N/A
1. Field of the Disclosure
The disclosure relates generally to systems and methods for selective control of fluid flow into a production string in a wellbore.
2. Description of the Related Art
Hydrocarbons such as oil and gas are recovered from a subterranean formation using a wellbore drilled into the formation. Such wells are typically completed by placing a casing along the wellbore length and perforating the casing adjacent each such production zone to extract the formation fluids (such as hydrocarbons) into the wellbore. These production zones are sometimes separated from each other by installing a packer between the production zones. Fluid from each production zone entering the wellbore is drawn into a tubing that runs to the surface. It is desirable to control drainage along the production zone or zones to reduce undesirable conditions such as an invasive gas cone, water cone, and/or harmful flow patterns.
The present disclosure addresses these and other needs of the prior art.
In aspects, the present disclosure provides an apparatus for controlling a flow of a fluid between a flow bore of a wellbore tubular and a wellbore annulus. The apparatus may include an inflow control device having at least one pressure reducing stage. The stage may include a flow passage along which the fluid flows and a throttle receiving the fluid from the flow passage. The throttle may include a first flow area; a second flow area at least partially separated from and parallel to the first flow area, wherein the first flow area is cross-sectionally larger than the second flow area; and an outlet in direct fluid communication with the second flow area.
In aspects, the present disclosure provides a method for controlling a flow of a fluid between a flow bore of a wellbore tubular and a wellbore annulus. The method may include positioning an inflow control device having at least one pressure reducing stage in a wellbore; receiving a multi-phase fluid from the wellbore annulus in the inflow control device, the multi-phase fluid having a gas phase and a liquid phase; and recirculating at least a portion of the gas phase in the at least one pressure reducing stage.
In aspects, the present disclosure further provides an apparatus for controlling a flow of a fluid between a flow bore of a wellbore tubular and a wellbore annulus, wherein the fluid is a multi-phase fluid having a gas phase and a liquid phase. The apparatus may include an inflow control device having a plurality of pressure reducing stages, wherein at least one of the plurality of pressure reducing stages includes a velocity switch configured to recirculate a majority of the gas phase in the associated pressure reducing stage.
It should be understood that examples of the more important features of the disclosure have been summarized rather broadly in order that detailed description thereof that follows may be better understood, and in order that the contributions to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
The advantages and further aspects of the disclosure will be readily appreciated by those of ordinary skill in the art as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference characters designate like or similar elements throughout the several figures of the drawing and wherein:
The present disclosure relates to devices and methods for controlling production from a subsurface reservoir. In particular, passive inflow control devices according to the present disclosure may allow oil/water (or liquid phase) to move through with the same baseline pressure drop, but in the case of live steam/gas (or gas phase) or steam flashing, which is paired with significantly higher volumetric rates & velocities, the passive inflow control devices can force recirculation and apply a backpressure on the reservoir, which may prevent additional gas/steam entrance. In the case of steam, such passive inflow control devices may also force recirculation until condensation occurs, preventing steam hammering effects downstream in the production tubing.
Referring initially to
In
In other situations, the inflowing gas may have been introduced from the surface. Steam Assisted Gravity Drain (SAGD) wells are one type of wells that use steam introduced from the surface during hydrocarbon production. Referring to
A production assembly 72 is disposed in second borehole 74, and includes a production valve assembly 74 connected to a production conduit 76. After region 78 is heated, the bitumen flows into the collector 70 via a plurality of openings such as slots 78, and flows through the production conduit 76, into the production valve assembly 74 and to a suitable container or other location (not shown).
In
Referring now to
Referring now to
In one embodiment, the flow passages 122 are formed as a circular flow path within a suitable enclosure 124 (
The velocity switch 150 allows flow from one stage 130 to the next under certain conditions. Generally speaking, a fluid passes between two stages only if that fluid has a velocity below a predetermined value. Because gas inflow typically has a higher velocity than liquid inflow, the velocity switch 150 favors the flow of liquids between stages and restricts the flow of gases between stages. In one non-limiting embodiment, the velocity switch 150 may include a throttle 170 that controls fluid flow out of a stage 130a-c and an ejector 190 that conditions a gas, such as steam, that flows within a stage 130a-c. The flow passages 122, the throttle 170, and the steam ejector 200 may be considered to form a circumferential fluid circuit 152 wherein some fluids can recirculate and other fluids can exit.
Referring now to
In one non-limiting embodiment, the body 174 may be a solid cylinder that is eccentrically positioned in the bore 178. For example, one or more stands 179 may be used to suspend the body 174 such that a central axis of the body 174 is spaced apart from a central axis of the tube 172. This eccentric positioning causes the flow path 180 to have a larger cross-sectional flow area than the flow path 182. The flow paths 180, 182 are parallel; i.e., flow side-by-side and share a same inlet. The outlet 176 may be positioned to directly receive fluid flowing along the flow path 182. For instance, the outlet 176 may be formed within a wall 184 defining the flow path 182 and provides the only fluid communication between two stages, e.g., stages 130a,b, which are otherwise hydraulically isolated from one another.
Referring now to
The nozzle section 204 generates a vacuum pressure that varies directly with the velocity of the fluid entering the ejector 200. In one arrangement, the nozzle 204 uses a converging and diverging nozzle set to produce a Venturi effect, which is applied to the inlet 202. The inlet 202 may include a uni-directional valve 203 that opens to allow flow from the flow bore into the ejector 200 if a threshold pressure differential is present. Fluid admitted from the flow bore via the inlet 202 mixes with the high-velocity fluids in the mixing chamber 206. Because the admitted fluid may be cooler and have a lower velocity than the fluid in the ejector 200, the interaction between the admitted liquid and the high-velocity fluid reduces the overall fluid velocity and promotes condensation in the gas phase of the fluid in the ejector 200. Optionally, the ejector 200 may include a diffuser section (not shown) to diffuse the mixture prior to exiting the ejector 200.
Referring now to
Referring now to
Next, the fluid mixture flows through the throttle 170, which has two flow areas of differing sizes, flow areas 180, 182. Because the gas phase will have a higher velocity than the liquid phase, the gas phase will strongly favor the larger flow area 180. Due to having a lower velocity, the liquid phase favors neither flow area. However, because the gas phase may consume the majority of the larger flow area 180, the net effect may be that the liquid phase will be forced to disproportionately flow into the smaller flow area 182. Depending on flow velocities, at least a majority (e.g., 51%, 60%, 70%, 80%) of the gas phase may favor the larger flow area 180. Because the outlet 176 is positioned to directly receive fluid from only the smaller flow area 182, the fluid exiting the outlet 176 from the first stage 130a to the second stage 130b will be primarily a liquid. The remaining fluid, which will be primarily the gas phase, will recirculate in the circuit 152 of the first stage 130a. This second trip will further reduce the pressure in the flowing fluid prior to re-entering the ejector 200. Of course, during this process, there is a continuous inflow of fluid from the formation.
The exiting fluids will enter the second stage 130b, flow along the flow fluid circuit 152. It should be understood that the exiting fluid may include some of the gas phase; i.e., the throttle 170 does not necessarily prevent all of the gas phase from exiting via the outlet 176. Again, the flow fluid will undergo a pressure reduction and pass through another velocity switch 150. This process continues until the fluid exits via the opening 106 leading to the flow bore 102 of the production string. Thus, the velocity switch of the present disclosure can actively condition a produced gas phase of an inflowing fluid while at the same time favoring the flow of a liquid phase of the inflowing fluid into a production flow bore. It should be understood that the separation between the gas phase and the liquid phase is not perfect and a certain amount of the gas phase can flow between successive pressure reducing stages.
It is also emphasized that the arrangements shown in
It should be understood that the teachings of the present disclosure may be applied in any situation where multi-phase inflowing fluids are present. In the embodiments above, the devices described are used with a hydrocarbon producing well. Also, while an SAGD well with an injector well and a producing well are described, the present teachings may also be used in cyclic injection wells (“huff and puff”) wells wherein a single borehole is cyclically injected with steam and then allowed to produce hydrocarbons. In other embodiments, the devices and related methods may be used in geothermal applications, ground water applications, etc. The present disclosure may be particularly useful in wells that encounter multi-phase (e.g., liquid and gas) inflowing fluids. While the wells described above use casing, the above discussion can also equally apply to open hole wells.
For the sake of clarity and brevity, descriptions of most threaded connections between tubular elements, elastomeric seals, such as o-rings, and other well-understood techniques are omitted in the above description. Further, terms such as “slot,” “passages,” and “channels” are used in their broadest meaning and are not limited to any particular type or configuration. The foregoing description is directed to particular embodiments of the present disclosure for the purpose of illustration and explanation. It will be apparent, however, to one skilled in the art that many modifications and changes to the embodiment set forth above are possible without departing from the scope of the disclosure.