antibiotics), nutrition, or chemotherapy for cancer patients. Other reasons for venipuncture include removing blood due to excess levels of iron (e.g., chelation therapy) or erythrocytes (i.e., red blood cells) or to collect blood for later uses such as donor blood and transfusions. All of these processes require access to a vein via venipuncture.
During conventional venipuncture the user (e.g., phlebotomist, nurse, doctor or other medical personnel) positions the needle to be inserted over the chosen vein at an angle so as to make sure the needle does not puncture the vein and exit the vein on the other side, thus not being in contact with the blood supply within the vein. The user's goal is to position the needle tip within the vein so that there is access to the blood within the vein, whether for blood collection or for insertion of medication, fluids or other compositions into the blood supply of the individual or patient. However, this goal may be complicated as the vein chosen for the venipuncture is typically supported by fatty tissue in the cells that make up the connective tissue, and the chosen vein may lie between the skin and the underlying muscle or bone. So typically the user relies upon visual cues to locate the vein and perform the venipuncture.
Further, the user may position a tourniquet at a location such that the blood increases below the tourniquet and the vein “throbs” making it easier to locate and puncture. The user may also touch and feel the skin of the individual or patient and attempt to locate the vein in this manner, together with a visual observation.
Once the needle tip is inserted into the skin the user may also use tactile senses by trying to “feel” where the needle tip is in relation to the vein. Since the needle tip is inserted into the skin layer, it passes through the fatty tissue layer and into the wall of the vein which acts as a third layer. Depending on the resistance felt by the user, the needle angle may be adjusted as well in order to puncture the vein wall without passing through to the other side of the vein and ensuring contact with the blood within the vein. Once the needle tip is successfully within the vein and in contact with the blood the needle angle may be adjusted depending on the connection at the other end of the needle such as a vacuum bottle for blood collection or an intravenous liquid for insertion into the blood flow of the individual or patient.
In certain instances the individual patient may experience anxiety or even pain depending on the needle tip diameter, the structure of the individual's veins and whether his or her veins have a tendency to collapse when punctured, and the experience level of the user performing the venipuncture. If the venipuncture is not successful there may be repeated attempts until successful completion. Multiple attempts may add to the pain and the anxiety of the individual or patient, especially for a pediatric patient, elderly patient, a special needs individual, or a person with anxiety issues.
One problem which may occur during the venipuncture is movement of the vein targeted for puncture. As the vein is often difficult to hold steady the vein itself being targeted for puncture may roll or move sideways. Further, the needle tip itself on insertion into the skin layer may in fact push the vein to the side and out of the path of the needle tip itself. The patient may also move the body part where the venipuncture is being performed. Upon any of these problems the venipuncture is not successful and further attempts must be made resulting in certain trauma to the individual or patient's skin layer and layers below, as well as to the individual's psyche and anxiety.
In certain circumstances the user may try to use his or her own finger applying pressure to the patient's body part so as to secure the vein from movement, but then the user is exposed for any subsequent sudden movement by the patient and possible puncture of the needle into the user's finger rather than puncturing the vein.
Vein access is critically important especially in patients who need continual access to their circulatory system, such as patients receiving chemotherapy or dialysis. Renal failure is a prevalent chronic disease in the United States with approximately 600,000 patients. The term renal failure refers to the inability of the patient's kidneys to properly rid the patient's blood supply of waste products such as creatinine, urea, and free water. The most common treatment for this condition is hemodialysis. Hemodialysis (or commonly referred to as dialysis) is the process of extra-corporally removing the waste product from the blood supply by circulating the patient's blood through a dialysis machine, which “purifies” the blood of unwanted waste materials and returns the blood to the patient.
There are various techniques in which dialysis is done, but the more desirable and common technique is through what is known as an AV fistula. For the purposes of dialysis, an AV (or Arterial Venous) fistula is a surgical procedure to connect the vein and artery. The AV fistula is accessed by inserting two needles, one needle for drawing the blood to circulate through the dialysis machine and a second needle to return to blood back into the patient.
One common complication with this procedure occurs when the vein is not fully dilated—the needle often does not puncture the vein properly and causes blood to extravasate, causing the swelling and hematoma formation. Worse, improperly puncturing the AV fistula can actually damage the AV fistula making recannulation not possible. Apart from the destruction of the fistula, the patient suffers from pain and discomfort especially from the hematoma. Ideally, the needle should enter the vein directly only piercing the vein where it entered. By entering directly into the vein and not puncturing the side or back walls of the vein, the needle can access the AV fistula and allow the dialysis to commence with minimal extravasation and the morbidities associated with it.
Thus, there exists a need for a guide to assist in the proper insertion of a needle into a vein. While certain vein guides have been the subject of patents and applications, they have notable problems. For instance, they may be too binding and constricting on the patient, especially an elderly, pediatric or anxious patient. They may also be too large and wieldy to use easily in a clinic or blood collection site such as Quest Diagnostics, Inc. or Laboratory Corporation of America (LabCorp).
A further need exists for a cheaper and easily available guide which may be used by hospitals, clinics and even small individual doctor's offices. A further need exists for a guide which is flexible and not constricting on a patient while in use. A further need exists for a guide which secures the needle once inserted into the individual's body part.
These and other needs are met by the present invention including a needle guide assembly apparatus for vein access and method of use. Other advantages of the present invention will become apparent from the following description and appended claims.
This invention provides an apparatus for guiding a needle into a vein. The invention further provides an apparatus for securing an inserted needle into a vein during venipuncture. The invention further provides for a method of use including venipuncture.
The invention includes a needle guide assembly for vein access. The vein access needle guide assembly is the conduit through which the needle is guided, inserted and may be secured during venipuncture. A portion of the vein access needle guide assembly may be transparent or translucent to allow the user performing the venipuncture to properly align the needle with the target vein in an individual or patient. In one embodiment, the vein access needle guide assembly apparatus includes a retaining means such as an adhesive backed plastic piece with an aperture such as a hole, functioning as a guide, in the middle of the plastic piece. In this embodiment the aperture may have a “track” that when aligned properly above the targeted vein or even a fistula, would guide the needle into the vein at the proper angle, therefore reducing the risk of extravasation. The vein access needle guide assembly may include additional portions joined on each side of a guide slide assembly to secure the vein access needle guide assembly to the patient's skin when in use, which have an adhesive backing or other configuration to be affixed onto the skin.
The method of use of the invention includes placing the inventive vein access needle guide assembly onto the body part of the individual or patient at the location of the target vein or fistula, retaining the vein access needle guide assembly on the skin such as by adhesion, inserting the needle into the groove and aperture of the vein access needle guide assembly, puncturing the vein while at the same time securing the needle in place within the vein while extending out of the skin.
Other embodiments of the inventive apparatus and method are disclosed below.
Reference will now be made to the drawings wherein like reference numerals may identify similar structural features or aspects of the subject invention. For purposes of explanation and illustration, and not limitation, a view of an exemplary embodiment of the needle guide assembly for vein access is shown in
Referring now to
The vein access needle guide assembly 100 further includes a retaining means such as at least one adhesive side strap 140 which secures the vein access needle guide assembly 100 to the skin of the patient when in use. The adhesive side strap 140 may be comprised of a polymer film, plastic, nonwoven or woven material, or the material may be combinations thereof. This material is preferably non-absorbent or essentially non-absorbent and preferably flexible. The adhesive of the adhesive side strap 140 should be capable of maintaining the adhesive property when wet given the possibility of blood or liquid medications being in contact with the vein access needle guide assembly 100 when in use. The adhesive may be contained on the adhesive side strap 140 itself or the adhesive may be applied to both the adhesive side strap 140 and guide slide assembly 110 in the same step when producing the vein access needle guide assembly 100. Such difference may be seen in
The adhesive side strap 140 includes a layer of adhesive on the bottom to adhere to the patient's skin when in use. The adhesive may be acrylic, polymeric or any natural or synthetic adhesive capable of adhering to a patient's skin when in use and either re-adhering or capable of being removed from the patient's skin with some force but not enough to remove the skin layer of the patient. Any combinations of the adhesives named and those known in the art may be used. IN general any retaining means may be employed which is capable of retaining the needle guide assembly to the skin of the patient while in use.
The vein access needle guide assembly 100 may be produced in a plurality of sizes, with different sized guide slide assemblies 110 to accommodate the different standard needle gauges used by medical professionals. One example is a rectangular vein access needle guide assembly with dimensions of about 5 mm to about 50 mm wide and about 10 mm to about 100 mm long with the concave portion 120 and convex portion 130 forming an aperture 125 with a diameter of about 0.5 mm to about 10 mm. These dimensions may be changed depending on the patient's size and the size of the needle. For example, the size may be changed dependent on the target patient, such as children compared to adults. In one example the dimensions are about 10 mm to about 30 mm wide and about 45 mm to about 75 mm long with the concave portion 120 and convex portion 130 forming an aperture 125 with a diameter of about 1.0 mm to about 3.5 mm.
The angle of the guide slide 110 is to be configured to appropriately guide the needle into the vein without causing extravasation. Those appropriately trained in the art will appreciate that if a needle is inserted at the wrong angle or too far within a vein that it will damage the vein wall, causing discomfort, bruising, and even hematoma.
In an alternate embodiment of the guide slide assembly 110 only a concave portion 120 is included to guide the needle into the patient's skin when in use. In this embodiment the remaining portion of the guide slide assembly 110 is flat and flush with the surface of the patient's skin. Again, an optional graphic may be included. In yet another embodiment of the guide slide assembly 110 has a concave portion 120 which is formed to extend beneath the underside of the guide slide assembly 110. In a further embodiment the concave portion 130 may be formed as a depression in the guide slide assembly 110. Other combinations are possible.
Reference character 110 of
A needle 180 is also shown in
It is envisioned that the vein access needle guide assembly 100 would be packaged in a sterilized package, either as a stand-alone product or in combination with multiple needle guides or other products such as a needle. Other kits including the vein access needle guide assembly 100 could include a cleansing agent in a sterile package, a tourniquet, the vein access needle guide assembly 100, a needle, a piece of sterile gauze and a sterile bandage.
A method of venipuncture using the inventive vein access guide assembly 100 may include a number of steps. First, the target vein is chosen (if an AV fistula is not the target location) such as on the outside of the forearm, on the back of the hand, in the antecubital fossa or any other body location. Next, the skin on the patient located where the user wants to access the vein is cleaned by a cleansing agent. The cleansing agent used to prepare the insertion site may be iodine, povidone-iodine, or ethyl alcohol. The cleansing agent may be an alcohol swab, preferably 70% isopropyl alcohol. The vein is palpated, and to dilate the vein a tourniquet may be wrapped around the arm proximal to the intended site of puncture. Optionally a tourniquet may be placed at a location near the target vein so that the target vein protrudes or is more easily visualized or subject to tactile manipulation and touch. The patient may be asked to pump his or her fist if the target vein is located in the arm.
Next, if the vein access needle guide 100 is packaged in a sterile packaging, then packaging is opened. The vein access guide assembly 100 is aligned with the target vein such that the concave portion 120 is aligned with the flow of the blood in the target vein as the inserted needle would also align with the blood flow. The paper liner layer 160 is peeled back exposing the adhesive layer 150 and the vein access needle guide 100 is affixed atop the patient's skin, appropriately aligning over the target vein, preferably with the needle guide slide 120 located over the target vein. As shown in
In a successful venipuncture using the inventive vein access needle guide assembly 100, the user now has access to the patient's vein and blood may be drawn and fluids or medication put into the circulatory system. At a later time the needle 180 is removed from the patient's vein by the user, the vein access needle guide assembly 100 is removed, and optionally a sterile piece of gauze, and a conventional adhesive bandage is placed atop the location on the patient's skin where the vein was accessed to provide pressure until the local bleeding stops.
The inventive method may be used to obtain blood for diagnostic purposes, to monitor levels of blood components, to administer therapeutic treatments such as medications (e.g., intravenous antibiotics), nutrition, or chemotherapy for cancer patients. Other uses of the inventive venipuncture method and other uses for inventive vein access needle guide assembly 100 include removing blood due to excess levels of iron (e.g., chelation therapy) or erythrocytes (i.e., red blood cells) or to collect blood for later uses such as donor blood and transfusions. Other uses may be contemplated if relating to insertion of a needle into a patient's skin to access a vein.
The inventive vein access needle guide assembly 100 assists the user in the proper insertion of a needle into a vein. The inventive vein access needle guide assembly 100 is portable and does not impinge on the patient's skin but rather is easily placed on the patient's skin in the location of the target vein and is retained on the skin sufficiently for the venipuncture and securing of the needle without being so secure that the user cannot remove the vein access needle guide assembly 100 easily with minimal force. The vein access needle guide assembly 100 of the present invention may lessen anxiety and pain for the patient in that that vein access needle guide assembly 100 is small and pliable while also assisting in the venipuncture which results in a quicker venipuncture process, as well as a more accurate process. Further, the user may experience less anxiety also based on the needle guide slide 110 of the inventive vein access needle guide assembly 100 and being able to easily access the target vein and not having to rely on the users own visual cues or tactile impressions such that the risk of puncture of the user's finger is lessened or even totally removed.
Further, the inventive method and inventive vein access needle guide assembly 100 may be used in venipuncture related to a fistula, including an AV fistula. The patient may therefore experience less pain and the user experience a quicker and/or easier and/or more accurate and less stressful, venipuncture of the skin surrounding the AV fistula.
The inventive method and inventive vein access needle guide assembly 100 may be cheaper and more easily available than current vein guide apparatuses and thus may be used by hospitals, clinics and even small individual doctor's offices.
The invention has been described in terms of embodiments thereof, but is more broadly applicable as will be understood by those skilled in the art. The scope of the invention is only limited by the following claims.
This application claims priority from provisional application Ser. No. 61/648,585 filed Oct. 7, 2013 and PCT Application No. PCT/US14/059576 filed on Oct. 7, 2014.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/059576 | 10/7/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61648585 | May 2012 | US | |
61887839 | Oct 2013 | US |