Vein scanner with housing configured for single-handed lifting and use

Information

  • Patent Grant
  • 11826166
  • Patent Number
    11,826,166
  • Date Filed
    Tuesday, October 8, 2019
    4 years ago
  • Date Issued
    Tuesday, November 28, 2023
    5 months ago
Abstract
A portable vein viewer apparatus may be battery powered and hand-held to reveal patient vasculature information to aid in venipuncture processes. The apparatus comprises a first laser diode emitting infrared light, and a second laser diode emitting only visible wavelengths, wherein vasculature absorbs a portion of the infrared light causing reflection of a contrasted infrared image. A pair of silicon PIN photodiodes, responsive to the contrasted infrared image, causes transmission of a corresponding signal. The signal is processed through circuitry to amplify, sum, and filter the outputted signals, and with the use of an image processing algorithm, the contrasted image is projected onto the patient's skin surface using the second laser diode. Revealed information may comprise vein location, depth, diameter, and degree of certainty of vein locations. Projection of vein images may be a positive or a negative image. Venipuncture needles may be coated to provide visibility in projected images.
Description
BACKGROUND OF THE INVENTION

Drawing blood and administering intravenous medication using medical devices including but not limited to catheters are common medical procedures, but conventional methods to perform these procedures have several limitations. First a vein must be found. Conventional methods of locating an appropriate vein or artery include restricting the blood supply to the location of the body so that the blood pressure in that area is greater, which results in the patients veins becoming more visible. This is often accomplished by the use of a temporary tourniquet, which can result in extreme discomfort to the patient. Even after the temporary tourniquet is applied and certain veins are exposed, a medical professional may still not be able to find an appropriate vein. This problem can occur more readily in elderly patients and patients with low blood pressure. Thus, there is a need for a non-invasive method for locating veins.


SUMMARY OF THE INVENTION

The present invention is directed towards a portable hand-held medical apparatus that uses infrared light to detect veins beneath the skin, then illuminating the position of the veins on the skin surface directly above the veins using visible light. When the apparatus is held a distance above the outer surface of the skin, veins appear vastly different than the surrounding tissue, and veins that are otherwise undetectable because of their depth in the tissue are safely located and mapped on the patients skin. Vein's will be accessed more readily and with greater confidence and as such, venipuctures will go more smoothly while vasculature shows up clearly on the skin's surface, making it easy to select the best vein to collect a blood sample from or administer medications to. Qualified medical personnel can observe the displayed vasculature to assist them in finding a vein of the right size and position for venipuncture.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of the apparatus of the present invention.



FIG. 2 is a perspective view of a charging cradle for the apparatus of FIG. 1.



FIG. 3 is a front view of the apparatus of FIG. 1, while being charged in the cradle of FIG. 2.



FIG. 4 is a perspective view of the apparatus of FIG. 1 being charged in the cradle of FIG. 2.



FIG. 5 is a side perspective view of the apparatus of FIG. 1, highlighting the buttons and LCD screen of the device of FIG. 1.



FIG. 6 is a bottom view of the apparatus of FIG. 1.



FIG. 7 is an image of a health care professional utilizing the apparatus of FIG. 1 to enhance the vein image of veins in a patient's arm.



FIG. 8 is a Figure illustrating proper angling of the apparatus when being used to enhance the vein image of veins in a patient's arm.



FIG. 9 is a Figure illustrating proper centering of the apparatus when being used to enhance the vein image of veins in a patient's arm.



FIG. 10 is a perspective view of the apparatus of FIG. 1, with the battery cover removed to show the battery compartment.



FIG. 11 is a perspective view of the apparatus showing removal of the battery cover.



FIG. 12 is a perspective view of the apparatus with the battery cover removed, exposing the battery when properly installed in the battery compartment.



FIG. 13 is a perspective view of battery of the apparatus.



FIG. 14 is a series of images identifying different indications the LCD display will provide for different battery power levels.



FIG. 14A illustrates a Low Battery message displayed on the LCD of the device.



FIG. 15 is a screen shot of the LCD start screen.



FIG. 15A is a screen shot of the LCD when utilized for making configuration setting changes.



FIG. 15B shows all of the LCD button icons and their functionality.



FIG. 16 is a series of screen shots of the LCD display used for modifying the default Vein Display Setting.



FIG. 17 is a series of screen shots of the LCD display illustrating changing of the Display Time-out interval.



FIG. 18 is a screen shot illustrating how to change the Backlight Intensity of the apparatus.



FIG. 19 is a screen shot of the LCD screen used for changing the speaker volume of the apparatus.



FIG. 20 is a series of screen shots showing the steps for labeling of the apparatus according to a user's preference.



FIG. 20A is a series of screen shots showing use of up/down arrows for character selection.



FIG. 21 is a screen shot illustrating how to change or review the language utilized on the apparatus.



FIG. 22 is a screen shot illustrating how to reset all of the settings for the apparatus back to the factory default settings.



FIG. 23 is a perspective view illustrating plugging a USB cable into the back of the apparatus to communicate with a PC, and a screen shot illustrating the LCD screen of the device schematically illustrating the connection.



FIG. 24 is a screen shot as it would appear on the PC of FIG. 23 when looking for the apparatus.



FIG. 25 is a screen shot as it would appear on the PC after the apparatus was detected, and the software running on the PC was checking to see if the apparatus software was current or needed to be updated.



FIG. 26 is a screen shot as it would appear on the PC, when an apparatus is not detected by the PC.



FIG. 27 is a screen shot illustrating the capability of naming the apparatus or changing the language, and doing so from the PC.



FIG. 28 is a series of screen shots of the PC illustrating the steps in which the software of an apparatus is updated.



FIG. 29 illustrates a cradle pack and mounting hardware for use in a medical environment utilizing a series of vein enhancing apparatuses.



FIG. 30 is an exploded view of the apparatus of the present invention.



FIG. 31 shows a bottom perspective view of the bottom section of the housing.



FIG. 32 shows a top perspective view of the bottom section of the housing.



FIG. 33 is a top view of the bottom section of the housing.



FIG. 34 is a cross-sectional view of the bottom section of the housing.



FIG. 35 is a bottom view of the bottom section of the housing.



FIG. 36 is an end view of the bottom section of the housing.



FIG. 37 is a top view of the top section of the housing.



FIG. 38 is a side view of the top section of the housing.



FIG. 39 is a bottom view of the top section of the housing.



FIG. 39A is a cross sectional view through the apparatus of FIG. 39.



FIG. 40 is a first section cut through the top section of the housing.



FIG. 41 is a second cross-section through the bottom section of the housing.



FIG. 42 is an exploded view of the photodiode assembly.



FIG. 42A is a reverse perspective view of the photodiode board in the exploded view of FIG. 42.



FIG. 43 is a top view of the photodiode assembly.



FIG. 44 is an bottom view of the photodiode engine.



FIG. 45 shows a perspective view of the bottom section of the housing with a portion of the photodiode assembly mounted inside the cavity of the bottom section of the housing.



FIG. 46 is a bottom view of the portable apparatus of the present invention.



FIG. 47 is a view of the inside of the battery cover.



FIG. 47A is a view of the outside of the battery cover.



FIGS. 48A-D is a assembly level block/schematic diagram of the present invention



FIGS. 49A-C is an additional assembly level block diagram of the present invention.



FIGS. 50A-D is a schematic of a circuit diagram of the user interface board.



FIGS. 51A-B is a schematic of a circuit diagram of the photodiode board connection.



FIG. 52 is a schematic of a circuit diagram of the USB chip.



FIGS. 53A-E is a schematic of a circuit diagram of the photodiode board.



FIG. 54 is a schematic of a circuit diagram of the battery connector board.



FIGS. 55A-E is a schematic of a circuit diagram of the visible laser drive.



FIGS. 56A-D is a schematic of a circuit diagram of the laser safety feature of the present invention



FIGS. 57A-D is an additional schematic of a circuit diagram of the photodiode engine.



FIGS. 58A-E is a schematic of a circuit diagram of the speaker of the present invention.



FIGS. 59A-G is an additional schematic of a circuit diagram of the photodiode engine.



FIGS. 60A-F is an additional schematic of a circuit diagram of the photodiode assembly.



FIGS. 61A-E is a schematic of a circuit diagram of a microcontroller of the present invention.



FIGS. 62A-D is a schematic of a circuit diagram of the power supply of the present invention.



FIGS. 63A-B is an additional schematic of a circuit diagram of the power supply and its peripheral connections.



FIGS. 64A-E is a schematic of a circuit diagram of the battery management system.



FIGS. 65A-D a schematic of a circuit diagram of the photodiode engine.



FIGS. 66A-E illustrates the graphical or symbolic information that may be projected onto a patient other than just vein imaging.



FIG. 67A illustrates a first arrangement of optical detectors that may be used for the apparatus.



FIG. 67B schematically illustrates an alternative arrangement of optical detectors.



FIG. 67C illustrates a second alternative arrangement for the optical detectors.



FIG. 68 illustrates one mechanical arrangement for the scanning mirrors.



FIG. 69 illustrates smoothing of the edges of the scanning mirrors to improve the high resolution images at smooth video rates.



FIG. 70 illustrates the apparatus illuminating on the skin of a patient, a coated needle that has been inserted beneath the patient's skin.



FIG. 71A illustrates a typical return signal collected from photodiodes of the current invention, with local peaks corresponding to vein locations.



FIG. 71B represents the same signal of FIG. 71A after differentiation.



FIG. 72 illustrates a few consecutive scan lines crossing a single vein.



FIG. 73 is a graph showing the output power versus the forward current for a laser, to illustrate an inflection point.





DETAILED DESCRIPTION OF THE INVENTION

The present invention is directed to an apparatus 10 (FIG. 1) that is an opto-electronic device that assists medical practitioners by locating veins and then projecting an image of those veins directly on a patient's skin. The apparatus may be portable, hand held, and battery powered. However in an alternative embodiment an external power supply may be used to power the apparatus. The apparatus operates by using infrared light to detect veins beneath the skin, and then illuminates the position of the veins on the skin surface directly above the veins using visible light. The apparatus 10 may be battery powered, and rechargeable using a cradle 5 (FIG. 2), and may generally be stored therein (FIGS. 3-4).


The apparatus 10 generally comprises a housing 11, internal circuitry 12, keypad 13, display 14, scanner assembly 15, and battery pack 16. The housing 11 may generally comprise a top section 17 and bottom section 18 as shown in FIG. 30. Although a specific shape for the housing and the top and bottom sections are shown it will be appreciated that this is merely a representative example and other configurations are intended to be included in the invention. The function of the housing 11 is to for example provide a location to mount the internal circuitry 12, keypad 13, display 14, scanner assembly 15, and battery 16. A general embodiment of the housing will be disclosed, but it will be generally understood that modifications to the housing to accommodate different internal circuitry, keypad, display, laser assembly, and battery are within the scope of this invention. In addition, if other features are desired the housing may be modified to include those features.


The housing 11 may be comprised generally of a top section 17 and a bottom section 18. FIGS. 31 and 32 show a representation of one embodiment of the bottom housing section 18 of the housing 11, in perspective views, and which are detailed in FIGS. 33-36. As seen in FIGS. 31 and 32, the bottom housing section 18 generally comprises a left sidewall 19 and a right sidewall 20, which are connected by a front wall 22 and rear wall 23. The exterior surfaces of those walls, which may be handled by the user, are seen in FIG. 35, while the interior surfaces of those walls, which may receive the electronic circuitry and other components, are visible in FIG. 33.


The walls 19-22 may each be angled, and may be so angled simply for aesthetic reasons, or for better handling by a user, or the angling (draft) may be the result of the manufacturing process used to create the housing bottom section 18, possibly being a casting process, a forging process, or a plastic injection molding process. However, the walls 19-22 need not be so angled, and the housing bottom section 18 may also be manufactured using any other suitable manufacturing process or processes, including, but not limited to, machining of the part. One end of the angled walls 19-22 may terminate in a generally flat bottom wall 23, to create an internal cavity 24. The generally flat bottom wall 23 may transition, using transition wall 25, into another generally flat wall 23A. Wall 23A may be interrupted by a series of internal walls (26A, 26B, 26C, and 26D) extending therefrom and an internal top wall 26E connecting those internal side walls, to form a compartment that may house the battery 16. The other end of the angled walls 19-22 may terminate in an edge 27. Edge 27, at front wall 21 and in the nearby regions of sidewalls 19 and 20, may be generally planar, but may transition into edge 27A, which serves as a transition to generally planar edge 27B that begins at rear wall 22. Each of the edges 27, 27A, and 27B of the housing bottom section 18 may have a step for receiving a corresponding protruding flange of the housing top section 17, when they are joined during assembly of the apparatus 10.


In one embodiment, the front wall 21 and sidewalls 19 and 20 of the housing bottom section 18 may have extending up towards the plane of the edge 27, one or more cylindrical members—a boss 107, which is adapted to receive mounting screws 106, and may include the use of threaded inserts for mounting of the housing top section 17 to the housing bottom section 18. It will be appreciated that other mounting means may be used, including, but not limited to, the use of a snap closure, or a post and recess combination with a friction fit therebetween.


The bottom wall 23 of housing bottom section 18 may be provided with two orifices 28, and 29. On the outside surface of bottom wall 23 there may be one or more annular recesses 28A and 29A, being concentric to orifices 28 and 29, respectfully, each of which may be used to receive a lens 90 (FIGS. 6 and 10).


Protruding inward from the inside of bottom wall 23 may be cylindrical protrusions 31, and 32. Protrusions 31 and 32 may be concentric with orifices 28 and 29, respectfully, and may be adapted to receive a portion of the photodiode masks 66 and 67 of the scanner assembly 15, which are discussed later.


Mounted inside the battery compartment formed by walls 26A-26E may be the battery pack 16. The battery pack 16 (FIG. 13) can be any of a variety of models known in the art, but in a preferred embodiment, it may be rectangular to fit inside the compartment formed by walls 26A-26E. One end 16A of the battery pack 16 may be adapted to be received by the power connection 95 on the main circuit board (FIG. 30). The battery pack 16 may be secured in the battery compartment by a battery cover 96 which attaches to the bottom section 18 of housing 11. The battery cover 96 may attach to the bottom section of the housing 18 in a variety of ways, such as by clips or screws. As seen in FIG. 47, the battery cover 96 may be secured by having a pair of flanges 96A extending therefrom be received in a pair of slots 34 in the bottom section 18 of housing 11. FIGS. 62-64 are schematics of circuit diagrams which demonstrate how the battery pack is connected to the internal circuitry 12, the scanner assembly 15, and remaining electrical components of the invention.



FIGS. 37-41 show a representation of one embodiment of the top section 17 of the housing 11. The housing top section 17 may be formed similar to the housing bottom section 18, and thus may have a top wall 81 from which extends, generally at an angle, a left sidewall 83 and right sidewall 84, and a front wall 85 and rear wall 86. The front wall 85 and rear wall 86 may extend from the left sidewall 83 and right sidewall 84, respectively, creating an internal cavity 87. FIG. 37 shows the outer surfaces of those walls, while FIG. 39 shows the inner surfaces of those walls. The walls 83-86 extend out to a generally planar edge 82, which may have a peripheral flange protruding therefrom to mate with the recess of the housing bottom section 18. In one embodiment, housing top section 17 may have extending down from top wall 81 and walls 83-86, towards the plane of the edge 82, one or more cylindrical members 108, which are adapted to receive mounting screws 106, and may include use of threaded inserts. The cylindrical members 108 of the housing top section 17 may be positioned to be in line with the corresponding members 107 of the housing bottom section 18 to be secured thereto during assembly of the scanner 10.


The outer surface of the top wall 81 of the housing top section 17 may have a step down into a flat recessed region 81A having an edge periphery 81P. That flat recessed region 81A may comprise of an opening 91 through to the inside surface, which may be a rectangular opening, and a plurality of shaped orifices 93A, 93B, and 93C. The rectangular-shaped opening 91 may be sized and otherwise adapted to receive the display 14, which is discussed in more detail hereinafter. The flat recessed region 81A of top wall 81 may receive a display guard 92 (FIG. 30), to provide a barrier between the display 14 and the outside environment. The plurality of shaped orifices 93, which may also be correspondingly found in the display guard 92, are adapted to receive a plurality of buttons 77 or other activating means which may be mounted directly under the top plate 81 of the housing top section 17. In a preferred embodiment, there are three buttons—a first display button 110, a second display button 111, and a power button 112. Buttons 110-112 may be any shape practicable, but in a preferred embodiment, display buttons 110 and 111 are elliptical, and button 112 is circular. (Note that a fourth button 113 protruding from the side of the housing, as seen in FIGS. 5 and 30, may also be used to power the apparatus up or down, as well as accomplish other functions as well).


Alternatively, other means of user input, such as touch screen, touch pad, track ball, joystick or voice commands may replace or augment the buttons.


The internal circuitry 12 is illustrated in FIGS. 48-65, and can include a main circuit board 43, a user interface board 44, USB chip 46, and speaker 47. In one embodiment, the main circuit board 43 contains at least two orifices 48 and 49 which are adapted to receive mounting member 50 and mounting member 51. Mounting members 50 and 51 may be used to secure the main circuit board 43 to the heat sink 52. Mounting members 50 and 51 may be screws, or pins or any similar type of member used to secure internal circuitry known in the art. FIG. 43 is a schematic of a circuit diagram of the main circuit board 43 and how it connects to the remaining components of the present invention.


As seen in FIG. 30, heat sink 52 generally comprises a left sidewall 99, and right sidewall 100, and a front sidewall 104 extending between the left and right sidewall. In a preferred embodiment heat sink 52 may also contain a middle bridge 101 which connects the left sidewall 99 with the right sidewall 100. Extending from the middle bridge and curving downwards is a hook member 102. The hook member has an internal cavity 103, which is adapted to receive the USB chip 46. On the front sidewall 104, and left and right sidewalls 99 and 100, there may be cylindrical members 105 that are adapted to receive mounting screws 106, and may include the use of threaded inserts. Mounting members 40 may be used to mount the scanner assembly 15. In one embodiment, mounting members 40 may be screws. It will be appreciated that the photodiode assembly may be mounted by other means.


The heat sink capabilities might be enhanced by a fan or blower arranged in a way that would direct the air flow onto the heat sink and out of the housing. Additionally, a thermodynamic or thermoelectric heat pump may be employed between the heat-dissipating portions of the heat sink, to facilitate heat exchange. In a preferred embodiment, a heat shield 80 is mounted onto the top surface of the user interface board 44.


Preferably being directly connected the main circuit board 43, is the user interface board 44. FIG. 50 is a schematic of a circuit diagram of the user interface board. The user interface board 44 contains the firmware which sends a graphic user interface to the display 14, and stores the user's preferences. In one embodiment the interface board 44 is directly mounted to the top surface of the main circuit board. In one embodiment, the display 14 is directly mounted to the user interface board 44, and may be a Liquid Crystal Display (LCD). It will be appreciated to those skilled in the art that an Organic Light Emitting Diode display (OLED) could work equally well. Alternatively, other means of information delivery may be used, such as lamp or LED indicators and audible cues. Some of the information that may be delivered to the user, other than the projection of vein images onto a patient's arm, may be visual cues also being projected on the patient's arm alongside the vein images, visual cues regarding additional information concerning the veins.


Mounted to the user interface board may be a keypad 13. Keypad 13, as noted previously, may be comprised of a plurality of control means which may include, but is not limited to, a plurality of buttons 77. In a preferred embodiment, there may be three buttons used for controlling the apparatus-buttons 110-112. Each of these buttons may have a first end 78 and a second end 79. The first ends 78 of the plurality of buttons is adapted to be exposed through corresponding openings in the housing top section 17, where they may be toggled by the user. The second end 79 of the buttons is adapted to be received by the user interface board 44.


Also attached to the main circuit board is the USB chip 46. USB chip mounts to the main circuit board 43 at a pin connection, and provides a pin connection for speaker 65. The USB chip 46 is preferably mounted to the bottom surface of the main circuit board.


Also connected to the main circuit board is the scanner assembly 15 (FIG. 42). The scanner assembly 15 generally includes a photodiode engine 53, a photodiode board 54, and a heat pipe 55. In one embodiment, the photodiode engine 53 is directly mounted to the top surface of the photodiode board 54, by one or more screws 56, 57, and 58. In another embodiment, the bottom surface of the photodiode board is mounted to a foam fresen 59. In the same embodiment, the foam fresen 59 is mounted to the bottom plate of the bottom section. In a preferred embodiment the foam fresen 59 has an orifice 69 which is adapted to receive the portion of the photodiode engine which houses the display light 62. In a preferred embodiment the foam fresen 59 has a first arcuate cutout 75 at its front end and a second arcuate cutout 76 at its rear end. Arcuate cutouts 75 and 76 provide an arcuate surface for grommets 73 and 74 to be received.


The photodiode engine comprises a display light 62 (FIG. 44). FIGS. 55, 61, and 65 are schematics of circuit diagrams relating to the photodiode engine and its peripheral connections. The display light 62 may be comprised of at least a red laser 63 and an infrared (IR) laser 64. In a preferred embodiment red laser 63 may be a laser diode emitting light at a wavelength of 642 nm, and an infrared (IR) laser 64 that may emit light at a wavelength in the near infrared to be at 785 nm. Other combinations of wavelengths of more than two lasers may be used to enhance both the collection of the vein pattern and the display of the collected information. Red laser 63 projects an image of the vein pattern on the patient's skin. The laser diode has a wavelength of 642 nm, which is in the visible red region, but falls outside the spectral response range of photodiodes 60 and 61. Red laser 63 illuminates areas with no veins, and does not illuminates areas with veins. This results in a negative image that shows the physical vein locations. Alternatively, the positive image may be used, where the red laser illuminates the vein locations and does not illuminate spaces between veins.


The red laser may be employed to project information other then vein locations, by means of turning on the laser or increasing its brightness when the laser beam is passing over the brighter parts of graphical or symbolic information to be projected, and turning off the laser or increasing its brightness when the laser beam is passing over the darker parts of graphical or symbolic information to be projected. Such information may include the vein depth, vein diameter, or the degree of certainty with which the device is able to identify the vein location, expressed, for example, through the projected line width 501 (FIG. 66(a)), the length of the strokes in a dotted line 502 (FIG. 66(b)), as a bar graph 503 (FIG. 66(c)) or a numeric indication 504 (FIG. 66(d)). It may also include user's cues 505 and 506, respectively for optimizing the position of the device, such as choosing the correct tilt and distance to the target (FIG. 66(e)).


Vein location and other information may also be displayed by projection means other than scanning laser, through the use of, for example, a DLP (Digital Light Processing) projector, a LCoS (Liquid Crystal on Silicon) micro-projector, or a holographic projector.


Additionally, the firmware of the photodiode board 54 may be programmed to recognize and modify display 14, and projection by the display light 62 to represent a needle, catheter, or similar medical device 573 which has been inserted beneath a patient's skin and a part of it 573a is no longer visible to the naked eye (FIG. 70). The needle or medical apparatus may be made with, or coated with a material that absorbs or reflects a specified amount of the light from the IR laser 64. Glucose is one example of a biomedical material which could be used as a coating to absorb or reflects a specified amount of an IR laser. Photodiodes 60 and 61 will detect the difference in reflection and absorption, and the photodiode board 54 may modify display 14 to show the needle or medical device. The photodiode board 54 may also be programmed to modify projection by the display light 64 so that the needle or medical device which has been inserted into the patient's skin is displayed.


More detailed information on the use of the laser light to view the veins can be found in U.S. patent application Ser. No. 11/478,322 filed Jun. 29, 2006 entitled MicroVein Enhancer, and U.S. application Ser. No. 11/823,862 filed Jun. 28, 2007 entitled Three Dimensional Imagining of Veins, and U.S. application Ser. No. 11/807,359 filed May 25, 2007 entitled Laser Vein Contrast Enhancer, and U.S. application Ser. No. 12/215,713 filed Jun. 27, 2008 entitled Automatic Alignment of a Contrast Enhancement System the disclosures of which are incorporated herein by reference.


The photodiode board 54 comprises one or more silicon PIN photodiodes, which are used as optical detectors. In a preferred embodiment, photodiode board 54 comprises at least two silicon PIN photodiodes 60 and 61 (FIG. 42A). The field of view (FOV) of the optical detectors is preferably arranged to cover the entire area reachable by light from IR laser 64. FIGS. 8 and 10 are schematics of circuit diagrams which represent the photodiode board and its peripheral connections. In front of these photodiodes 60 and 61 are filters 120 and 121 (FIG. 42A) to serve as an optical filters that transmit infrared light, but absorb or reflect light in the visible spectrum. Mounted to photodiode 60 and 61 may be photodiode masks 66 and 67. Photodiode masks 66 and 67 comprise a shaped orifice 68 which is adapted to be received by photodiode 60 and 61 respectively. In a preferred embodiment photodiode masks 66 and 67 are circular and are adapted to be received by the cylindrical protrusions 31 and 32 of the housing bottom section 18. The photodiode board 54 is further comprised of an orifice 70. The opening 70 may be rectangular and adapted to receive the portion of the photodiode engine which houses display light 62. In a preferred embodiment the photodiode board 54 has a first arcuate cutout 71 at its front end, and a second arcuate cutout 72 at its rear end. Arcuate cutouts 71 and 72 provide an arcuate surface for grommets 73 to be received.


Other arrangements of optical detectors may be used too. In one possible arrangement, depicted on FIG. 67(a), the photodiode's field of view (FOV) 510 may be shaped by lenses-Fresnel lenses, curved mirrors or other optical elements 511—in such way that the FOV extent on the patient's arm becomes small and generally comparable with the size of the IR laser spot 512. This reduced FOV is forced to move synchronously with the laser spot by virtue of directing the optical path from the patient's arm to the photodiodes through the same scanning system 513 employed for the scanning of the laser beam, or through another scanning system, synchronous with the one employed for the scanning of the laser beam, so the FOV continuously overlaps the laser beam and follows its motion. Additional optical elements, such as a bounce mirror 514, might be used to align the laser bean with FOV. Such an arrangement is advantageous in that it enables the photodiodes to continuously collect the reflected light from the IR laser spot while the ambient light reflected from the rest of the target generally does not reach the photodiodes.


Alternatively, the FOV of the photodiodes may be reduced in only one direction, and routed through the scanning system in such way that it follows the laser beam only in the direction where the FOV has been reduced, while in the other direction the FOV covers the entire extent of the laser scan (FIG. 67(b)). Such FOV may be shaped, for example, by a cylindrical lens in front of a photodiode. As the laser spot 512 is moving along a wavy path defined by superposition of the fast horizontal scan and slow vertical scan, the FOV moves only vertically, which the same speed as the slow vertical scan, thus covering the scan line the laser spot is currently on. Such arrangement may be implemented, for example, by routing the FOV of the photodiode only through the slow stage of the scanning system 513, but not its fast stage. Yet alternatively, the FOV may be shaped to follow the laser beam in close proximity without overlapping it (FIG. 67(c)). In this case, the FOV still moves in sync with the laser spot 512, but since it does not include the laser spot itself, the light reflected from the surface of the skin does not reach the photodiode. Instead, some portion of the light which penetrates the body, and, after scattering inside tissues, re-emerges from the skin surface some distance away from the laser spot, forming an afterglow area 515, which is partly overlapped with FOV. Collecting only the scattered light while reducing overall signal strength, has the advantage of avoiding variations caused by non-uniform reflections from random skin features and may be helpful in discerning deep veins.


Multiple photodiodes may also be arranged in an array in such way that their individual FOVs cover the entire area illuminated by the IR laser. At any given moment, only the signals from one or more photodiodes whose FOV overlap the laser beam or fall in proximity to it may be taken into the account.


The photodiodes convert the contrasted infrared image returning from the patient into an electrical signal. The photodiode board 54 amplifies, sums, and filters the current it receives to minimize noise. The return signal of the photodiode engine 53 is differentiated to better facilitate discrimination of the contrast edges in the received signal received by photodiodes 60 and 61. FIG. 71(a) represents a typical signal collected from photodiodes 60 and 61 and digitized. Local peaks 580 correspond to the locations of veins in the patient body. FIG. 71(b) represents the same signal after the differentiation. Since differentiation is known to remove the constant parts of the signal and amplify its changing parts, peaks 580a can be easily found by comparison to ground reference (zero signal level of FIG. 71(b)). The photodiode board 54 also determines the locations where the infrared light has the lowest signal reflectivity using a scan system. These lower reflectivity locations indicate the vein locations.


Signal processing methods other than differentiation, including Digital Signal Processing (DSP) may be employed as well, such as Fast Fourier Transform (FFT), Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filtration. Additionally, more complex image processing algorithms might be used, for example based on continuity analysis, as the veins generally form continuous patterns. For example, FIG. 72 shows a few consecutive scan lines crossing a single vein 592. While most lines produce distinctive signal peaks 590, indicating the vein location, in some lines those picks might by masked by noise 591. Still, connecting the vein location points derived from distinctive picks allows the algorithm to establish and display the true location of the vein.


To facilitate the use of DSP algorithms, the electronic circuitry to digitize the signal from the photodiodes and store it subsequently in some form of digital memory might be provided. Consequently, the display of the vein pattern by the red laser might be delayed with respect to the acquisition of said pattern with the IR laser. Such delay may vary from a small fraction of the time interval needed to scan the entire display area to several such intervals. If necessary, an intentional misalignment between the red and IR laser might be introduced, so the red laser can light up or leave dark the areas where the IR laser detected the lower or higher reflectivity, although the red laser beam would travel through those areas at different times than the IR laser.


The scan system employed by the apparatus 10 of the present invention uses a two dimensional optical scanning system to scan both the infrared and visible laser diodes. A dichroic optical filter element 125 in FIG. 44 allows laser diodes 63 and 64 to be aligned on the same optical axis and be scanned simultaneously. This allows for a minimal time delay in detecting the infrared reflected signal, and then re-projecting the visible signal.


The scan system employed by the apparatus 10 of the present invention has a horizontal and vertical cycle. Vertical scanning is driven in a sinusoidal fashion, and in one embodiment it occurs at 56.6 Hz, which is derived from 29 KHz sinusoidal horizontal scan. The Scan system is also interlaced. During a horizontal cycle the projection system is active only one half the horizontal scan system and blanked during the alternate half of the scan cycle. On the alternate vertical cycle the blanked and active portion of the horizontal scan is reversed. The top and bottom areas of the scan are blanked as well with a small area at the top of scan, located behind a mechanical shield for safety, reserved for execution of a laser calibration activity.


Alternative scan system might be used as well, such as those using a single scanning mirror deflectable in two orthogonal directions, or two uni-directional mirrors with smaller ratios of horizontal and vertical frequencies, such that the scan pattern forms a Lissajou figure (See http://www.diracdelta.co.uk/science/source/l/i/lissajous%20figures/source.html, and for animated figures, http://ibiblio.org/e-notes/Lis/Lissa.htm, which are incorporated herein by reference).


Various mechanical arrangements for scanning mirrors may be used. In one embodiment (FIG. 63) the mirror 550, made of glass, plastic or silicon, is attached to a free end of a cantilevered torsion fiber 551, made of glass or other linearly-deformable material, the other end of which is fixed to a base plate 552. A magnet 553, polarized in a direction perpendicular to the fiber, is attached to the fiber between the base plate and the mirror. A coil 554 may be positioned in close proximity to the magnet. The coil 554 may be used both for driving the mirror by virtue of energizing it with AC current, as well as for collecting the positional feedback by virtue of amplifying the voltage induced in the coil by magnet's oscillations. Both functions may be accomplished simultaneously, for example, by using one half of the mirror's oscillatory cycle for driving and the other half for collecting feedback. Alternatively, other means of driving the mirror, such as inducing torsional oscillation on the entire base plate by means of a piezo-electric element 555, might be used. The magnet 553 and the coil 554 are used exclusively for feedback in this case.


The torsion mode of the fiber 551 may be higher than fundamental, meaning that at least one torsional node, i.e. a cross-section of the fiber which remains still during oscillations, is formed. Such nodes allows for generally higher oscillation frequency at the expense of generally lower oscillation amplitude.


Since high oscillation frequency is desirable to obtain high-resolution images at smooth video rates, the linear speed of the mirror's outer edges becomes quite high as well, leading to excessive dust buildup along those edges. To alleviate this problem, the edges of the mirror may be smoothed by either removing some mirror material 560 (FIG. 69), or adding a layer of bevel-shaped coating 561 around the edges of the mirror.


Non-mechanical scanning systems, such as acousto-optic, electro-optic or holographic might be employed as well.


In a preferred embodiment, each scan line is divided into 1024 pixels numbered 0-1023. In pixel range 0-106, red laser 63 is at its threshold, and IR laser 64 is off. The term “threshold”, as applicable to lasers, means an inflection point on the laser Power—Current (P-I) curve, where the current becomes high enough for the stimulated emission (aka “lasing”) to begin. This point is marked Ith of FIG. 73, which, while taken from the documentation of Sanyo Corp., is representative of the vast majority of laser diodes. In pixel range 107-146, red laser 63 is active, and IR laser 64 is at its threshold. In pixel range 182-885, red laser 63 is active, and IR laser 64 is on. In pixel range 886-915, red laser 63 is active, and IR laser 64 is off. In pixel range 916-1022, red laser 63 is at its threshold, and IR laser 64 is off. In pixel range 0-106, red laser 63 is at its threshold, and IR laser 64 is off.


Projection is accomplished by loading the appropriate compare registers in the complex programmable logic device, or CPLD. The content of the registers is then compared to the running pixel counter, generating a trigger signal when the content of a register matches the pixel count. The “left” register is loaded with the pixel count of when the laser should be turned off and the “right” register loaded with the pixel count of when the laser should be turned back on. The registers should be loaded on the scan line prior to the line when the projection is to occur. Projection is only allowed during the “Active” part of the red laser scan, i.e. between pixels 107 and 916, as explained above.


To improve vein visibility it is important to maintain the laser spot of a proper size on the surface of the patient's skin. This may be accomplished by fixed laser-focusing optics, or by an auto-focusing system which adjusts the beam focusing in response to changes in the distance to the target.


Certain patient's veins or a portion of their veins might not be displayed well or at all. Causes for veins not be displayed include vein depth skin conditions (e.g. eczema, tattoos), hair, highly contoured skin surface, and adipose (i.e. fatty) tissue. The apparatus is not intended to be used as the sole method for locating veins, but should be used either prior to palpation to help identify the location of a vein, or afterwards to confirm or refute the perceived location of a vein. When using the apparatus qualified medical personnel should always follow the appropriate protocols and practices.


In one embodiment, when the user wishes to operate the apparatus, the user may apply a perpendicular force to the top surface of the side button 113, or depress power button 112 to power the device. Once the device has been powered, the user can turn on the display light 62 by pressing and holding the top surface of the side button 113 for a set amount of time. In a preferred embodiment the photodiode board 54 has been programmed to activate the display light 62 after the user has held side button 113 for a half second.


Embedded in the user interface board 44 may be firmware, which supports the displaying, upon LCD 14, of a menu system (see FIGS. 15-22). The menu system permits a user to access a plurality of features that the apparatus of the present invention can perform. The user can cycle through different display modes that the firmware has been programmed to transmit to the display by tapping the top surface of the side button 98. The features embedded in the firmware can include a menu system, menu settings, display status. In one embodiment, the first LCD button 110 is programmed to access the menu mode (FIG. 15). One of those features of the firmware permits labeling or naming of a particular apparatus, as seen in FIG. 20. Such labeling may become advantageous in an environment where a medical service provider utilizes a plurality of the apparatus 10, such as in an emergency room. The plurality of apparatus 10 may be maintained in a corresponding plurality of rechargeable cradles 5, which may be mounted to a bracket 200, and secured thereto using fastening means 201, as seen in FIG. 29. Power to the cradles 5 may be supplied from an adapter 202 plugged into a wall outlet, with a power splitter 203 supplying power to each cradle 5. Each of the plurality of apparatus 10 in this example may be appropriately labeled, “ER1,” “ER2,” . . . .


When the apparatus's 10 display light 62 is activated, the apparatus 10 can be used to locate veins. The user can access the scan function by navigating to it using the keypad 13. The firmware will contain a feature which will allow the user to cycle through display settings using a menu system to optimize vein display for the current subject. When the display light 62 is deactivated, the display 14 remains available for viewing status and making configuration settings using the menu system.

Claims
  • 1. A vein imaging apparatus comprising: a vein imager, said vein imager comprising: a housing having a first portion proximate to a first end of said vein imager, and a second portion proximate to a second end of said vein imager;a first light source configured to emit a first wavelength of light;one or more optical detectors, said one or more optical detectors each configured to be responsive to said first wavelength of light, to receive a vein image formed by differential amounts of absorption and reflection of said emitted light at said first wavelength by the subcutaneous veins and surrounding tissue; said one or more optical detectors further configured to convert said vein image into a signal;a second light source configured to emit a second wavelength of light, being different than said first wavelength of light;one or more buttons, said one or more buttons configured to control operation of said vein imager;wherein said housing comprises a first surface and a second surface, said one or more buttons configured to protrude from said first surface of said housing; and said second surface comprising at least one exit opening configured to provide a light path for said light emitted from said first and second light sources;wherein said first portion of said housing houses said first light source, said second light source, said at least one exit opening, and said one or more optical detectors; andwherein said second portion of said housing is configured to be narrower than said first portion to thereby be hand-holdable for single-handed lifting and use of said vein imager;wherein said single-handed lifting and use of said vein imager by a hand of a user does not cover said at least one exit window and permits one finger of the single hand of the user to actuate each of said one or more buttons while holding said second portion of said housing with the single hand;wherein said second portion of said housing comprises a compartment configured to house a battery; anda first electrical connector;a cradle, said cradle comprising: a casing, said casing comprising a recess; anda second electrical connector, said second electrical connector configured to receive power from a wall outlet, when said cradle is plugged into the wall outlet; andwherein said recess in said cradle is configured to slidably receive a lower region of said second portion of said housing to support said vein imager in a stowed position, said first electrical connector of said vein imager configured to mate with said second electrical connector of said cradle to charge the battery when said vein imager is in said stowed position and said cradle is plugged into the wall outlet.
  • 2. The vein imaging apparatus according to claim 1, further comprising heat dissipation means within said first portion of said housing, wherein said single-handed lifting and use of said housing does not cover said heat dissipation means.
  • 3. The vein imaging apparatus according to claim 1, further comprising a fan configured to direct air flow out of said first portion of said housing to transfer heat out from said first portion of said housing, and wherein said single-handed lifting and use of said housing does not cover the air flow.
  • 4. The vein imaging apparatus according to claim 3, further comprising a heat sink; wherein said fan is further configured to direct the air flow over said heat sink before being directed out of said first portion of said housing.
  • 5. The vein imaging apparatus according to claim 1, wherein said cradle supports said vein imager in a vertical position when in said stowed position.
  • 6. The vein imaging apparatus according to claim 1, wherein an upper region of said second portion of said housing protrudes beyond said recess of said cradle when said vein imager is in said stowed position, being thereby configure to permit removal of said vein imager with a single hand grasping only said upper region of said second portion of said housing.
  • 7. The vein imaging apparatus according to claim 6, wherein said plurality of buttons are configured to protrude from a top surface of said first portion of said housing; andwherein said opening is positioned on a bottom surface of said first portion of said housing.
  • 8. A vein imaging apparatus according to claim 7, wherein said single-handed lifting and use of said vein imager by a hand of a user permits at least one finger of the hand of the user to actuate each of said plurality of buttons while holding said second portion of said housing during use of said vein imager.
  • 9. The vein imaging apparatus according to claim 1 wherein said or more buttons are configured to modify at least two of: a brightness setting, a power on and power off condition, and an inverse projection setting for inversion of said projection of said vein image between a positive vein image and a negative vein image.
  • 10. A vein imaging apparatus comprising: a vein imager, said vein imager comprising: a housing, said housing having a first portion and a second portion;wherein said second portion of said housing is configured to be narrower than said first portion to thereby be hand-holdable for single-handed lifting and use of said vein imager by a user;means for imaging subcutaneous veins of a target surface;wherein said housing comprises an opening configured to provide a path for said imaging;a battery compartment, said battery compartment configured to house a battery to power said vein imager;a plurality of buttons, said plurality of buttons configured to at least: power said vein imager on or off, to control a mode of operation of said vein imager, and to control a brightness setting; a first electrical connector; said first electrical connector positioned in said second portion of said housing;wherein said means for imaging is housed in said first portion of said housing;wherein said opening is positioned in a first surface of said first portion of said housing; wherein said plurality of buttons are configured for a portion of each to protrude outwardly from a second surface of said first portion of said housing, each being visible and configured to be toggled by one finger of the single hand of the user during use of said vein imager;wherein said battery compartment and said electrical connector are positioned in said second portion of said housing;a cradle, said cradle comprising: a casing, said casing comprising a recess; anda second electrical connector;wherein said recess in said cradle is configured to receive a lower region of said second portion of said housing to support said vein imager in a stowed position; andwherein said first electrical connector of said vein imager is configured to mate with said second electrical connector of said cradle when said vein imager is in said stowed position, and is thereby configured to charge a battery in said battery compartment.
  • 11. The vein imaging apparatus according to claim 10, wherein said cradle supports said vein imager in an upright position when in said stowed position; andwherein an upper region of said second portion of said housing protrudes beyond said recess of said cradle when said vein imager is in said stowed position, to permit removal of said vein imager with the single hand of the user grasping said upper region of said second portion of said housing.
  • 12. The vein imaging apparatus according to claim 10, wherein said plurality of buttons are configured to protrude from a top surface of said first portion of said housing; andwherein said opening is positioned on a bottom surface of said first portion of said housing.
  • 13. The vein imaging apparatus according to claim 10, wherein said single-handed lifting and use of said vein imager by the single hand of the user permits at least one finger of the single hand to actuate each of said plurality of buttons while holding said second portion of said housing during said use.
  • 14. The vein imaging apparatus according to claim 10, further comprising a fan configured to direct air flow out of said first portion of said housing to transfer heat out from said first portion of said housing, and wherein said single-handed lifting and use of said housing does not cover the air flow.
  • 15. The vein imaging apparatus according to claim 14, further comprising heat dissipation means; wherein said fan is further configured to direct the air flow over said heat dissipation means before being directed out of said first portion of said housing.
CROSS REFERENCES TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/678,355, filed on Aug. 16, 2017, which is a U.S. application Ser. No. 14/718,422, filed, on May 21, 2015, now issued as U.S. Pat. No. 9,789,267, which is a continuation of application Ser. No. 13/778,426, filed on Feb. 27, 2013, now issued as U.S. Pat. No. 9,061,109, which is a continuation of U.S. application Ser. No. 12/804,506, filed on Jul. 22, 2010, now issued as U.S. Pat. No. 8,463,364, which claims priority on U.S. Provisional Application Ser. No. 61/271,587, filed on Jul. 22, 2009, the disclosures of which are incorporated herein by reference.

US Referenced Citations (290)
Number Name Date Kind
3136310 Meltzer Jun 1964 A
3349762 Kapany Oct 1967 A
3511227 Johnson May 1970 A
3527932 Thomas Sep 1970 A
3818129 Yamamoto Jun 1974 A
3984629 Gorog Oct 1976 A
4030209 Dreiding Jun 1977 A
4057784 Tafoya Nov 1977 A
4109647 Stern et al. Aug 1978 A
4162405 Chance et al. Jul 1979 A
4182322 Miller Jan 1980 A
4185808 Donohoe et al. Jan 1980 A
4213678 Pomerantzeff et al. Jul 1980 A
4265227 Ruge May 1981 A
4312357 Andersson et al. Jan 1982 A
4315318 Kato et al. Feb 1982 A
4321930 Jobsis et al. Mar 1982 A
4393366 Hill Jul 1983 A
4495949 Stoller Jan 1985 A
4502075 DeForest et al. Feb 1985 A
4510938 Jobsis et al. Apr 1985 A
4536790 Kruger et al. Aug 1985 A
4565968 Macovski Jan 1986 A
4567896 Barnea et al. Feb 1986 A
4576175 Epstein Mar 1986 A
4590948 Nilsson Mar 1986 A
4586190 Tsuji Apr 1986 A
4596254 Adrian et al. Jun 1986 A
4619249 Landry Oct 1986 A
4669467 Willett et al. Jun 1987 A
4697147 Moran et al. Sep 1987 A
4699149 Rice Oct 1987 A
4703758 Omura Nov 1987 A
4766299 Tierney et al. Aug 1988 A
4771308 Tejima et al. Sep 1988 A
4780919 Harrison Nov 1988 A
4799103 Muckerheide Jan 1989 A
4817622 Pennypacker et al. Apr 1989 A
4846183 Martin Jul 1989 A
4861973 Hellekson et al. Aug 1989 A
4862894 Fuji Sep 1989 A
4899756 Sonek Feb 1990 A
4901019 Wedeen Feb 1990 A
4926867 Kanda et al. May 1990 A
RE33234 Landry Jun 1990 E
4938205 Nudelman Jul 1990 A
5074642 Hicks Dec 1991 A
5088493 Giannini et al. Feb 1992 A
5103497 Hicks Apr 1992 A
5146923 Dhawan Sep 1992 A
5174298 Dolfi et al. Dec 1992 A
5184188 Bull et al. Feb 1993 A
5214458 Kanai May 1993 A
5222495 Clarke et al. Jun 1993 A
5261581 Harden, Sr. Nov 1993 A
5293873 Fang Mar 1994 A
5339817 Nilsson Aug 1994 A
5371347 Plesko Dec 1994 A
5406070 Edgar et al. Apr 1995 A
5418546 Nakagakiuchi et al. May 1995 A
5423091 Lange Jun 1995 A
5436655 Hiyama et al. Jul 1995 A
5445157 Adachi et al. Aug 1995 A
D362910 Creaghan Oct 1995 S
5485530 Lakowicz et al. Jan 1996 A
5487740 Sulek et al. Jan 1996 A
5494032 Robinson et al. Feb 1996 A
5497769 Gratton et al. Mar 1996 A
5504316 Bridgelall et al. Apr 1996 A
5519208 Esparza et al. May 1996 A
5541820 McLaughlin Jul 1996 A
5542421 Erdman Aug 1996 A
5598842 Ishihara et al. Feb 1997 A
5603328 Zucker et al. Feb 1997 A
5608210 Esparza et al. Mar 1997 A
5610387 Bard et al. Mar 1997 A
5625458 Alfano et al. Apr 1997 A
5631976 Bolle et al. May 1997 A
5655530 Messerschmidt Aug 1997 A
5678555 O'Connell Oct 1997 A
5716796 Bull et al. Feb 1998 A
5719399 Alfano et al. Feb 1998 A
5740801 Branson Apr 1998 A
5747789 Godik May 1998 A
5756981 Roustaei et al. May 1998 A
5758650 Miller et al. Jun 1998 A
5772593 Hakamata Jun 1998 A
5787185 Clayden Jul 1998 A
5814040 Nelson et al. Sep 1998 A
5836877 Zavislan Nov 1998 A
5847394 Alfano et al. Dec 1998 A
5860967 Zavislan et al. Jan 1999 A
5929443 Alfano et al. Jul 1999 A
5946220 Lemelson Aug 1999 A
5947906 Dawson, Jr. et al. Sep 1999 A
5966204 Abe Oct 1999 A
5966230 Swartz et al. Oct 1999 A
5969754 Zeman Oct 1999 A
5982553 Bloom et al. Nov 1999 A
5988817 Mizushima et al. Nov 1999 A
5995856 Mannheimer et al. Nov 1999 A
5995866 Lemelson Nov 1999 A
6006126 Cosman Dec 1999 A
6032070 Flock et al. Feb 2000 A
6056692 Schwartz May 2000 A
6061583 Ishihara et al. May 2000 A
6083486 Weissleder et al. Jul 2000 A
6101036 Bloom Aug 2000 A
6113536 Aboul-Hosn et al. Sep 2000 A
6122042 Wunderman et al. Sep 2000 A
6132379 Patacsil et al. Oct 2000 A
6135599 Fang Oct 2000 A
6141985 Cluzeau et al. Nov 2000 A
6142650 Brown et al. Nov 2000 A
6149061 Massieu et al. Nov 2000 A
6149644 Xie Nov 2000 A
6171301 Nelson et al. Jan 2001 B1
6178340 Svetliza Jan 2001 B1
6179260 Ohanian Jan 2001 B1
6230046 Crane et al. May 2001 B1
6240309 Yamashita et al. May 2001 B1
6251073 Imran et al. Jun 2001 B1
6263227 Boggett et al. Jul 2001 B1
6272376 Marcu et al. Aug 2001 B1
6301375 Choi Oct 2001 B1
6305804 Rice et al. Oct 2001 B1
6314311 Williams et al. Nov 2001 B1
6334850 Amano et al. Jan 2002 B1
6353753 Flock et al. Mar 2002 B1
6424858 Williams Jul 2002 B1
6436655 Bull et al. Aug 2002 B1
6438396 Cook et al. Aug 2002 B1
6463309 Ilia Oct 2002 B1
6464646 Shalom et al. Oct 2002 B1
6523955 Eberl et al. Feb 2003 B1
6542246 Toida Apr 2003 B1
6556854 Sato et al. Apr 2003 B1
6556858 Zeman Apr 2003 B1
6599247 Stetten Jul 2003 B1
6631286 Pfeiffer et al. Oct 2003 B2
6648227 Swartz et al. Nov 2003 B2
6650916 Cook et al. Nov 2003 B2
6689075 West Feb 2004 B2
6690964 Bieger et al. Feb 2004 B2
6702749 Paladini et al. Mar 2004 B2
6719257 Greene et al. Apr 2004 B1
6755789 Stringer et al. Jun 2004 B2
6777199 Bull et al. Aug 2004 B2
6782161 Barolet et al. Aug 2004 B2
6845190 Smithwick et al. Jan 2005 B1
6882875 Crowley Apr 2005 B1
6889075 Marchitto et al. May 2005 B2
6913202 Tsikos et al. Jul 2005 B2
6923762 Creaghan, Jr. Aug 2005 B1
6980852 Jersey-Willuhn et al. Dec 2005 B2
7092087 Kumar et al. Aug 2006 B2
7113817 Winchester, Jr. et al. Sep 2006 B1
7158660 Gee, Jr. et al. Jan 2007 B2
7158859 Wang et al. Jan 2007 B2
7204424 Yavid et al. Apr 2007 B2
7225005 Kaufman et al. May 2007 B2
7227611 Hull et al. Jun 2007 B2
7239909 Zeman Jul 2007 B2
7247832 Webb Jul 2007 B2
7280860 Ikeda et al. Oct 2007 B2
7283181 Allen et al. Oct 2007 B2
7302174 Tan et al. Nov 2007 B2
7333213 Kempe Feb 2008 B2
D566283 Brafford et al. Apr 2008 S
7359531 Endoh et al. Apr 2008 B2
7376456 Marshik-Geurts et al. May 2008 B2
7428997 Wiklof et al. Sep 2008 B2
7431695 Creaghan Oct 2008 B1
7448995 Wiklof et al. Nov 2008 B2
7532746 Marcotte et al. May 2009 B2
7545837 Oka Jun 2009 B2
7559895 Stetten et al. Jul 2009 B2
7579592 Kaushal Aug 2009 B2
7608057 Woehr et al. Oct 2009 B2
7699776 Walker et al. Apr 2010 B2
7708695 Akkermans et al. May 2010 B2
7792334 Cohen et al. Sep 2010 B2
7846103 Cannon, Jr. et al. Dec 2010 B2
7848103 Zhan Dec 2010 B2
7904138 Goldman et al. Mar 2011 B2
7904139 Chance Mar 2011 B2
7925332 Crane et al. Apr 2011 B2
7966051 Xie et al. Jun 2011 B2
8032205 Mullani Oct 2011 B2
8078263 Zeman et al. Dec 2011 B2
8187189 Jung et al. May 2012 B2
8199189 Kagenow et al. Jun 2012 B2
8320998 Sato Nov 2012 B2
8336839 Boccoleri et al. Dec 2012 B2
8364246 Thierman Jan 2013 B2
8467855 Yasui Jun 2013 B2
8480662 Stolen et al. Jul 2013 B2
8494616 Zeman Jul 2013 B2
8498694 McGuire, Jr. et al. Jul 2013 B2
8509495 Xu et al. Aug 2013 B2
8537203 Seibel et al. Sep 2013 B2
8548572 Crane Oct 2013 B2
8630465 Wieringa Jan 2014 B2
8649848 Crane et al. Feb 2014 B2
20010006426 Son et al. Jul 2001 A1
20010056237 Cane et al. Dec 2001 A1
20020016533 Marchitto et al. Feb 2002 A1
20020118338 Kohayakawa Aug 2002 A1
20020188203 Smith et al. Dec 2002 A1
20030018271 Kimble Jan 2003 A1
20030037375 Riley et al. Feb 2003 A1
20030052105 Nagano et al. Mar 2003 A1
20030120154 Sauer et al. Jun 2003 A1
20030125629 Ustuner Jul 2003 A1
20030156260 Putilin et al. Aug 2003 A1
20040015062 Ntziachristos et al. Jan 2004 A1
20040015158 Chen et al. Jan 2004 A1
20040022421 Endoh et al. Feb 2004 A1
20040046031 Knowles et al. Mar 2004 A1
20040171923 Kalafut et al. Sep 2004 A1
20040222301 Willins et al. Nov 2004 A1
20040237051 Clauson Nov 2004 A1
20050017924 Utt et al. Jan 2005 A1
20050033145 Graham et al. Feb 2005 A1
20050043596 Chance Feb 2005 A1
20050047134 Mueller Mar 2005 A1
20050085732 Sevick-Muraca et al. Apr 2005 A1
20050085802 Gruzdev et al. Apr 2005 A1
20050113650 Pacione et al. May 2005 A1
20050131291 Floyd et al. Jun 2005 A1
20050135102 Gardiner et al. Jun 2005 A1
20050141069 Wood et al. Jun 2005 A1
20050143662 Marchitto et al. Jun 2005 A1
20050146765 Turner et al. Jul 2005 A1
20050154303 Walker et al. Jul 2005 A1
20050157939 Arsenault et al. Jul 2005 A1
20050161051 Pankratov et al. Jul 2005 A1
20050168980 Dryden et al. Aug 2005 A1
20050174777 Cooper et al. Aug 2005 A1
20050175048 Stern et al. Aug 2005 A1
20050187477 Serov et al. Aug 2005 A1
20050215875 Khou Sep 2005 A1
20050265586 Rowe et al. Dec 2005 A1
20050281445 Marcotte et al. Dec 2005 A1
20060007134 Ting Jan 2006 A1
20060020212 Xu et al. Jan 2006 A1
20060025679 Viswanathan et al. Feb 2006 A1
20060052690 Sirchey et al. Mar 2006 A1
20060081252 Wood Apr 2006 A1
20060100523 Ogle et al. May 2006 A1
20060103811 May et al. May 2006 A1
20060122515 Zeman et al. Jun 2006 A1
20060129037 Kaufman et al. Jun 2006 A1
20060129038 Zelenchuk et al. Jun 2006 A1
20060151449 Warner et al. Jul 2006 A1
20060173351 Marcotte et al. Aug 2006 A1
20060184040 Keller et al. Aug 2006 A1
20060206027 Malone Sep 2006 A1
20060232660 Nakajima et al. Oct 2006 A1
20060253010 Brady et al. Nov 2006 A1
20060271028 Altshuler et al. Nov 2006 A1
20060276712 Stothers Dec 2006 A1
20070015980 Numada et al. Jan 2007 A1
20070016079 Freeman et al. Jan 2007 A1
20070070302 Govorkov et al. Mar 2007 A1
20070115435 Rosendaal May 2007 A1
20070129634 Hickey et al. Jun 2007 A1
20070162094 Goldman Jul 2007 A1
20070176851 Willey et al. Aug 2007 A1
20070232923 Asuri Oct 2007 A1
20070238957 Yared Oct 2007 A1
20080021329 Wood Jan 2008 A1
20080045841 Wood et al. Feb 2008 A1
20080086533 Neuhauser Apr 2008 A1
20080147147 Griffiths et al. Jun 2008 A1
20080194930 Harris et al. Aug 2008 A1
20080214940 Benaron Sep 2008 A1
20090018414 Toofan Jan 2009 A1
20090082629 Dotan Mar 2009 A1
20090171205 Kharin et al. Jul 2009 A1
20100051808 Zeman et al. Mar 2010 A1
20100061598 Seo Mar 2010 A1
20100087787 Woehr et al. Apr 2010 A1
20100177184 Berryhill et al. Jul 2010 A1
20100312120 Meier Dec 2010 A1
20110275932 Leblond et al. Nov 2011 A1
20130147916 Bennett et al. Jun 2013 A1
20140039309 Harris et al. Feb 2014 A1
20140046291 Harris et al. Feb 2014 A1
20140194747 Kruglick Jul 2014 A1
Foreign Referenced Citations (22)
Number Date Country
2289149 May 1976 FR
1298707 Dec 1972 GB
1507329 Apr 1978 GB
S60-108043 Jun 1985 JP
04-042944 Feb 1992 JP
07-255847 Oct 1995 JP
08-023501 Jan 1996 JP
08-164123 Jun 1996 JP
2000-316866 Nov 2000 JP
2002-328428 Nov 2002 JP
2002-345953 Dec 2002 JP
2004-237051 Aug 2004 JP
2004-329786 Nov 2004 JP
2003-0020152 Mar 2003 KR
WO 1998 26583 Jun 1988 WO
WO 1994 22370 Oct 1994 WO
WO 1996 39925 Dec 1996 WO
WO 1999 48420 Sep 1999 WO
WO 2001-82786 Nov 2001 WO
WO 2003-009750 Feb 2003 WO
WO 2005-053773 Jun 2005 WO
WO 2007-078447 Jul 2007 WO
Non-Patent Literature Citations (5)
Entry
Wiklof, Chris, “Display Technology Spawns Laser Camera,” LaserFocusWorld, Dec. 1, 2004, vol. 40, Issue 12, PennWell Corp., USA.
Nikbin, Darius, “IPMS Targets Colour Laser Projectors,” Optics & Laser Europe, Mar. 1006, Isue 137, p. 11.
http://sciencegeekgirl.wordpress.com/category/science-myths/page/2/ Myth 7: Blood is Blue.
http://www.exploratorium.edu/sports/hnds_up/hands6.html “Hands Up! To Do & Notice: Getting the Feel of Your Hand”.
http://www.wikihow.com/See-Blook-Veins-in-Your-Hand-With-a-Flashlight “How to See Blood Veins in Your Hand With a Flashlight”.
Related Publications (1)
Number Date Country
20200078534 A1 Mar 2020 US
Provisional Applications (1)
Number Date Country
61271587 Jul 2009 US
Continuations (4)
Number Date Country
Parent 15678355 Aug 2017 US
Child 16595750 US
Parent 14718422 May 2015 US
Child 15678355 US
Parent 13778426 Feb 2013 US
Child 14718422 US
Parent 12804506 Jul 2010 US
Child 13778426 US