In a printing system, media may be fed from a source via a feed roller to a destination via a drive roller that receives the media from the feed roller. The source may include an input tray. The destination may include an output tray or another intermediate location along a print path. The media may include paper. The feed roller and the drive roller may be respectively operated by feed roller and drive roller motors.
Features of the present disclosure are illustrated by way of example and not limited in the following figure(s), in which like numerals indicate like elements, in which:
For simplicity and illustrative purposes, the present disclosure is described by referring mainly to examples. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure.
Throughout the present disclosure, the terms “a” and “an” are intended to denote at least one of a particular element. As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The term “based on” means based at least in part on.
Velocity and torque based media motor control apparatuses, methods for velocity and torque based media motor control, and non-transitory computer readable media having stored thereon machine readable instructions to provide velocity and torque based media motor control are disclosed herein. The apparatuses, methods, and non-transitory computer readable media disclosed herein provide for dynamic control of media motors depending, for example, on location of media, and/or operational velocity and/or torque associated with the media motors.
With respect to media motor control, in a printing system, media may be fed from a source via a feed roller to a destination via a drive roller that receives the media from the feed roller. The feed roller and the drive roller may be respectively operated by feed roller and drive roller motors. As the media is being fed from the feed roller to the drive roller, it is technically challenging to control the tension imparted on the media by the drive roller which may operate at a higher rotational velocity compared to the feed roller.
In order to address at least these technical challenges with respect to media motor control, the apparatuses, methods, and non-transitory computer readable media disclosed herein provide for control of the feed roller and drive roller motors to impart different tension values on the media depending on the operational velocity and torque of the feed roller and drive roller motors. For example, as media is being fed from the feed roller to the drive roller, a determination is made as to whether the torque for the drive roller motor is greater than a torque target. In response to a determination that the torque for the drive roller motor is greater than the torque target, the torque for the drive roller motor may be reduced to the torque target. Thus, for the feed and drive roller motors, the torque for the drive roller motor may be dynamically controlled in response to a determination that the torque for the drive roller motor is greater than the torque target. Further, the torque for the drive roller motor may be maintained at the torque target, and variations in the velocity for the drive roller motor may be allowed during the maintenance of the torque for the drive roller motor at the torque target. In this manner, the torque for the drive roller motor may be dynamically controlled based on an analysis of the torque for the drive roller motor relative to the torque target, and the velocity for the drive roller motor may also be controlled as disclosed herein.
For the apparatuses, methods, and non-transitory computer readable media disclosed herein, modules, as described herein, may be any combination of hardware and programming to implement the functionalities of the respective modules. In some examples described herein, the combinations of hardware and programming may be implemented in a number of different ways. For example, the programming for the modules may be processor executable instructions stored on a non-transitory machine-readable storage medium and the hardware for the modules may include a processing resource to execute those instructions. In these examples, a computing device implementing such modules may include the machine-readable storage medium storing the instructions and the processing resource to execute the instructions, or the machine-readable storage medium may be separately stored and accessible by the computing device and the processing resource. In some examples, some modules may be implemented in circuitry.
Referring to
A drive roller motor velocity and torque determination module 112 is to ascertain a velocity 114 and a torque 116 for a drive roller motor 118 associated with (i.e., imparts motion of) a drive roller 120 that is to receive media 122 from the feed roller 110. In this regard, as illustrated in
According to an example, the media 122 may include paper.
According to an example, the ascertained velocity 114 for the drive roller motor 118 associated with the drive roller 120 may be greater than the ascertained velocity 104 for the feed roller motor 108 associated with the feed roller 110. That is, the velocity 114 for the drive roller motor 118 associated with the drive roller 120 may be set to be greater than the velocity 104 for the feed roller motor 108 associated with the feed roller 110.
According to an example, the drive roller motor velocity and torque determination module 112 is to ascertain, after a specified acceleration distance of the drive roller motor 118, the velocity 114 and torque 116 for the drive roller motor 118 associated with the drive roller 120 that is to receive the media 122 from the feed roller 110.
A torque analysis module 124 is to determine whether the torque 116 for the drive roller motor 118 is greater than a torque target 126.
In response to a determination that the torque 116 for the drive roller motor 118 is greater than the torque target 126, a torque control module 128 is to reduce the torque 116 for the drive roller motor 118 to the torque target 126. Further, the torque control module 128 is to maintain the torque 116 (e.g., the reduced torque 116) for the drive roller motor 118 at the torque target 126.
A velocity control module 130 is to allow, during the maintenance of the torque 116 for the drive roller motor 118 at the torque target 126, variations in the velocity 114 for the drive roller motor 118.
A velocity analysis module 132 is to determine whether the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is less than a low velocity threshold 134. In response to a determination that the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is less than the low velocity threshold 134, the velocity control module 130 is to generate an indication of stalling of the drive roller motor 118.
The velocity analysis module 132 is to further determine whether the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is greater than a high velocity threshold 136. In response to a determination that the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is greater than the high velocity threshold 136, the velocity control module 130 is to reduce the velocity 114 for the drive roller motor 118 to the high velocity threshold 136. Further, the velocity control module 130 is to maintain (e.g., after the reduction) the velocity 114 for the drive roller motor 118 at the high velocity threshold 136. Further, the torque control module 128 is to allow, during the maintenance of the velocity 114 for the drive roller motor 118 at the high velocity threshold 136, variations in the torque 116 for the drive roller motor 118.
Referring to
At block 202, the drive roller motor velocity and torque determination module 112 is to ascertain the velocity 114 and the torque 116 for the drive roller motor 118 associated with the drive roller 120 that is to receive the media 122 from the feed roller 110. In this regard, the drive roller motor velocity and torque determination module 112 is to ascertain, after a specified acceleration distance of the drive roller motor 118, the velocity 114 and the torque 116 for the drive roller motor 118 associated with the drive roller 120 that is to receive the media 122 from the feed roller 110.
At block 204, the torque analysis module 124 is to determine whether the torque 116 for the drive roller motor 118 is greater than the torque target 126.
At block 206, in response to a determination that the torque 116 for the drive roller motor 118 is greater than the torque target 126, the torque control module 128 is to reduce the torque 116 for the drive roller motor 118 to the torque target 126. Further, the torque control module 128 is to maintain the torque 116 for the drive roller motor 118 at the torque target 126.
At block 208, the velocity analysis module 132 is to determine whether the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is less than the low velocity threshold 134.
At block 210, in response to a determination that the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is less than the low velocity threshold 134, the velocity control module 130 is to generate an indication of stalling of the drive roller motor 118.
At block 212, the velocity analysis module 132 is to determine whether the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is greater than the high velocity threshold 136.
At block 214, in response to a determination that the velocity 114 for the drive roller motor 118 associated with the drive roller 120 is greater than the high velocity threshold 136, the velocity control module 130 is to reduce the velocity 114 for the drive roller motor 118 to the high velocity threshold 136. Further, the velocity control module 130 is to maintain the velocity 114 for the drive roller motor 118 at the high velocity threshold 136. Further, the torque control module 128 is to allow, during the maintenance of the velocity 114 for the drive roller motor 118 at the high velocity threshold 136, variations in the torque 116 for the drive roller motor 118.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The processor 1102 of
Referring to
The processor 1102 may fetch, decode, and execute the instructions 1108 to ascertain a velocity 114 and a torque 116 for a drive roller motor 118 associated with (i.e., imparts motion of) a drive roller 120 that is to receive media 122 from the feed roller 110.
The processor 1102 may fetch, decode, and execute the instructions 1110 to determine whether the torque 116 for the drive roller motor 118 is greater than a torque target 126.
In response to a determination that the torque 116 for the drive roller motor 118 is greater than the torque target 126, the processor 1102 may fetch, decode, and execute the instructions 1112 to reduce the torque 116 for the drive roller motor 118 to the torque target 126, maintain the torque 116 (e.g., the reduced torque 116) for the drive roller motor 118 at the torque target 126, and allow, during the maintenance of the torque 116 for the drive roller motor 118 at the torque target 126, variations in the velocity 114 for the drive roller motor 118.
Referring to
At block 1204 the method may include ascertaining, after a specified acceleration distance of a drive roller motor 118 associated with a drive roller 120 that is to receive media 122 from the feed roller 110, a velocity and torque for the drive roller motor 118.
At block 1206 the method may include determining whether the torque 116 for the drive roller motor 118 is greater than a torque target 126.
In response to a determination that the torque 116 for the drive roller motor 118 is greater than the torque target 126, at block 1208 the method may include reducing the torque 116 for the drive roller motor 118 to the torque target 126, maintaining the torque 116 for the drive roller motor 118 at the torque target 126, and allowing, during the maintenance of the torque 116 for the drive roller motor 118 at the torque target 126, variations in the velocity 114 for the drive roller motor 118.
Referring to
The processor 1304 may fetch, decode, and execute the instructions 1308 to ascertain a velocity and torque for a drive roller motor 118 associated with a drive roller 120 that is to receive media 122 from the feed roller 110, where the ascertained velocity 114 for the drive roller motor 118 is greater than the ascertained velocity 104 for the feed roller motor 108.
The processor 1304 may fetch, decode, and execute the instructions 1310 to determine whether the torque 116 for the drive roller motor 118 is greater than a torque target 126.
In response to a determination that the torque 116 for the drive roller motor 118 is greater than the torque target 126, the processor 1304 may fetch, decode, and execute the instructions 1312 to reduce the torque 116 for the drive roller motor 118 to the torque target 126, and maintain the torque 116 for the drive roller motor 118 at the torque target 126.
What has been described and illustrated herein is an example along with some of its variations. The terms, descriptions and figures used herein are set forth by way of illustration only and are not meant as limitations. Many variations are possible within the spirit and scope of the subject matter, which is intended to be defined by the following claims—and their equivalents—in which all terms are meant in their broadest reasonable sense unless otherwise indicated.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/054971 | 10/3/2017 | WO | 00 |