Drawing blood and administering intravenous medication using medical devices including but not limited to catheters are common medical procedures, but conventional methods to perform these procedures have several limitations. First a vein must be found. Conventional methods of locating an appropriate vein or artery include restricting the blood supply to the location of the body so that the blood pressure in that area is greater, which results in the patient's veins becoming more visible. This is often accomplished by the use of a temporary tourniquet, which can result in extreme discomfort to the patient. Even after the temporary tourniquet is applied and certain veins are exposed, a medical professional may still not be able to find an appropriate vein. This problem can occur more readily in elderly patients and patients with low blood pressure. Thus, there is a need for a non-invasive method for locating veins.
The present invention is directed towards a portable hand-held medical apparatus that uses infrared light to detect veins beneath the skin, then illuminating the position of the veins on the skin surface directly above the veins using visible light. When the apparatus is held a distance above the outer surface of the skin, veins appear vastly different than the surrounding tissue, and veins that are otherwise undetectable because of their depth in the tissue are safely located and mapped on the patient's skin. Vein's will be accessed more readily and with greater confidence and as such, venipuctures will go more smoothly while vasculature shows up clearly on the skin's surface, making it easy to select the best vein to collect a blood sample from or administer medications to. Qualified medical personnel can observe the displayed vasculature to assist them in finding a vein of the right size and position for venipuncture.
The present invention is directed to an apparatus 10 (
The apparatus 10 generally comprises a housing 11, internal circuitry 12, keypad 13, display 14, scanner assembly 15, and battery pack 16. The housing 11 may generally comprise a top section 17 and bottom section 18 as shown in
The housing 11 may be comprised generally of a top section 17 and a bottom section 18.
The walls 19-22 may each be angled, and may be so angled simply for aesthetic reasons, or for better handling by a user, or the angling (draft) may be the result of the manufacturing process used to create the housing bottom section 18, possibly being a casting process, a forging process, or a plastic injection molding process. However, the walls 19-22 need not be so angled, and the housing bottom section 18 may also be manufactured using any other suitable manufacturing process or processes, including, but not limited to, machining of the part. One end of the angled walls 19-22 may terminate in a generally flat bottom wall 23, to create an internal cavity 24. The generally flat bottom wall 23 may transition, using transition wall 25, into another generally flat wall 23A. Wall 23A may be interrupted by a series of internal walls (26A, 26B, 26C, and 26D) extending therefrom and an internal top wall 26E connecting those internal side walls, to form a compartment that may house the battery 16. The other end of the angled walls 19-22 may terminate in an edge 27. Edge 27, at front wall 21 and in the nearby regions of sidewalls 19 and 20, may be generally planar, but may transition into edge 27A, which serves as a transition to generally planar edge 27B that begins at rear wall 22. Each of the edges 27, 27A, and 27B of the housing bottom section 18 may have a step for receiving a corresponding protruding flange of the housing top section 17, when they are joined during assembly of the apparatus 10.
In one embodiment, the front wall 21 and sidewalls 19 and 20 of the housing bottom section 18 may have extending up towards the plane of the edge 27, one or more cylindrical members—a boss 107, which is adapted to receive mounting screws 106, and may include the use of threaded inserts for mounting of the housing top section 17 to the housing bottom section 18. It will be appreciated that other mounting means may be used, including, but not limited to, the use of a snap closure, or a post and recess combination with a friction fit therebetween.
The bottom wall 23 of housing bottom section 18 may be provided with two orifices 28, and 29. On the outside surface of bottom wall 23 there may be one or more annular recesses 28A and 29A, being concentric to orifices 28 and 29, respectfully, each of which may be used to receive a lens 90 (
Protruding inward from the inside of bottom wall 23 may be cylindrical protrusions 31, and 32. Protrusions 31 and 32 may be concentric with orifices 28 and 29, respectfully, and may be adapted to receive a portion of the photodiode masks 66 and 67 of the scanner assembly 15, which are discussed later.
Mounted inside the battery compartment formed by walls 26A-26E may be the battery pack 16. The battery pack 16 (
The outer surface of the top wall 81 of the housing top section 17 may have a step down into a flat recessed region 81A having an edge periphery 81P. That flat recessed region 81A may comprise of an opening 91 through to the inside surface, which may be a rectangular opening, and a plurality of shaped orifices 93A, 93B, and 93C. The rectangular-shaped opening 91 may be sized and otherwise adapted to receive the display 14, which is discussed in more detail hereinafter. The flat recessed region 81A of top wall 81 may receive a display guard 92 (
Alternatively, other means of user input, such as touch screen, touch pad, track ball, joystick or voice commands may replace or augment the buttons.
The internal circuitry 12 is illustrated in
As seen in
The heat sink capabilities might be enhanced by a fan or blower arranged in a way that would direct the air flow onto the heat sink and out of the housing. Additionally, a thermodynamic or thermoelectric heat pump may be employed between the heat-dissipating portions of the heat sink, to facilitate heat exchange. In a preferred embodiment, a heat shield 80 is mounted onto the top surface of the user interface board 44.
Preferably being directly connected the main circuit board 43, is the user interface board 44.
Mounted to the user interface board may be a keypad 13. Keypad 13, as noted previously, may be comprised of a plurality of control means which may include, but is not limited to, a plurality of buttons 77. In a preferred embodiment, there may be three buttons used for controlling the apparatus—buttons 110-112. Each of these buttons may have a first end 78 and a second end 79. The first ends 78 of the plurality of buttons is adapted to be exposed through corresponding openings in the housing top section 17, where they may be toggled by the user. The second end 79 of the buttons is adapted to be received by the user interface board 44.
Also attached to the main circuit board is the USB chip 46. USB chip mounts to the main circuit board 43 at a pin connection, and provides a pin connection for speaker 65. The USB chip 46 is preferably mounted to the bottom surface of the main circuit board.
Also connected to the main circuit board is the scanner assembly 15 (
The photodiode engine comprises a display light 62 (
The red laser may be employed to project information other then vein locations, by means of turning on the laser or increasing its brightness when the laser beam is passing over the brighter parts of graphical or symbolic information to be projected, and turning off the laser or increasing its brightness when the laser beam is passing over the darker parts of graphical or symbolic information to be projected. Such information may include the vein depth, vein diameter, or the degree of certainty with which the device is able to identify the vein location, expressed, for example, through the projected line width 501 (
Vein location and other information may also be displayed by projection means other than scanning laser, through the use of, for example, a DLP (Digital Light Processing) projector, a LCoS (Liquid Crystal on Silicon) micro-projector, or a holographic projector.
Additionally, the firmware of the photodiode board 54 may be programmed to recognize and modify display 14, and projection by the display light 62 to represent a needle, catheter, or similar medical device 573 which has been inserted beneath a patient's skin and a part of it 573a is no longer visible to the naked eye (
More detailed information on the use of the laser light to view the veins can be found in U.S. patent application Ser. No. 11/478,322 filed Jun. 29, 2006 entitled MicroVein Enhancer, and U.S. application Ser. No. 11/823,862 filed Jun. 28, 2007 entitled Three Dimensional Imagining of Veins, and U.S. application Ser. No. 11/807,359 filed May 25, 2007 entitled Laser Vein Contrast Enhancer, and U.S. application Ser. No. 12/215,713 filed Jun. 27, 2008 entitled Automatic Alignment of a Contrast Enhancement System the disclosures of which are incorporated herein by reference.
The photodiode board 54 comprises one or more silicon PIN photodiodes, which are used as optical detectors. In a preferred embodiment, photodiode board 54 comprises at least two silicon PIN photodiodes 60 and 61 (
Other arrangements of optical detectors may be used too. In one possible arrangement, depicted on
Alternatively, the FOV of the photodiodes may be reduced in only one direction, and routed through the scanning system in such way that it follows the laser beam only in the direction where the FOV has been reduced, while in the other direction the FOV covers the entire extent of the laser scan (
Multiple photodiodes may also be arranged in an array in such way that their individual FOVs cover the entire area illuminated by the IR laser. At any given moment, only the signals from one or more photodiodes whose FOV overlap the laser beam or fall in proximity to it may be taken into the account.
The photodiodes convert the contrasted infrared image returning from the patient into an electrical signal. The photodiode board 54 amplifies, sums, and filters the current it receives to minimize noise. The return signal of the photodiode engine 53 is differentiated to better facilitate discrimination of the contrast edges in the received signal received by photodiodes 60 and 61.
Signal processing methods other than differentiation, including Digital Signal Processing (DSP) may be employed as well, such as Fast Fourier Transform (FFT), Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filtration. Additionally, more complex image processing algorithms might be used, for example based on continuity analysis, as the veins generally form continuous patterns. For example,
To facilitate the use of DSP algorithms, the electronic circuitry to digitize the signal from the photodiodes and store it subsequently in some form of digital memory might be provided. Consequently, the display of the vein pattern by the red laser might be delayed with respect to the acquisition of said pattern with the IR laser. Such delay may vary from a small fraction of the time interval needed to scan the entire display area to several such intervals. If necessary, an intentional misalignment between the red and IR laser might be introduced, so the red laser can light up or leave dark the areas where the IR laser detected the lower or higher reflectivity, although the red laser beam would travel through those areas at different times than the IR laser.
The scan system employed by the apparatus 10 of the present invention uses a two dimensional optical scanning system to scan both the infrared and visible laser diodes. A dichroic optical filter element 125 in
The scan system employed by the apparatus 10 of the present invention has a horizontal and vertical cycle. Vertical scanning is driven in a sinusoidal fashion, and in one embodiment it occurs at 56.6 Hz, which is derived from 29 KHz sinusoidal horizontal scan. The Scan system is also interlaced. During a horizontal cycle the projection system is active only one half the horizontal scan system and blanked during the alternate half of the scan cycle. On the alternate vertical cycle the blanked and active portion of the horizontal scan is reversed. The top and bottom areas of the scan are blanked as well with a small area at the top of scan, located behind a mechanical shield for safety, reserved for execution of a laser calibration activity.
Alternative scan system might be used as well, such as those using a single scanning mirror deflectable in two orthogonal directions, or two uni-directional mirrors with smaller ratios of horizontal and vertical frequencies, such that the scan pattern forms a Lissajou figure (See http://www.diraedelta.co.uk/science/source/l/i/lissajous%20figures/source.html, and for animated figures, http://ibiblio.org/e-notes/Lis/Lissa.htm, which are incorporated herein by reference).
Various mechanical arrangements for scanning mirrors may be used. In one embodiment (
The torsion mode of the fiber 551 may be higher than fundamental, meaning that at least one torsional node, i.e. a cross-section of the fiber which remains still during oscillations, is formed. Such nodes allows for generally higher oscillation frequency at the expense of generally lower oscillation amplitude.
Since high oscillation frequency is desirable to obtain high-resolution images at smooth video rates, the linear speed of the mirror's outer edges becomes quite high as well, leading to excessive dust buildup along those edges. To alleviate this problem, the edges of the mirror may be smoothed by either removing some mirror material 560 (
Non-mechanical scanning systems, such as acousto-optic, electro-optic or holographic might be employed as well.
In a preferred embodiment, each scan line is divided into 1024 pixels numbered 0-1023. In pixel range 0-106, red laser 63 is at its threshold, and IR laser 64 is off. The term “threshold”, as applicable to lasers, means an inflection point on the laser Power-Current (P-I) curve, where the current becomes high enough for the stimulated emission (aka “lasing”) to begin. This point is marked Ith of
Projection is accomplished by loading the appropriate compare registers in the complex programmable logic device, or CPLD. The content of the registers is then compared to the running pixel counter, generating a trigger signal when the content of a register matches the pixel count. The “left” register is loaded with the pixel count of when the laser should be turned off and the “right” register loaded with the pixel count of when the laser should be turned back on. The registers should be loaded on the scan line prior to the line when the projection is to occur. Projection is only allowed during the “Active” part of the red laser scan, i.e. between pixels 107 and 916, as explained above.
To improve vein visibility it is important to maintain the laser spot of a proper size on the surface of the patient's skin. This may be accomplished by fixed laser-focusing optics, or by an auto-focusing system which adjusts the beam focusing in response to changes in the distance to the target.
Certain patient's veins or a portion of their veins might not be displayed well or at all. Causes for veins not be displayed include vein depth skin conditions (e.g. eczema, tattoos), hair, highly contoured skin surface, and adipose (i.e. fatty) tissue. The apparatus is not intended to be used as the sole method for locating veins, but should be used either prior to palpation to help identify the location of a vein, or afterwards to confirm or refute the perceived location of a vein. When using the apparatus qualified medical personnel should always follow the appropriate protocols and practices.
In one embodiment, when the user wishes to operate the apparatus, the user may apply a perpendicular force to the top surface of the side button 113, or depress power button 112 to power the device. Once the device has been powered, the user can turn on the display light 62 by pressing and holding the top surface of the side button 113 for a set amount of time. In a preferred embodiment the photodiode board 54 has been programmed to activate the display light 62 after the user has held side button 113 for a half second.
Embedded in the user interface board 44 may be firmware, which supports the displaying, upon LCD 14, of a menu system (see
When the apparatus's 10 display light 62 is activated, the apparatus 10 can be used to locate veins. The user can access the scan function by navigating to it using the keypad 13. The firmware will contain a feature which will allow the user to cycle through display settings using a menu system to optimize vein display for the current subject. When the display light 62 is deactivated, the display 14 remains available for viewing status and making configuration settings using the menu system.
This application is a continuation of U.S. application Ser. No. 13/778,426, filed on Feb. 27, 2013, now issued as U.S. Pat. No. 9,061,109, which is a continuation of U.S. application Ser. No. 12/804,506, filed on Jul. 22, 2010, now issued as U.S. Pat. No. 8,463,364, which claims priority on U.S. Provisional Application Ser. No. 61/271,587, filed on Jul. 22, 2009, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3136310 | Meltzer | Jun 1964 | A |
3349762 | Kapany | Oct 1967 | A |
3511227 | Johnson | May 1970 | A |
3527932 | Thomas | Sep 1970 | A |
3818129 | Yamamoto | Jun 1974 | A |
3984629 | Gorog | Oct 1976 | A |
4030209 | Dreidling | Jun 1977 | A |
4057784 | Tafoya | Nov 1977 | A |
4109647 | Stern | Aug 1978 | A |
4162405 | Chance | Jul 1979 | A |
4182322 | Miller | Jan 1980 | A |
4185808 | Donohoe et al. | Jan 1980 | A |
4213678 | Pomerantzeff | Jul 1980 | A |
4265227 | Ruge | May 1981 | A |
4312357 | Andersson et al. | Jan 1982 | A |
4315318 | Kato | Feb 1982 | A |
4321930 | Jobsis et al. | Mar 1982 | A |
4393366 | Hill | Jul 1983 | A |
4495949 | Stoller | Jan 1985 | A |
4502075 | DeForest et al. | Feb 1985 | A |
4510938 | Jobsis | Apr 1985 | A |
4536790 | Kruger | Aug 1985 | A |
4565968 | Macovski | Jan 1986 | A |
4567896 | Barnea | Feb 1986 | A |
4576175 | Epstein | Mar 1986 | A |
4586190 | Tsuji | Apr 1986 | A |
4590948 | Nilsson | May 1986 | A |
4596254 | Adrian | Jun 1986 | A |
4619249 | Landry | Oct 1986 | A |
4669467 | Willet | Jun 1987 | A |
4697147 | Moran | Sep 1987 | A |
4699149 | Rice | Oct 1987 | A |
4703758 | Omura | Nov 1987 | A |
4766299 | Tierney et al. | Aug 1988 | A |
4771308 | Tejima et al. | Sep 1988 | A |
4780919 | Harrison | Nov 1988 | A |
4799103 | Muckerheide | Jan 1989 | A |
4817622 | Pennypacker et al. | Apr 1989 | A |
4846183 | Martin | Jul 1989 | A |
4862894 | Fujii | Sep 1989 | A |
4899756 | Sonek | Feb 1990 | A |
4901019 | Wedeen | Feb 1990 | A |
4926867 | Kanda | May 1990 | A |
RE33234 | Landry | Jun 1990 | E |
5074642 | Hicks | Dec 1991 | A |
5088493 | Giannini | Feb 1992 | A |
5103497 | Hicks | Apr 1992 | A |
5146923 | Dhawan | Sep 1992 | A |
5174298 | Dolfi | Dec 1992 | A |
5184188 | Bull | Feb 1993 | A |
5214458 | Kanai | May 1993 | A |
5222495 | Clarke | Jun 1993 | A |
5261581 | Harden | Nov 1993 | A |
5293873 | Fang | Mar 1994 | A |
5339817 | Nilsson | Aug 1994 | A |
5371347 | Plesko | Dec 1994 | A |
5406070 | Edgar et al. | Apr 1995 | A |
5418546 | Nakagakiuchi et al. | May 1995 | A |
5423091 | Lange | Jun 1995 | A |
5436655 | Hiyama | Jul 1995 | A |
5445157 | Adachi | Aug 1995 | A |
D362910 | Creaghan | Oct 1995 | S |
5494032 | Robinson | Feb 1996 | A |
5497769 | Gratton | Mar 1996 | A |
5504316 | Bridgelall et al. | Apr 1996 | A |
5519208 | Esparza et al. | May 1996 | A |
5541820 | McLaughlin | Jul 1996 | A |
5542421 | Erdman | Aug 1996 | A |
5598842 | Ishihara et al. | Feb 1997 | A |
5603328 | Zucker et al. | Feb 1997 | A |
5608210 | Esparza et al. | Mar 1997 | A |
5610387 | Bard et al. | Mar 1997 | A |
5625458 | Alfano | Apr 1997 | A |
5631976 | Bolle et al. | May 1997 | A |
5655530 | Messerschmidt | Aug 1997 | A |
5678555 | O'Connell | Oct 1997 | A |
5716796 | Bull | Feb 1998 | A |
5719399 | Alfano et al. | Feb 1998 | A |
5747789 | Godik | May 1998 | A |
5756981 | Roustaei et al. | May 1998 | A |
5758650 | Miller | Jun 1998 | A |
5772593 | Hakamata | Jun 1998 | A |
5787185 | Clayden | Jul 1998 | A |
5814040 | Nelson | Sep 1998 | A |
5836877 | Zavislan | Nov 1998 | A |
5847394 | Alfano et al. | Dec 1998 | A |
5860967 | Zavislan et al. | Jan 1999 | A |
5929443 | Alfano et al. | Jul 1999 | A |
5946220 | Lemelson | Aug 1999 | A |
5947906 | Dawson, Jr. et al. | Sep 1999 | A |
5966204 | Abe | Oct 1999 | A |
5969754 | Zeman | Oct 1999 | A |
5982553 | Bloom et al. | Nov 1999 | A |
5988817 | Mizushima et al. | Nov 1999 | A |
5995856 | Mannheimer et al. | Nov 1999 | A |
5995866 | Lemelson | Nov 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6032070 | Flock et al. | Feb 2000 | A |
6056692 | Schwartz | May 2000 | A |
6061583 | Ishihara et al. | May 2000 | A |
6101036 | Bloom | Aug 2000 | A |
6122042 | Wunderman | Sep 2000 | A |
6132379 | Patacsil | Oct 2000 | A |
6135599 | Fang | Oct 2000 | A |
6141985 | Cluzeau et al. | Nov 2000 | A |
6142650 | Brown et al. | Nov 2000 | A |
6149644 | Xie | Nov 2000 | A |
6171301 | Nelson | Jan 2001 | B1 |
6178340 | Svetliza | Jan 2001 | B1 |
6230046 | Crane et al. | May 2001 | B1 |
6240309 | Yamashita | May 2001 | B1 |
6251073 | Imran et al. | Jun 2001 | B1 |
6263227 | Boggett et al. | Jul 2001 | B1 |
6301375 | Choi | Oct 2001 | B1 |
6305804 | Rice | Oct 2001 | B1 |
6314311 | Williams et al. | Nov 2001 | B1 |
6334850 | Amano et al. | Jan 2002 | B1 |
6353753 | Flock | Mar 2002 | B1 |
6424858 | Williams | Jul 2002 | B1 |
6436655 | Bull | Aug 2002 | B1 |
6438396 | Cook et al. | Aug 2002 | B1 |
6463309 | Ilia | Oct 2002 | B1 |
6464646 | Shalom et al. | Oct 2002 | B1 |
6523955 | Eberl | Feb 2003 | B1 |
6542246 | Toida | Apr 2003 | B1 |
6556854 | Sato et al. | Apr 2003 | B1 |
6556858 | Zeman | Apr 2003 | B1 |
6599247 | Stetten | Jul 2003 | B1 |
6631286 | Pfeiffer | Oct 2003 | B2 |
6648227 | Swartz et al. | Nov 2003 | B2 |
6650916 | Cook et al. | Nov 2003 | B2 |
6689075 | West | Feb 2004 | B2 |
6690964 | Bieger et al. | Feb 2004 | B2 |
6702749 | Paladini et al. | Mar 2004 | B2 |
6719257 | Greene et al. | Apr 2004 | B1 |
6755789 | Stringer | Jun 2004 | B2 |
6777199 | Bull | Aug 2004 | B2 |
6782161 | Barolet et al. | Aug 2004 | B2 |
6845190 | Smithwick | Jan 2005 | B1 |
6882875 | Crowley | Apr 2005 | B1 |
6889075 | Marchitto et al. | May 2005 | B2 |
6913202 | Tsikos et al. | Jul 2005 | B2 |
6923762 | Creaghan | Aug 2005 | B1 |
6980852 | Jersey-Wiluhn et al. | Dec 2005 | B2 |
7092087 | Kumar | Aug 2006 | B2 |
7113817 | Winchester | Sep 2006 | B1 |
7158660 | Gee et al. | Jan 2007 | B2 |
7158859 | Wang | Jan 2007 | B2 |
7225005 | Kaufman et al. | May 2007 | B2 |
7239909 | Zeman | Jul 2007 | B2 |
7247832 | Webb | Jul 2007 | B2 |
7283181 | Allen | Oct 2007 | B2 |
7302174 | Tan et al. | Nov 2007 | B2 |
7333213 | Kempe | Feb 2008 | B2 |
D566283 | Brafford et al. | Apr 2008 | S |
7359531 | Endoh et al. | Apr 2008 | B2 |
7376456 | Marshik-Geurts | May 2008 | B2 |
7431695 | Creaghan | Oct 2008 | B1 |
7532746 | Marcotte et al. | May 2009 | B2 |
7545837 | Oka | Jun 2009 | B2 |
7559895 | Stetten | Jul 2009 | B2 |
7579592 | Kaushal | Aug 2009 | B2 |
7608057 | Woehr et al. | Oct 2009 | B2 |
7708695 | Akkermans | May 2010 | B2 |
7792334 | Cohen | Sep 2010 | B2 |
7904138 | Goldman et al. | Mar 2011 | B2 |
7904139 | Chance | Mar 2011 | B2 |
7925332 | Crane et al. | Apr 2011 | B2 |
7966051 | Xie | Jun 2011 | B2 |
8032205 | Mullani | Oct 2011 | B2 |
8078263 | Zeman et al. | Dec 2011 | B2 |
8187189 | Jung et al. | May 2012 | B2 |
8199189 | Kagenow et al. | Jun 2012 | B2 |
8320998 | Sato | Nov 2012 | B2 |
8336839 | Timoszyk et al. | Dec 2012 | B2 |
8364246 | Thierman | Jan 2013 | B2 |
8494616 | Zeman | Jul 2013 | B2 |
8498694 | McGuire, Jr. et al. | Jul 2013 | B2 |
8509495 | Xu et al. | Aug 2013 | B2 |
8548572 | Crane | Oct 2013 | B2 |
8630465 | Wieringa | Jan 2014 | B2 |
8649848 | Crane et al. | Feb 2014 | B2 |
20010006426 | Son | Jul 2001 | A1 |
20010056237 | Cane | Dec 2001 | A1 |
20020016533 | Marchitto | Feb 2002 | A1 |
20020118338 | Kohayakawa | Aug 2002 | A1 |
20020188203 | Smith | Dec 2002 | A1 |
20030018271 | Kimble | Jan 2003 | A1 |
20030052105 | Nagano | Mar 2003 | A1 |
20030120154 | Sauer | Jun 2003 | A1 |
20030125629 | Ustuner | Jul 2003 | A1 |
20030156260 | Putilin | Aug 2003 | A1 |
20040015158 | Chen et al. | Jan 2004 | A1 |
20040022421 | Endoh et al. | Feb 2004 | A1 |
20040046031 | Knowles et al. | Mar 2004 | A1 |
20040171923 | Kalafut et al. | Sep 2004 | A1 |
20040222301 | Willins et al. | Nov 2004 | A1 |
20040237051 | Clauson | Nov 2004 | A1 |
20050017924 | Utt et al. | Jan 2005 | A1 |
20050033145 | Graham et al. | Feb 2005 | A1 |
20050043596 | Chance | Feb 2005 | A1 |
20050047134 | Mueller et al. | Mar 2005 | A1 |
20050085802 | Gruzdev | Apr 2005 | A1 |
20050113650 | Pacione et al. | May 2005 | A1 |
20050131291 | Floyd et al. | Jun 2005 | A1 |
20050135102 | Gardiner et al. | Jun 2005 | A1 |
20050141069 | Wood et al. | Jun 2005 | A1 |
20050143662 | Marchitto et al. | Jun 2005 | A1 |
20050146765 | Turner | Jul 2005 | A1 |
20050154303 | Walker | Jul 2005 | A1 |
20050157939 | Arsenault et al. | Jul 2005 | A1 |
20050161051 | Pankratov et al. | Jul 2005 | A1 |
20050168980 | Dryden et al. | Aug 2005 | A1 |
20050174777 | Cooper et al. | Aug 2005 | A1 |
20050175048 | Stern et al. | Aug 2005 | A1 |
20050187477 | Serov | Aug 2005 | A1 |
20050215875 | Khou | Sep 2005 | A1 |
20050265586 | Rowe et al. | Dec 2005 | A1 |
20050281445 | Marcotte et al. | Dec 2005 | A1 |
20060007134 | Ting | Jan 2006 | A1 |
20060020212 | Xu | Jan 2006 | A1 |
20060025679 | Viswanathan et al. | Feb 2006 | A1 |
20060052690 | Sirohey et al. | Mar 2006 | A1 |
20060081252 | Wood | Apr 2006 | A1 |
20060100523 | Ogle | May 2006 | A1 |
20060103811 | May et al. | May 2006 | A1 |
20060122515 | Zeman | Jun 2006 | A1 |
20060129037 | Kaufman et al. | Jun 2006 | A1 |
20060129038 | Zelenchuk et al. | Jun 2006 | A1 |
20060151449 | Warner | Jul 2006 | A1 |
20060173351 | Marcotte et al. | Aug 2006 | A1 |
20060184040 | Keller et al. | Aug 2006 | A1 |
20060206027 | Malone | Sep 2006 | A1 |
20060232660 | Nakajima et al. | Oct 2006 | A1 |
20060253010 | Brady et al. | Nov 2006 | A1 |
20060271028 | Altshuler et al. | Nov 2006 | A1 |
20070016079 | Freeman et al. | Jan 2007 | A1 |
20070070302 | Govorkov | Mar 2007 | A1 |
20070115435 | Rosendaal | May 2007 | A1 |
20070176851 | Wiley | Aug 2007 | A1 |
20080045841 | Wood et al. | Feb 2008 | A1 |
20080147147 | Griffiths et al. | Jun 2008 | A1 |
20080194930 | Harris et al. | Aug 2008 | A1 |
20090018414 | Toofan | Jan 2009 | A1 |
20090171205 | Kharin | Jul 2009 | A1 |
20100051808 | Zeman et al. | Mar 2010 | A1 |
20100061598 | Seo | Mar 2010 | A1 |
20100087787 | Woehr et al. | Apr 2010 | A1 |
20100177184 | Berryhill et al. | Jul 2010 | A1 |
20100312120 | Meier | Dec 2010 | A1 |
20140039309 | Harris et al. | Feb 2014 | A1 |
20140046291 | Harris et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2289149 | May 1976 | FR |
1298707 | Dec 1972 | GB |
1507329 | Apr 1978 | GB |
S60-108043 | Jun 1985 | JP |
04-042944 | Feb 1992 | JP |
07-255847 | Oct 1995 | JP |
08023501 | Jan 1996 | JP |
08-164123 | Jun 1996 | JP |
2000316866 | Nov 2000 | JP |
2002 328428 | Nov 2002 | JP |
2002345953 | Dec 2002 | JP |
2003 6542246 | Apr 2003 | JP |
2003 6556854 | Apr 2003 | JP |
2004 237051 | Aug 2004 | JP |
2004329786 | Nov 2004 | JP |
20030020152 | Mar 2003 | KR |
20030020152 | Mar 2003 | KR |
WO 94 22370 | Oct 1994 | WO |
WO 9639925 | Dec 1996 | WO |
WO 96 39926 | Dec 1996 | WO |
WO 9826583 | Jun 1998 | WO |
WO 9948420 | Sep 1999 | WO |
WO 01 82786 | Nov 2001 | WO |
WO 03 009750 | Feb 2003 | WO |
WO 2005053773 | Jun 2005 | WO |
WO 2007 078447 | Dec 2007 | WO |
Entry |
---|
Wiklof, Chris, “Display Technology Spawns Laser Camera,” LaserFocusWorld, Dec. 1, 2004, vol. 40, Issue 12, PennWell Corp., USA. |
http://www.wikihow.com/See-Blood-Veins-in-Your-Hand-With-a-Flashlight “How to See Blood Veins in Your Hand With a Flashlight”. |
Number | Date | Country | |
---|---|---|---|
20160038690 A1 | Feb 2016 | US |
Number | Date | Country | |
---|---|---|---|
61271587 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13778426 | Feb 2013 | US |
Child | 14718422 | US | |
Parent | 12804506 | Jul 2010 | US |
Child | 13778426 | US |