Some applications of the present invention generally relate to medical apparatus. Specifically, some applications of the present invention relate to apparatus and methods associated with placing a valve in one or more of a subject's renal veins.
It is common for cardiac dysfunction or congestive heart failure to develop into kidney dysfunction, which in turn, causes congestive heart failure symptoms to develop or worsen. Typically, systolic and/or diastolic cardiac dysfunction causes systemic venous congestion, which gives rise to an increase in renal venous and interstitial pressure. The increase in the pressure causes fluid retention by the body to increase due both to kidney dysfunction and renal neurohormonal activation, both of which typically develop as a result of the increase in renal venous and interstitial pressure. The resulting fluid retention causes congestive heart failure to develop or worsen, by causing a blood volume overload at the heart and/or by increasing systemic resistance. Similarly, it is common for kidney dysfunction and/or renal neurohormonal activation to develop into cardiac dysfunction and/or congestive heart failure. This pathophysiological cycle, in which cardiac dysfunction and/or congestive heart failure leads to kidney dysfunction and/or renal neurohormonal activation, or in which kidney dysfunction and/or renal neurohormonal activation leads to cardiac dysfunction and/or congestive heart failure, each dysfunction leading to deterioration in the other dysfunction, is called the cardio-renal syndrome.
Increased renal venous pressure has been experimentally shown to cause azotemia, and a reduction in glomerular filtration rate, renal blood flow, urine output, and sodium excretion. It has also been shown to increase plasma renin and aldosterone, and protein excretion. Venous congestion may also contribute to anemia via three different pathways: a reduction in the kidney's erythropoietin production, hemodilution by fluid retention, and an inflammatory response leading to a reduced gastro-intestinal iron uptake.
Mechanistically, increased renal venous pressure, may cause intracapsular pressure and, subsequently, interstitial peritubular pressure, to rise. A rise in peritubular pressure may impact tubular function (reduce sodium excretion), as well as diminish glomerular filtration by raising the pressure in the Bowman capsule.
In heart failure patients, increased renal venous pressure may not only result from increased central venous (right atrial) pressure, but also from intraperitoneal fluid accumulations (ascites) exerting direct pressure on the renal veins. Reduction of intraabdominal pressure in heart failure patients by removal of fluid (e.g., via paracentesis, and/or ultrafiltration) has been shown to reduce plasma creatinine levels.
Increased venous return resulting from activation of the “leg muscle pump” during physical activity such as walking may raise systemic venous pressure, particularly in heart failure patients, and may result in reflux into the renal veins.
For some applications of the present invention, a device is placed in at least one of a subject's renal veins, the device being configured to reduce pressure at the subject's kidney relative to the subject's central venous pressure. The device is typically a passive device, i.e., the device is configured to reduce pressure at the subject's kidney without requiring external energy to be supplied to the device (e.g., from a power supply or a battery). When the device is in a deployed state inside the renal vein, any movement of any portion of the device is caused by blood flow and/or pressure that is imparted to the portion of the device rather than being caused by energy that is imparted to the device (e.g., from a power supply and/or a battery).
Typically, the device reduces pressure at the subject's kidney by reducing the back flow of blood toward the kidney via the renal vein, and/or by reducing renal venous pressure relative to central venous pressure, by protecting the renal vein from high central venous pressures. Further typically, the device is placed inside the renal vein in response to identifying the subject as suffering from a condition that causes the subject to have elevated central venous pressure relative to that of a healthy subject. For some applications, the condition includes cardiac dysfunction, congestive heart failure, low renal blood flow, high renal vascular resistance, arterial hypertension, kidney dysfunction, and/or cardio-renal syndrome. For some applications, at least one of the devices is placed in each of the subject's left and right renal veins.
For some applications, the device is placed in the renal vein temporarily in order to provide an acute treatment for one or more of the above-listed conditions. For example, the valve may be placed in a renal vein for a period of more than 12 hours (e.g., more than 24 hours), and/or less than three months (e.g., less than one month), during which the subject is undergoing an acute episode of heart failure, and subsequently, the valve may be retrieved from the renal vein.
Typically a prosthetic valve is placed (e.g., transcatheterally placed) inside the renal vein. The valve reduces pressure at the subject's kidney by reducing the back flow of blood toward the kidney via the renal vein, by the valve closing in response to blood flowing back into the renal vein. Alternatively or additionally, the valve protects the renal vein from pressure increases resulting from high central venous pressures, by the valve closing in response to pressure within the vena cava being greater than a threshold pressure.
Typically, placement of the device inside the renal vein causes an improvement of renal function and/or prevention or a reduction in deterioration of the subject's renal function. The device typically reduces renal venous and interstitial pressure, thereby causing a decrease in parenchymal ischemia and injury, and/or an increase in renal blood flow, glomerular filtration rate, and/or in erythropoetin production. For some applications, the device improves the subject's cardiac function, e.g., by reducing afterload. For some applications, the device improves the subject's cardiac and/or renal function, e.g., by causing improved renal salt and water excretion, by suppressing renin-angiotensin-aldosterone system (RAAS) activation, by suppressing arginine-vasopressin system activation, and/or by suppressing the sympathetic nervous system.
For some applications, placement of the device inside the renal vein causes renal venous pressure to decrease such as to prevent or diminish a rise in renal parenchymal intracapsular pressure as a result of increased pressure and backflow from the inferior vena cava to the renal vein (e.g., backflow from the heart and/or from the veins of the lower body towards the renal vein). For some applications, placement of the device inside the renal vein reduces deterioration, or promotes recovery of renal function in a patient with acute or chronic heart failure. For some applications, placement of the device inside the renal vein blocks or attenuates the activation of neural and endocrine control axes which generate the physiological effects that are responsible for the development and sustainment of the heart failure syndrome.
There is therefore provided, in accordance with some applications of the present invention, apparatus including:
For some applications, the valve is configured to be placed entirely within the subject's renal vein.
For some applications, the valve is configured in the closed state thereof to reduce venous pressure within the renal vein relative to central venous pressure of the subject even in an absence of any device being placed at a location that is within an abdomen of the subject and outside a venous system of the subject.
For some applications, the valve frame is configured to reduce compression of the renal vein resulting from intra-abdominal pressure that is exerted on the renal vein, relative to a level of compression of the renal vein resulting from intra-abdominal pressure that is exerted on the renal vein in an absence of the valve frame.
For some applications, the valve frame defines:
For some applications, the valve is configured to be placed in the renal vein for a period of less than three months, and subsequently, to be retrieved from the subject's renal vein.
For some applications, the valve is configured to be placed in the renal vein for a period of less than one month, and subsequently, to be retrieved from the subject's renal vein.
For some applications, the valve frame defines:
For some applications, the protruding portion is shaped to be disposed outside of radial projections of downstream edges of the valve leaflets, such that even when the valve leaflets are in open states thereof, the valve leaflets do not contact the protruding portion.
For some applications, the valve leaflets are coupled to the frame downstream of the protruding portion, such that an upstream end of each of the valve leaflets is longitudinally spaced from a downstream end of the protruding portion.
For some applications, the cylindrical portion and the protruding portion are reversibly couplable to one another.
For some applications, the protruding portion diverges from the outer surface of the cylindrical portion at an angle of greater than 40 degrees with respect to the outer surface of downstream portion of the cylindrical portion.
For some applications, the protruding portion diverges from the outer surface of the cylindrical portion at an angle of greater than 50 degrees with respect to the outer surface of downstream portion of the cylindrical portion.
There is further provided, in accordance with some applications of the present invention, a method including:
For some applications, placing the device at least partially within the renal vein includes placing the device entirely within the renal vein.
For some applications, reducing pressure within the renal vein includes reducing pressure within the renal vein by placing the device at least partially within the renal vein in an absence of any device being placed at a location that is within an abdomen of the subject and outside a venous system of the subject.
For some applications, identifying the subject as suffering from the condition that causes the subject to have elevated central venous pressure includes identifying the subject as suffering from elevated renal venous pressure that is substantially due to the subject suffering from elevated central venous pressure.
For some applications, identifying the subject as suffering from the condition that causes the subject to have elevated central venous pressure includes identifying the subject as suffering from elevated renal venous pressure even in an absence of a condition that causes renal venous pressure of the subject to be elevated due to pressure being exerted on the subject's renal vein through walls of the subject's renal vein from a location outside the renal vein.
For some applications, identifying the subject as suffering from the condition that causes the subject to have elevated central venous pressure includes identifying the subject as suffering from elevated central venous pressure even in an absence of the subject suffering from tricuspid valve regurgitation.
For some applications, placing the device in the subject's renal vein includes placing a first device in a left renal vein of the subject and placing a second device in a right renal vein of the subject.
For some applications, reducing the blood pressure within the renal vein includes treating anemia of the subject that is related to the subject's condition, by reducing the blood pressure within the renal vein.
For some applications, reducing the blood pressure within the renal vein includes reducing the blood pressure within the subject's renal vein relative to central venous pressure of the subject, even during lower body exercise that is performed by the subject.
For some applications, identifying the subject as suffering from the condition includes identifying the subject as suffering from a condition selected from the group consisting of: cardiac dysfunction, congestive heart failure, and kidney dysfunction.
For some applications, identifying the subject as suffering from the condition includes identifying the subject as suffering from a condition selected from the group consisting of: cardiac dysfunction, and congestive heart failure.
For some applications, placing the device at least partially within the subject's renal vein includes placing the device at least partially within the subject's renal vein for a period of less than three months, and subsequently, retrieving the device from the subject's renal vein.
For some applications, placing the device at least partially within the subject's renal vein includes placing the device at least partially within the subject's renal vein for a period of less than one month, and subsequently, retrieving the device from the subject's renal vein.
For some applications, reducing the blood pressure within the renal vein includes treating the subject's condition, by reducing the blood pressure within the renal vein.
For some applications, treating the subject's condition includes reducing activation of a neurohormonal pathway of the subject, by reducing the blood pressure within the renal vein.
For some applications, placing the device in the subject's renal vein includes placing a valve in the subject's renal vein.
For some applications, placing the valve at least partially within the subject's renal vein, includes placing at least partially within the subject's renal vein a valve that includes valve leaflets, such that in an open state of the valve, the valve leaflets allow generally unimpeded antegrade blood flow therethrough.
For some applications, placing the valve in the subject's renal vein includes reducing compression of the renal vein resulting from intra-abdominal pressure that is exerted on the renal vein, relative to a level of compression of the renal vein resulting from intra-abdominal pressure that is exerted on the renal vein in an absence of the valve.
For some applications, placing the valve at least partially within the renal vein includes forming a bulged portion within the subject's renal vein by placing at least partially within the renal vein a valve that includes:
For some applications, placing the valve at least partially within the renal vein includes forming a bulged portion within the subject's renal vein by placing at least partially within the renal vein a valve that includes:
For some applications, placing the valve at least partially within the renal vein includes placing at least partially within the renal vein a valve, the protruding portion of the valve being shaped to be disposed outside of radial projections of downstream edges of the valve leaflets, such that even when the valve leaflets are in open states thereof, the valve leaflets do not contact the protruding portion.
For some applications, placing the valve at least partially within the renal vein includes placing the valve at least partially within the renal vein, the valve leaflets of the valve being coupled to the frame downstream of the protruding portion, such that an upstream end of each of the valve leaflets is longitudinally spaced from a downstream end of the protruding portion.
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are couplable to one another, and placing the valve at least partially within the renal vein includes:
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are reversibly couplable to one another, and the method further includes:
For some applications, placing the valve at least partially within the renal vein includes placing at least partially within the renal vein a valve, the protruding portion of the valve diverging from the outer surface of the cylindrical portion of the valve at an angle of greater than 40 degrees with respect to the outer surface of downstream portion of the cylindrical portion.
For some applications, placing the valve at least partially within the renal vein includes placing at least partially within the renal vein a valve, the protruding portion of the valve diverging from the outer surface of the cylindrical portion of the valve at an angle of greater than 50 degrees with respect to the outer surface of downstream portion of the cylindrical portion.
For some applications, placing the valve at least partially within the renal vein includes placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the bulged portion.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the bulged portion includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to reduce stagnation of blood in the vicinity of the leaflets.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the bulged portion includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to open in response to antegrade blood flow in the vicinity of the leaflets.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the bulged portion includes placing bases of the leaflets in a vicinity of a region of the bulged portion at which a cross sectional area of the bulged portion is at a maximum value thereof.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the bulged portion includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to close in response to antegrade blood flow in the vicinity of the leaflets.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the bulged portion includes placing bases of the leaflets in a widening region of the bulged portion.
For some applications, placing the valve at least partially within the renal vein includes deforming at least a portion of a junction between the renal vein and a vena cava of the subject, by placing the valve at least partially within the renal vein such that a portion of the valve is disposed in a vicinity of the junction, the portion of the valve being shaped such as to deform the portion of the junction.
For some applications, the valve includes valve leaflets, and placing the valve at least partially within the renal vein includes placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the cavity at the portion of the junction.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the cavity at the portion of the junction includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to open in response to antegrade blood flow in the vicinity of the leaflets.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the cavity at the portion of the junction includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to reduce stagnation of blood in the vicinity of the leaflets.
For some applications, placing the valve at least partially within the renal vein such that the valve leaflets are disposed within the cavity at the portion of the junction includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to close in response to antegrade blood flow in the vicinity of the leaflets.
For some applications,
For some applications, the valve includes a valve, the at least one protruding portion of which diverges radially from the outer surface of the cylindrical portion, such that a separation between the protruding portion and the outer surface of the cylindrical portion is greater at a downstream end of the protruding portion than at an upstream end of the protruding portion, and deforming at least the portion of the junction includes deforming the portion of the junction with the at least one protruding portion.
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are couplable to one another, and placing the valve at least partially within the renal vein includes:
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are reversibly couplable to one another, and the method further includes:
There is further provided, in accordance with some applications of the present invention, a method including:
For some applications,
For some applications, the valve includes valve leaflets, and placing the valve within the first vein includes placing the valve within the first vein such that the valve leaflets are disposed within the cavity at the portion of the junction.
For some applications, placing the valve within the first vein such that the valve leaflets are disposed within the cavity at the portion of the junction includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to open in response to antegrade blood flow in the vicinity of the leaflets.
For some applications, placing the valve within the first vein such that the valve leaflets are disposed within the cavity at the portion of the junction includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to reduce stagnation of blood in the vicinity of the leaflets.
For some applications, placing the valve within the first vein such that the valve leaflets are disposed within the cavity at the portion of the junction includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to close in response to antegrade blood flow in the vicinity of the leaflets.
For some applications,
For some applications, the valve includes a valve, the at least one protruding portion of which diverges radially from the outer surface of the cylindrical portion, such that a separation between the protruding portion and the outer surface of the cylindrical portion is greater at a downstream end of the protruding portion than at an upstream end of the protruding portion, and deforming at least the portion of the junction includes deforming the portion of the junction with the at least one protruding portion.
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are couplable to one another, and placing the valve within the first vein includes:
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are reversibly couplable to one another, and the method further includes:
There is further provided, in accordance with some applications of the present invention, apparatus for use with a blood vessel, including:
For some applications, the cylindrical portion and the protruding portion are reversibly couplable to one another.
There is further provided, in accordance with some applications of the present invention, apparatus for use with a blood vessel, including:
For some applications, the cylindrical portion and the protruding portion are reversibly couplable to one another.
For some applications, the protruding portion diverges from the outer surface of the cylindrical portion at an angle of greater than 50 degrees with respect to the outer surface of downstream portion of the cylindrical portion.
There is further provided, in accordance with some applications of the present invention, a method including:
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are couplable to one another, and placing the valve within the vein includes:
For some applications, the valve includes a valve, the cylindrical portion and the protruding portion of which are reversibly couplable to one another, and the method further includes:
For some applications, placing the valve within the vein includes placing the valve within the vein such that the valve leaflets are disposed within the bulged portion.
For some applications, placing the valve within the vein such that the valve leaflets are disposed within the bulged portion includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to reduce stagnation of blood in the vicinity of the leaflets.
For some applications, placing the valve within the vein such that the valve leaflets are disposed within the bulged portion includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to open in response to antegrade blood flow in the vicinity of the leaflets.
For some applications, placing the valve within the vein such that the valve leaflets are disposed within the bulged portion includes placing bases of the leaflets in a vicinity of a region of the bulged portion at which a cross sectional area of the bulged portion is at a maximum value thereof.
For some applications, placing the valve within the vein such that the valve leaflets are disposed within the bulged portion includes generating fluid flow dynamics in a vicinity of the leaflets that are such as to cause the leaflets to close in response to antegrade blood flow in the vicinity of the leaflets.
For some applications, placing the valve within the vein such that the valve leaflets are disposed within the bulged portion includes placing bases of the leaflets in a widening region of the bulged portion.
There is further provided, in accordance with some applications of the present invention, a method including:
For some applications, identifying the subject as suffering from the condition includes identifying the subject as suffering from a condition selected from the group consisting of: cardiac dysfunction, and congestive heart failure.
There is further provided, in accordance with some applications of the present invention, apparatus for use with a blood vessel, including:
There is further provided, in accordance with some applications of the present invention, a method for use with renal veins and a vena cava of a subject, the method including:
For some applications, placing the nozzle inside the vena cava includes placing the nozzle inside the vena cava at a location that is upstream of junctions of the vena cava with the subject's renal veins, the method further including placing a valve inside the subject's vena cava at a location that is downstream of the junctions of the vena cava with the subject's renal veins.
There is further provided, in accordance with some applications of the present invention, apparatus for use with renal veins and a vena cava of a subject, the apparatus including:
For some applications, the valve frame includes a central portion that is configured to be placed inside the vena cava and side branches that branch from the central portion and that are configured to be placed at least partially inside respective renal veins, and the valve leaflets are coupled to the side branches.
For some applications, the valve leaflets are coupled to the valve frame such that when the valve frame is placed at least partially inside the vena cava, the valve leaflets are disposed inside the vena cava in the vicinities of the ostia of the junctions between the vena cava and the renal veins.
For some applications, the valve leaflets are coupled to the valve frame such that when the valve frame is placed at least partially inside the vena cava, the valve leaflets are disposed inside the renal veins in the vicinities of the ostia of the junctions between the vena cava and the renal veins.
There is further provided, in accordance with some applications of the present invention, a method for use with renal veins and a vena cava of a subject, the method including:
For some applications,
For some applications, placing the valve frame at least partially inside the subject's vena cava includes placing the valve frame at least partially inside the subject's vena cava such that the valve leaflets are disposed inside the vena cava in the vicinities of the ostia of the junctions between the vena cava and the renal veins.
For some applications, placing the valve frame at least partially inside the subject's vena cava includes placing the valve frame at least partially inside the subject's vena cava such that the valve leaflets are disposed inside the renal veins in the vicinities of the ostia of the junctions between the vena cava and the renal veins.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
The inventor of the present application hypothesizes that by reducing pressure at the kidneys, placement of a valve inside a renal vein, causes an improvement of renal function and/or prevention or a reduction in deterioration of the subject's renal function. Typically, placement of a valve inside a renal vein reduces renal venous and interstitial pressure, thereby causing a decrease in parenchymal ischemia and injury, and/or an increase in renal blood flow, glomerular filtration rate, and/or in erythropoetin production. For some applications, placement of a valve inside a renal vein improves the subject's cardiac function, e.g., by reducing afterload. For some applications, placement of a valve inside a renal vein improves the subject's renal function and/or cardiac function, e.g., by causing improved renal salt and water excretion, by suppressing renin-angiotensin-aldosterone system (RAAS) activation, by suppressing arginine-vasopressin system activation, and/or by suppressing the sympathetic nervous system. For some applications, placement of a valve inside a renal vein treats anemia of the subject, by improving the subject's renal function.
Valve 34 is typically placed inside one or both of the subject's renal veins in order to provide acute treatment to a subject suffering from cardiac dysfunction, congestive heart failure, low renal blood flow, high renal vascular resistance, arterial hypertension, and/or kidney dysfunction. In accordance with respective applications, valve 34 is permanently implanted in left and/or right renal vein 32 or is temporarily (e.g., retrievably) placed within the renal vein. For example, the valve may be placed in a renal vein for a period of more than 12 hours (e.g., more than 24 hours), and/or less than three months (e.g., less than one month), during which the subject is undergoing an acute episode of heart failure, and subsequently, the valve may be retrieved from the renal vein. Or, valve 34 may be permanently implanted in left and/or right renal vein 32 in order to provide chronic treatment to a subject suffering from cardiac dysfunction, congestive heart failure, low renal blood flow, high renal vascular resistance, arterial hypertension, and/or kidney dysfunction. For some applications, a course of treatment is applied to a subject over several weeks, several months, or several years, in which the valves are intermittently placed inside the subject's left and/or right renal vein, and the subject is intermittently treated in accordance with the techniques described herein. For example, the subject may be intermittently treated at intervals of several days, several weeks, or several months.
Typically, valve 34 is placed inside one or both of the subject's renal veins in order to provide treatment to a subject suffering from elevated central venous pressure relative to central venous pressure of a healthy subject. The valve is configured to reduce the subject's renal venous pressure relative the subject's elevated central venous pressure. For some applications, the valve is placed inside the renal vein of a subject in response to the subject's renal venous pressure being elevated relative to that of a healthy subject, the subject's elevated renal venous pressure being substantially due to the subject suffering from elevated central venous pressure. For some applications, the valve is placed in the subject's renal vein in response to the subject's central venous pressure being elevated relative to that of a healthy subject, even though the subject is not suffering from a condition that causes renal venous pressure to be elevated due to pressure being exerted on the renal vein through the walls of the renal vein from a location outside the renal vein (e.g., as in the case of a subject suffering from nutcracker syndrome). For some applications, the valve is placed inside the renal vein of a subject in response to the subject's central venous pressure being elevated relative to that of a healthy subject and even though the subject is not suffering from tricuspid valve regurgitation. The valve is typically configured to be placed in the subject's renal vein in order to treat the subject, even in the absence of any other device being placed outside the subject's venous system and within the subject's abdomen (e.g., around the outside of the subject's renal vein).
Reference is now made to
It is noted that for some applications, a valve is placed in only one of the left or the right renal veins. For some applications, more than one valve is placed in one or both of the left and right renal veins. For example, a first valve may be placed in the main branch of the renal vein that is a direct tributary of the vena cava, and a second valve may be placed in an upstream branch of the renal vein that is closer to the kidney, and is a tributary of the main renal vein. For some applications, three or more valves are placed in respective renal veins of a subject who has multiple renal veins.
Typically, the valve that is placed in the renal vein includes a frame 31 (e.g., a frame that is made of nitinol, stainless steel, cobalt chromium, platinum iridium (or other non-absorbable metals), magnesium (or other absorbable metals), a polymer, and/or a different material). Further typically, the valve includes prosthetic valve leaflets 33 (e.g., leaflets made from complete or partial venous valves harvested from calves, pigs, sheep, horses, marsupials, or other animals; leaflets made from pericardial tissue, from small intestinal submucosa from pigs or other animals, and/or from a synthetic material, such as polyester, polyurethane, any other polymer, and/or any thin and flexible material (e.g. material generated by electrospinning, or sputter deposition, including thin-film nitinol leaflets)). Still further typically, the valve includes sealing material 35, which is coupled to (e.g., sutured to) the valve frame, and that seals the valve frame with respect to the walls of the renal vein. For some applications, a similar material is used for sealing material 35 as is used for prosthetic valve leaflets 33. The frame supports the prosthetic valve leaflets, e.g., by the prosthetic valve leaflets being sutured to the frame. Typically, the valve frame is a non-branched valve frame. For example, the frame may define a generally cylindrical portion thereof, the frame not defining additional cylindrical portions that branch from the generally cylindrical portion. Thus, typically, the valve frame defines a single longitudinal axis thereof, the longitudinal axis being a generally straight line along a full length of the frame.
Typically, the prosthetic valve is configured such that the valve leaflets close in response to pressure within the vena cava being greater than a threshold pressure, and/or in response to retrograde blood flow through the renal veins exerting pressure on the downstream sides of the prosthetic valve leaflets. In the closed state of the valve, the valve leaflets, in a passive manner (i.e., without requiring external energy to be supplied to the device (e.g., from a power supply or a battery)), reduce venous pressure within the renal vein relative to central venous pressure of the subject.
Typically, the prosthetic valve is configured such that the valve leaflets open in response to antegrade blood flow through the renal vein, from the kidney to the vena cava, exerting pressure on the upstream sides of the prosthetic valve leaflets. Further typically, the valve leaflets are configured to open in response to a pressure of less than 6 mmHg (e.g., less than 3 mmHg) being exerted on the upstream sides of the prosthetic valve leaflets. For some applications, the valve leaflets are configured to open in response to antegrade blood flow through the vena cava, due to the fluid flow dynamics of the antegrade blood flow in the vicinity of the downstream sides of the prosthetic valve leaflets. In the open state of the valve, the valve leaflets typically allow generally unimpeded antegrade blood flow therethrough. For some applications, the prosthetic valve frame is shaped such as to deform a shape of a vessel wall in the vicinity the downstream sides of the prosthetic valve leaflets, such as to enhance the aforementioned fluid flow dynamics, as described in further detail hereinbelow.
It is noted that, when used in the present application to refer to locations within a subject's veins, the term “upstream” is used to denote a location that is further from the subject's right atrium, and the term “downstream” is used to refer to a location that is closer the subject's right atrium. Thus, blood typically flows from upstream locations to downstream locations. When used in the present application to refer to a portion of a device, the term “upstream” is used to denote an end or side of the device (or a portion thereof) which, subsequent to the device being deployed, will typically be at an upstream location within the vein relative to another end or side of the device. When used in the present application to refer to a portion of a device, the term “downstream” is used to denote an end or side of the device (or a portion thereof) which, subsequent to the device being deployed, will typically be at a downstream location within the vein relative to another end or side of the device.
Typically, a valve (e.g., valve 34) is placed inside renal vein 32, such that the valve leaflets are disposed inside the renal vein. Alternatively, a valve is placed within the subject's vena cava such that valve leaflets are disposed in the vicinity of the ostium at the junction of the renal vein with the vena cava. For example, a valve frame may be anchored to the vena cava with the valve leaflets coupled to the valve frame, such that the valve leaflets are disposed in the vicinity of the ostium at the junction of the renal vein with the vena cava, e.g., as described hereinbelow with reference to valves 110 and 120, shown in
For some applications, as an alternative to, or in addition to, placing a valve (e.g. valve 34) in renal vein 32 or placing a valve such as valve 110 or valve 120 in the vena cava, a prosthetic valve is placed in inferior vena cava 28, valve leaflets of the valve being configured such that the valve leaflets (a) open in response to antegrade blood flow through the vena cava from a location within the vena cava that is upstream of the valve leaflets to a location within the vena cava that is downstream of the valve leaflets, and (b) close in response to retrograde blood flow through the vena cava from a location within the vena cava that is downstream of the valve leaflets to a location within the vena cava that is upstream of the valve leaflets. For example, valve 100 described hereinbelow with reference to
It is noted that placing the valve in the inferior vena cava in the above-described manner (e.g., as described with reference to
It is further noted that, by placing the valve in the renal vein, or inside the vena cava, such that the valve leaflets are disposed in the vicinity of the ostium of the junction of the renal vein with the vena cava, retrograde blood flow to the kidney may be reduced by the valve even during exercise, and/or other physical activity of the subject's body, during which there is typically increased flow and pressure in the inferior vena cava that is generated by venous return from veins of the subject's legs. By contrast, a valve placed in the inferior vena cava such that the valve leaflets (a) open in response to antegrade blood flow through the vena cava from a location within the vena cava that is upstream of the valve leaflets to a location within the vena cava that is downstream of the valve leaflets, and (b) close in response to retrograde blood flow through the vena cava from a location within the vena cava that is downstream of the valve leaflets to a location within the vena cava that is upstream of the valve leaflets, may not reduce pressure in the renal vein during exercise, and/or other physical activity of the subject's body, during which there is typically increased flow and pressure in the inferior vena cava that is generated by venous return from veins of the subject's legs. This is because, under such circumstances, a valve that is implanted in the inferior vena cava, and the leaflets of which are configured as described, will typically remain open in response to the increased flow and pressure at the inferior vena cava.
Furthermore, if a valve is placed in the inferior vena cava downstream of the junction that the renal vein makes with the inferior vena cava and such that the valve leaflets (a) open in response to antegrade blood flow through the vena cava from a location within the vena cava that is upstream of the valve leaflets to a location within the vena cava that is downstream of the valve leaflets, and (b) close in response to retrograde blood flow through the vena cava from a location within the vena cava that is downstream of the valve leaflets to a location within the vena cava that is upstream of the valve leaflets (e.g., valve 100 shown in
Reference is now made to
Typically, valve 34A includes a frame 41 (e.g., a frame that is made of nitinol, stainless steel, cobalt chromium, platinum iridium (or other non-absorbable metals), magnesium (or other absorbable metals), a polymer, and/or a different material). Further typically, the valve includes prosthetic valve leaflets 43 (e.g., leaflets made from complete or partial venous valves harvested from calves, pigs, sheep, horses, marsupials, or other animals; leaflets made from pericardial tissue, from small intestinal submucosa from pigs or other animals, and/or from a synthetic material, such as polyester, polyurethane, any other polymer, and/or any thin and flexible material (e.g. material generated by electrospinning, or sputter deposition, including thin-film nitinol leaflets)). Still further typically, the valve includes sealing material 45, which is coupled to (e.g., sutured to) the valve frame, and that seals the valve frame with respect to the walls of the renal vein. For some applications, a similar material is used for sealing material 45 as is used for prosthetic valve leaflets 43. The frame supports the prosthetic valve leaflets, e.g., by the prosthetic valve leaflets being sutured to the frame.
For some applications, valve frame 41 is shaped to define a generally cylindrical portion 44, the prosthetic valve leaflets being coupled to a downstream portion of the generally cylindrical portion. At least one protruding portion 46 protrudes radially from the generally cylindrical portion of the valve frame. Typically the protruding portion diverges radially from the outer surface of the cylindrical portion of the valve frame, such that the separation between the protruding portion and the outer surface of the cylindrical portion of the frame is greater at the downstream end of the protruding portion than at the upstream end of the protruding portion.
For some applications, the prosthetic valve is placed at junction 40, such that protruding portion 46 deforms at least a portion of the junction, such as to form a cavity 42 at the junction. Typically, the prosthetic valve leaflets are coupled to the valve frame such that the valve leaflets are disposed at least partially (and typically, fully) downstream of the downstream end of the protruding portion. Thus, when the valve is placed at junction 40, the valve leaflets are typically disposed within the cavity that is formed at the junction by the protruding portion. Typically, the valve frame is shaped such that, when the valve is placed at junction 40, the protruding portion forms a cavity that generates blood flow at the valve leaflets that is such as to prevent blood from stagnating in the vicinity of the valve leaflets.
For some applications, the valve frame is shaped such that, when the valve is placed at junction 40, the protruding portion forms a cavity that is such as to cause blood flow in the vicinity of the downstream side of the valve leaflets to exert pressure on the valve leaflets, such that the valve leaflets close, or move closer together to facilitate closing. Alternatively, the valve frame is shaped such that, when the valve is placed at junction 40, the protruding portion forms a cavity that is such as to cause antegrade blood flow to accelerate in the vicinity of the downstream side of the valve leaflets, thereby causing (or enhancing) opening of the leaflets.
For some applications, valve frame 41 defines a single protruding portion 46. For some applications, the single protruding portion is disposed around the full circumference of the valve frame. Alternatively, the valve frame defines two or more (e.g., two, three, or four) protruding portions that protrude from generally cylindrical portion 44 of the valve frame. As shown in
For some applications, valve frame 41 defines generally cylindrical portion 44, and at least one protruding portion 46 (e.g., a plurality of protruding portions), the generally cylindrical portion and the protruding portion being reversibly couplable to one another. Typically, the valve leaflets are coupled to the generally cylindrical portion, as described hereinabove. The at least one protruding portion is couplable to the cylindrical portion such that when the protruding portion is coupled to the cylindrical portion, the protruding portion protrudes radially from the cylindrical portion, as described hereinabove. For some applications, the protruding portion is implanted within the renal vein separately from the cylindrical portion. For example, the protruding portion may first be placed in the renal vein, and, subsequently, the cylindrical portion may be placed within the renal vein and coupled to the protruding portion.
For some applications of the invention, the valve leaflets of the prosthetic valve are replaced, subsequent to the valve having been placed in the subject's renal vein (e.g., in the event of fatigue of the valve leaflets). In order to replace the prosthetic valve leaflets, the cylindrical portion of the valve frame is decoupled from the protruding portion of the valve frame. The cylindrical portion is removed from the subject's body, and the protruding portion is left inside the subject's vein. Subsequently, a replacement cylindrical portion (or the same cylindrical portion with new prosthetic leaflets coupled thereto) is placed inside the renal vein and coupled to the protruding portion.
For some applications, valve frame 41 defines generally cylindrical portion 44, and at least one protruding portion 46 (e.g., a plurality of protruding portions), the cylindrical portion and the protruding portion being irreversibly coupled to one another, and/or being formed as a single integrated structure.
As described hereinbelow with reference to valve 34C (shown in
Alternatively, prosthetic valve leaflets 43 of valve 34A may be coupled to valve frame 41 such that an upstream end of each of the prosthetic valve leaflets is upstream of at least a portion of the at least one protruding portion 46. For some applications, protruding portions 46 are shaped and/or sized to be disposed outside of radial projections of downstream edges of the valve leaflets, such that when the prosthetic valve leaflets are fully opened, the leaflets do not impact any rigid or partially rigid portions of the protruding portions. For example, as shown in
Reference is now made to
Typically, frame 11 of valve 34B includes a relatively narrow portion 13 thereof to which valve leaflets 14 are coupled. Further typically, a sealing material 15 is coupled to the narrow portion of the valve frame, the sealing material being configured to seal the valve frame with respect to the walls of the renal vein. The valve leaflets and the sealing material are generally as described hereinabove. Bulging portion 12 of frame 11 of valve 34B is typically disposed downstream with respect to the narrow portion of the valve frame and is bulged with respect to the narrow portion. Bulging portion 12 is configured to form a cavity at the junction such that the valve leaflets are disposed inside the cavity.
Typically, valve frame 11 of valve 34B is shaped such that, when the valve is placed at junction 40, bulging portion 12 of frame 11 forms a cavity 42 that generates blood flow at the valve leaflets that is such as to prevent blood from stagnating in the vicinity of the valve leaflets. For some applications, the valve frame is shaped such that, when the valve is placed at junction 40, the bulging portion forms a cavity that is such as to cause blood flow in the vicinity of the downstream side of the valve leaflets to exert pressure on the valve leaflets, such that the valve leaflets close, or move closer together to facilitate closing. Alternatively, the valve frame is shaped such that, when the valve is placed at junction 40, the bulging portion forms a cavity that is such as to cause antegrade blood flow to accelerate in the vicinity of the downstream side of the valve leaflets, thereby causing (or enhancing) opening of the leaflets.
For some applications, valve 34B is configured to be retrieved from the renal vein, subsequent to being placed inside the renal vein. For some applications, valve 34B is retrieved by pulling the bulging portion 12 of frame 11, such as to cause the bulging portion to radially constrict.
Reference is now made to
Typically, valve 34C includes a frame 50 (e.g., a frame that is made of nitinol, stainless steel, cobalt chromium, platinum iridium (or other non-absorbable metals), magnesium (or other absorbable metals), a polymer, and/or a different material). Further typically, the valve includes prosthetic valve leaflets 54 (e.g., leaflets made from complete or partial venous valves harvested from calves, pigs, sheep, horses, marsupials, or other animals; leaflets made from pericardial tissue, from small intestinal submucosa from pigs or other animals, and/or from a synthetic material, such as polyester, polyurethane, any other polymer, and/or any thin and flexible material (e.g. material generated by electrospinning, or sputter deposition, including thin-film nitinol leaflets)). Still further typically, the valve includes sealing material 55, which is coupled to (e.g., sutured to) the valve frame, and that seals the valve frame with respect to the walls of the renal vein. For some applications, a similar material is used for sealing material 55 as is used for prosthetic valve leaflets 54. The frame supports the prosthetic valve leaflets, e.g., by the prosthetic valve leaflets being sutured to the frame. For some applications, the frame is shaped to define a generally cylindrical portion 56, the prosthetic valve leaflets being coupled to a downstream portion of the generally cylindrical portion. Valve 34C, as shown in
For some applications, the prosthetic valve is placed within a renal vein (e.g. within the main branch of the left renal vein, as shown), such that protruding portion 58 deforms at least a portion of the renal vein, such as to form bulged portion 52 within the renal vein. Typically, the prosthetic valve leaflets are coupled to the valve frame such that the valve leaflets are disposed at least partially (and typically, fully) downstream of the downstream end of the protruding portion. Thus, when the valve is placed within the renal vein, the valve leaflets are typically disposed within the bulged portion of the renal vein that is formed by the protruding portion. Typically, the valve frame is shaped such that, when the valve is placed within the renal vein, the protruding portion forms a bulged portion of the renal vein that generates blood flow at the valve leaflets that is such as to prevent blood from stagnating in the vicinity of the valve leaflets.
For some applications, the valve frame is shaped such that, when the valve is placed within the renal vein, the protruding portion forms a bulged portion of the renal vein that is such as to cause blood flow in the vicinity of the downstream side of the valve leaflets to exert pressure on the valve leaflets, such that the valve leaflets close, or move closer together to facilitate closing. For some applications, valve 34C is configured as shown in
For some applications, the bulged portion of the renal vein is such as to generate blood flow at the valve leaflets that is such as to prevent blood from stagnating in the vicinity of the valve leaflets.
Typically, prosthetic valve leaflets 54 are coupled to valve frame 50 such that an upstream end 60 of each of the prosthetic valve leaflets is longitudinally spaced from a downstream end 62 of the at least one protruding portion 58. This is shown in
Alternatively, prosthetic valve leaflets 54 of valve 34C may be coupled to valve frame 50 such that an upstream end of each of the prosthetic valve leaflets is upstream of at least a portion of the at least one protruding portion 58. For some applications, protruding portions 58 are shaped and/or sized to be disposed outside of radial projections of downstream edges of the valve leaflets, such that when the prosthetic valve leaflets are fully opened, the leaflets do not impact any rigid or partially rigid portions of the protruding portions. For example, as shown in
For some applications, valve frame 50 defines a single protruding portion 58. For some applications, a single protruding portion is disposed around the full circumference of the valve frame. Alternatively, the valve frame defines two or more (e.g., two, three, or four) protruding portions that protrude from generally cylindrical portion 56 of the valve frame. Typically, the valve includes the same number of protruding portions as valve leaflets. For example, valve 34C as shown in
For some applications, valve frame 50 defines generally cylindrical portion 56, and at least one protruding portion 58 (e.g., a plurality of protruding portions), the generally cylindrical portion and the protruding portion being reversibly couplable to one another. Typically, the valve leaflets are coupled to the generally cylindrical portion, as described hereinabove. The at least one protruding portion is couplable to the cylindrical portion such that when the protruding portion is coupled to the cylindrical portion, the protruding portion protrudes radially from the cylindrical portion, as described hereinabove. For some applications, the protruding portion is implanted within the renal vein separately from the cylindrical portion. For example, the protruding portion may first be placed in the renal vein, and, subsequently, the cylindrical portion may be placed within the renal vein and coupled to the protruding portion.
For some applications of the invention, the valve leaflets of the prosthetic valve are replaced, subsequent to the valve having been placed in the subject's renal vein (e.g., in the event of fatigue of the valve leaflets). In order to replace the prosthetic valve leaflets, the cylindrical portion of the valve frame is decoupled from the protruding portion of the valve frame. The cylindrical portion is removed from the subject's body, and the protruding portion is left inside the subject's renal vein. Subsequently, a replacement cylindrical portion (or the same cylindrical portion with new prosthetic leaflets coupled thereto) is placed inside the renal vein and coupled to the protruding portion.
For some applications, valve frame 50 defines generally cylindrical portion 56, and at least one protruding portion 58 (e.g., a plurality of protruding portions), the cylindrical portion and the protruding portion being irreversibly coupled to one another, and/or being formed as a single integrated structure.
Reference is now made to
Typically, frame 64 of valve 34D includes a relatively narrow portion 68 thereof to which valve leaflets 66 are coupled. Further typically, a sealing material 69 is coupled to the narrow portion of the valve frame, the sealing material being configured to seal the valve frame with respect to the walls of the renal vein. The valve leaflets and the sealing material are generally as described hereinabove. Bulging portion 67 of frame 64 of valve 34D is typically disposed downstream with respect to the narrow portion of the valve frame and is bulged with respect to the narrow portion. Bulging portion 67 causes the renal vein to form a bulged portion, such that the valve leaflets are disposed inside the bulged portion. For some applications, the bulged portion is such as to cause vortex flow within the bulged portion, which exerts pressure on the downstream sides of the valve leaflets, such that the valve leaflets close. Alternatively or additionally, the bulged portion of the renal vein that is such as to cause antegrade blood flow to accelerate in the vicinity of the downstream side of the valve leaflets, thereby causing (or enhancing) opening of the leaflets. Further alternatively or additionally, the bulged portion of the renal vein is such as to generate blood flow at the valve leaflets that is such as to prevent blood from stagnating in the vicinity of the valve leaflets.
For some applications, frame 64 of valve 34D ends in the vicinity of the upstream ends of valve leaflets 66, as shown in
For some applications, valve 34D is configured to be retrieved from the renal vein, subsequent to being placed inside the renal vein. For some applications, valve 34D is retrieved by pulling the bulging portion 67 of frame 64, such as to cause the bulging portion to radially constrict.
Reference is now made to
Reference is now made to
As shown, valve 34F is generally similar to valve 34A described hereinabove with reference to
For some applications, prosthetic valve 34F is configured to reduce retrograde blood flow to the subject's kidney via the renal vein and/or to reduce renal venous pressure such that renal venous pressure is lower than the subject's central venous pressure, in a generally similar manner to that described hereinabove. Valve frame 80 of the prosthetic valve is typically rigid or semi-rigid. For applications in which valve 34F is configured to be placed in the subject's left renal vein, the valve frame typically has a length L of more than 20 mm (e.g., more than 25 mm), and/or less than 95 mm (e.g., less than 90 mm). For some applications, a ratio of the length of the valve to a maximum radial span of the valve is greater than 1:1, e.g., greater than 4:1. For applications in which valve 34F is configured to be placed in the subject's right renal vein, the valve frame typically has a length of more than 6 mm (e.g., more than 8 mm), and/or less than 45 mm (e.g., less than 40 mm). In addition to supporting prosthetic valve leaflets 81 of the prosthetic valve, the valve frame is configured to support the renal vein and to reduce (e.g., to prevent) compression of the renal vein that would occur in the absence of the valve frame, due to intra-abdominal pressure of the subject.
In general, the scope of the present invention includes placing a stent or a valve frame inside a subject's renal vein such as to protect the renal vein from compression due to high intra-abdominal pressure, resulting from fluid accumulation within the abdomen. For some applications, a valve that includes valve leaflets and a valve frame is placed inside the renal vein such that (a) the valve leaflets reduce retrograde blood flow to the subject's kidney via the renal vein, and/or reduce renal venous pressure such that renal venous pressure is lower than the subject's central venous pressure, and (b) the valve frame protects the renal vein from compression due to high intra-abdominal pressure, resulting from fluid accumulation within the abdomen.
Reference is now made to
Subsequent to the coupling of the upstream end of valve 34 to the wall of renal vein 32, catheter 90 is retracted, such as to release the downstream end of the prosthetic valve. In response thereto, the downstream end of the valve typically self-expands, such as to contact the wall of the renal vein, e.g., such as to contact the wall of the renal vein at the junction of the renal vein with the vena cava, as shown in
It is noted that although the valve shown in
Reference is now made to
Valve 100 is coupled to the subject's vena cava at a location that is downstream of the junction of the vena cava with the left renal vein (and, typically, downstream of all of the junctions that the vena cava forms with the subject's renal veins). Valve 100 typically includes a valve frame 106, valve leaflets 107, and sealing material 108. The valve leaflets and the sealing material are coupled to the valve frame, and are typically generally similar to the valve leaflets and the sealing materials described hereinabove. The valve leaflets are configured to (a) open in response to antegrade blood flow through the vena cava from a location within the vena cava that is upstream of the valve leaflets to a location within the vena cava that is downstream of the valve leaflets, and (b) close in response to retrograde blood flow through the vena cava from a location within the vena cava that is downstream of the valve leaflets to a location within the vena cava that is upstream of the valve leaflets. Thus valve 100 is configured to prevent the renal veins from backflow and pressure of blood from the portion of the vena cava that is downstream of the renal veins.
Reference is now made to
Reference is now made to
It is noted that, although a prosthetic valve that defines a valve frame and prosthetic valve leaflets has been described as being used to reduce and/or prevent retrograde blood flow to a subject's kidney, and/or to reduce renal venous pressure relative to central venous pressure, for some applications, a different device is used to reduce and/or prevent retrograde blood flow to the subject's kidney, and/or to reduce renal venous pressure relative to central venous pressure. For some applications, an electronically-controlled valve or shutter is used, the valve or shutter being configured to be opened and closed in response to physiological signals of the subject that are detected using a sensor (e.g., an ECG sensor, and/or a blood pressure sensor). For some applications, an active micro-assist device, such as an Archimedes screw, is used to reduce and/or prevent retrograde blood flow to a subject's kidney, to reduce renal venous pressure relative to central venous pressure, and/or to promote antegrade blood flow from the renal vein to the vena cava. For some applications, a stent is placed in the renal vein such as to reduce pressure in the renal vein relative to pressure in the renal vein in the absence of the stent, by reducing compression of the subject's renal vein resulting from intra-abdominal pressure of the subject.
It is further noted that the scope of the present invention includes using a bi-leaflet valve, a tri-leaflet valve, or a valve having any number of leaflets for any of the valves described herein.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application is a continuation of U.S. Ser. No. 16/273,898 to Tuval (published as US 2019/0175340), filed Feb. 12, 2019, which is a division of U.S. Ser. No. 15/423,368 to Tuval (issued as U.S. Pat. No. 10,299,918), filed Feb. 2, 2017, which is a continuation of U.S. Ser. No. 14/405,144 to Tuval (issued as U.S. Pat. No. 9,597,205), filed Dec. 2, 2014, which is the US national phase application of PCT Application No. PCT/IL/2013/050495 to Tuval (published as WO 13/183060), filed Jun. 6, 2013, which claims priority from U.S. Provisional Patent Application 61/656,244 to Tuval, filed Jun. 6, 2012, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4822345 | Danforth | Apr 1989 | A |
4886506 | Lovgren et al. | Dec 1989 | A |
4919647 | Nash | Apr 1990 | A |
4954055 | Raible et al. | Sep 1990 | A |
5613935 | Jarvik | Mar 1997 | A |
5713730 | Nose et al. | Feb 1998 | A |
5749855 | Reitan | May 1998 | A |
5772693 | Brownlee | Jun 1998 | A |
5876385 | Ikari et al. | Mar 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
6086527 | Talpade | Jul 2000 | A |
6135729 | Aber | Oct 2000 | A |
6136025 | Barbut et al. | Oct 2000 | A |
6176848 | Rau et al. | Jan 2001 | B1 |
6183220 | Ohara et al. | Feb 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6533716 | Schmutz-Rode et al. | Mar 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6884210 | Nose et al. | Apr 2005 | B2 |
7004925 | Navia et al. | Feb 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7070555 | Siess | Jul 2006 | B2 |
7144364 | Barbut et al. | Dec 2006 | B2 |
7159593 | Mccarthy et al. | Jan 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7717952 | Case et al. | May 2010 | B2 |
7744642 | Rittgers et al. | Jun 2010 | B2 |
7762941 | Jarvik | Jul 2010 | B2 |
7766853 | Lane | Aug 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7766961 | Patel et al. | Aug 2010 | B2 |
7780628 | Keren et al. | Aug 2010 | B1 |
7811221 | Gross | Oct 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7914503 | Goodson et al. | Mar 2011 | B2 |
7927068 | Mcbride et al. | Apr 2011 | B2 |
8007254 | Larose et al. | Aug 2011 | B2 |
8012121 | Goodson et al. | Sep 2011 | B2 |
8079948 | Shifflette | Dec 2011 | B2 |
8221492 | Case et al. | Jul 2012 | B2 |
8235933 | Keren et al. | Aug 2012 | B2 |
8277470 | Demarais et al. | Oct 2012 | B2 |
8376707 | Mcbride et al. | Feb 2013 | B2 |
8449443 | Rodefeld et al. | May 2013 | B2 |
8512262 | Gertner | Aug 2013 | B2 |
8538535 | Ariav et al. | Sep 2013 | B2 |
8579858 | Reitan et al. | Nov 2013 | B2 |
8617239 | Reitan | Dec 2013 | B2 |
8684904 | Campbell et al. | Apr 2014 | B2 |
8690749 | Nunez | Apr 2014 | B1 |
8721516 | Scheckel | May 2014 | B2 |
8721517 | Zeng et al. | May 2014 | B2 |
8727959 | Reitan et al. | May 2014 | B2 |
8734331 | Evans et al. | May 2014 | B2 |
8734508 | Hastings et al. | May 2014 | B2 |
8777832 | Wang et al. | Jul 2014 | B1 |
8849398 | Evans | Sep 2014 | B2 |
8992163 | Mcbride et al. | Mar 2015 | B2 |
9028216 | Schumacher et al. | May 2015 | B2 |
9067006 | Toellner | Jun 2015 | B2 |
9089634 | Schumacher et al. | Jul 2015 | B2 |
9138518 | Campbell et al. | Sep 2015 | B2 |
9162017 | Evans et al. | Oct 2015 | B2 |
9217442 | Wiessler et al. | Dec 2015 | B2 |
9314558 | Er | Apr 2016 | B2 |
9327067 | Zeng et al. | May 2016 | B2 |
9339596 | Roehn | May 2016 | B2 |
9358329 | Fitzgerald et al. | Jun 2016 | B2 |
9393384 | Kapur et al. | Jul 2016 | B1 |
9402942 | Hastie et al. | Aug 2016 | B2 |
9416783 | Schumacher et al. | Aug 2016 | B2 |
9572915 | Heuring et al. | Feb 2017 | B2 |
9597205 | Tuval | Mar 2017 | B2 |
9675740 | Zeng et al. | Jun 2017 | B2 |
9750860 | Schumacher | Sep 2017 | B2 |
9750861 | Hastie et al. | Sep 2017 | B2 |
9764113 | Tuval et al. | Sep 2017 | B2 |
9771801 | Schumacher et al. | Sep 2017 | B2 |
9895475 | Toellner et al. | Feb 2018 | B2 |
9903384 | Roehn | Feb 2018 | B2 |
9907891 | Wiessler et al. | Mar 2018 | B2 |
9913937 | Schwammenthal et al. | Mar 2018 | B2 |
9964115 | Scheckel | May 2018 | B2 |
10039874 | Schwammenthal et al. | Aug 2018 | B2 |
10052419 | Er | Aug 2018 | B2 |
10107299 | Scheckel | Oct 2018 | B2 |
10172985 | Simon et al. | Jan 2019 | B2 |
10179197 | Kaiser et al. | Jan 2019 | B2 |
10196899 | Toellner et al. | Feb 2019 | B2 |
10207037 | Corbett et al. | Feb 2019 | B2 |
10208763 | Schumacher et al. | Feb 2019 | B2 |
10215187 | Mcbride et al. | Feb 2019 | B2 |
10231838 | Chin et al. | Mar 2019 | B2 |
10245363 | Rowe | Apr 2019 | B1 |
10299918 | Tuval | May 2019 | B2 |
10342904 | Schumacher | Jul 2019 | B2 |
10342906 | D'Ambrosio et al. | Jul 2019 | B2 |
10413646 | Wiessler et al. | Sep 2019 | B2 |
10478538 | Scheckel et al. | Nov 2019 | B2 |
10478539 | Pfeffer et al. | Nov 2019 | B2 |
10495101 | Scheckel | Dec 2019 | B2 |
10557475 | Roehn | Feb 2020 | B2 |
10583231 | Schwammenthal et al. | Mar 2020 | B2 |
10584589 | Schumacher et al. | Mar 2020 | B2 |
10589012 | Toellner et al. | Mar 2020 | B2 |
10617808 | Hastie et al. | Apr 2020 | B2 |
10662967 | Scheckel | May 2020 | B2 |
10669855 | Toellner et al. | Jun 2020 | B2 |
10765789 | Zeng et al. | Sep 2020 | B2 |
10792406 | Roehn et al. | Oct 2020 | B2 |
10799624 | Pfeffer et al. | Oct 2020 | B2 |
10799626 | Siess et al. | Oct 2020 | B2 |
10801511 | Siess et al. | Oct 2020 | B2 |
10806838 | Er | Oct 2020 | B2 |
10835653 | Liebing | Nov 2020 | B2 |
10857272 | Liebing | Dec 2020 | B2 |
10864309 | Mcbride et al. | Dec 2020 | B2 |
10865801 | Mcbride et al. | Dec 2020 | B2 |
10874783 | Pfeffer et al. | Dec 2020 | B2 |
10881845 | Siess et al. | Jan 2021 | B2 |
10894115 | Pfeffer et al. | Jan 2021 | B2 |
10898629 | Siess et al. | Jan 2021 | B2 |
10907646 | Bredenbreuker et al. | Feb 2021 | B2 |
10920596 | Toellner et al. | Feb 2021 | B2 |
10926013 | Schumacher et al. | Feb 2021 | B2 |
10935038 | Siess | Mar 2021 | B2 |
10980927 | Pfeffer et al. | Apr 2021 | B2 |
11007350 | Tao et al. | May 2021 | B2 |
11020584 | Siess et al. | Jun 2021 | B2 |
11027114 | D'Ambrosio et al. | Jun 2021 | B2 |
11033727 | Tuval et al. | Jun 2021 | B2 |
11033729 | Scheckel et al. | Jun 2021 | B2 |
11040187 | Wiessler et al. | Jun 2021 | B2 |
RE48649 | Siess | Jul 2021 | E |
11116960 | Simon et al. | Sep 2021 | B2 |
11123539 | Pfeffer et al. | Sep 2021 | B2 |
11129978 | Pfeffer et al. | Sep 2021 | B2 |
11167124 | Pfeffer et al. | Nov 2021 | B2 |
11168705 | Liebing | Nov 2021 | B2 |
11197690 | Fantuzzi et al. | Dec 2021 | B2 |
11219755 | Siess et al. | Jan 2022 | B2 |
11229786 | Zeng et al. | Jan 2022 | B2 |
11253692 | Schumacher | Feb 2022 | B2 |
11253693 | Pfeffer et al. | Feb 2022 | B2 |
11260215 | Scheckel et al. | Mar 2022 | B2 |
11266824 | Er | Mar 2022 | B2 |
11268521 | Toellner | Mar 2022 | B2 |
11273301 | Pfeffer et al. | Mar 2022 | B2 |
11278711 | Liebing | Mar 2022 | B2 |
11280345 | Bredenbreuker et al. | Mar 2022 | B2 |
11291824 | Schwammenthal et al. | Apr 2022 | B2 |
11298525 | Jahangir | Apr 2022 | B2 |
11305105 | Corbett et al. | Apr 2022 | B2 |
11313228 | Schumacher et al. | Apr 2022 | B2 |
11338124 | Pfeffer et al. | May 2022 | B2 |
11351358 | Nix et al. | Jun 2022 | B2 |
11364373 | Corbett et al. | Jun 2022 | B2 |
11421701 | Schumacher et al. | Aug 2022 | B2 |
11434922 | Roehn | Sep 2022 | B2 |
20020107536 | Hussein | Aug 2002 | A1 |
20030055486 | Adams et al. | Mar 2003 | A1 |
20030149473 | Chouinard et al. | Aug 2003 | A1 |
20030208097 | Aboul-Hosn et al. | Nov 2003 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064091 | Keren et al. | Apr 2004 | A1 |
20040111006 | Alferness et al. | Jun 2004 | A1 |
20040116769 | Jassawalla et al. | Jun 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040210236 | Allers et al. | Oct 2004 | A1 |
20040219028 | Demarais et al. | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050033406 | Barnhart et al. | Feb 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050055082 | Ben et al. | Mar 2005 | A1 |
20050079274 | Palasis et al. | Apr 2005 | A1 |
20050119682 | Nguyen et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20060062672 | Mcbride et al. | Mar 2006 | A1 |
20060064059 | Gelfand et al. | Mar 2006 | A1 |
20060106449 | Ben | May 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060245959 | Larose et al. | Nov 2006 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070208291 | Patel | Sep 2007 | A1 |
20070260327 | Case et al. | Nov 2007 | A1 |
20070293808 | Williams et al. | Dec 2007 | A1 |
20080103591 | Siess | May 2008 | A1 |
20080114339 | Mcbride et al. | May 2008 | A1 |
20080132748 | Shifflette | Jun 2008 | A1 |
20080154236 | Elkins et al. | Jun 2008 | A1 |
20080183280 | Agnew et al. | Jul 2008 | A1 |
20090024195 | Rezai et al. | Jan 2009 | A1 |
20090062597 | Shifflette | Mar 2009 | A1 |
20090093796 | Pfeffer et al. | Apr 2009 | A1 |
20090131785 | Lee et al. | May 2009 | A1 |
20090264991 | Paul et al. | Oct 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090318857 | Goodson et al. | Dec 2009 | A1 |
20100030259 | Pavcnik et al. | Feb 2010 | A1 |
20100130810 | Mohl | May 2010 | A1 |
20110004046 | Campbell et al. | Jan 2011 | A1 |
20110106244 | Ferrari et al. | May 2011 | A1 |
20110152999 | Hastings et al. | Jun 2011 | A1 |
20110190874 | Celermajer et al. | Aug 2011 | A1 |
20110213408 | Gross et al. | Sep 2011 | A1 |
20110230949 | Haverkost et al. | Sep 2011 | A1 |
20110257462 | Rodefeld et al. | Oct 2011 | A1 |
20110264075 | Leung et al. | Oct 2011 | A1 |
20110282128 | Reitan et al. | Nov 2011 | A1 |
20110282274 | Fulton | Nov 2011 | A1 |
20110301662 | Bar-yoseph et al. | Dec 2011 | A1 |
20110319906 | Rudakov et al. | Dec 2011 | A1 |
20120022579 | Fulton | Jan 2012 | A1 |
20120059460 | Reitan | Mar 2012 | A1 |
20120089047 | Ryba et al. | Apr 2012 | A1 |
20120116382 | Ku et al. | May 2012 | A1 |
20120130469 | Cragg et al. | May 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120232457 | Kandarpa | Sep 2012 | A1 |
20120237357 | Schumacher et al. | Sep 2012 | A1 |
20120301318 | Er | Nov 2012 | A1 |
20120328460 | Horvath et al. | Dec 2012 | A1 |
20130053623 | Evans et al. | Feb 2013 | A1 |
20130053732 | Heuser | Feb 2013 | A1 |
20130079874 | Doss et al. | Mar 2013 | A1 |
20130177409 | Schumacher et al. | Jul 2013 | A1 |
20130177432 | Toellner et al. | Jul 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20140018840 | Morgan et al. | Jan 2014 | A1 |
20140025041 | Fukuoka et al. | Jan 2014 | A1 |
20140051908 | Khanal et al. | Feb 2014 | A1 |
20140128659 | Heuring et al. | May 2014 | A1 |
20140275722 | Zimmermann et al. | Sep 2014 | A1 |
20140350658 | Benary et al. | Nov 2014 | A1 |
20150018597 | Fierens et al. | Jan 2015 | A1 |
20150119633 | Haselby et al. | Apr 2015 | A1 |
20150157777 | Tuval et al. | Jun 2015 | A1 |
20150164662 | Tuval | Jun 2015 | A1 |
20150176582 | Liebing | Jun 2015 | A1 |
20150343136 | Nitzan et al. | Dec 2015 | A1 |
20150343186 | Nitzan et al. | Dec 2015 | A1 |
20160022890 | Schwammenthal et al. | Jan 2016 | A1 |
20160051741 | Schwammenthal et al. | Feb 2016 | A1 |
20160053768 | Schumacher et al. | Feb 2016 | A1 |
20160136343 | Anagnostopoulos | May 2016 | A1 |
20160184500 | Zeng | Jun 2016 | A1 |
20160279310 | Scheckel et al. | Sep 2016 | A1 |
20170049946 | Kapur et al. | Feb 2017 | A1 |
20170071769 | Mangiardi | Mar 2017 | A1 |
20170100527 | Schwammenthal et al. | Apr 2017 | A1 |
20170197021 | Nitzan et al. | Jul 2017 | A1 |
20180078615 | Lockwood et al. | Mar 2018 | A1 |
20180096531 | Greenhalgh et al. | Apr 2018 | A1 |
20180126130 | Nitzan et al. | May 2018 | A1 |
20180149165 | Siess et al. | May 2018 | A1 |
20180169313 | Schwammenthal et al. | Jun 2018 | A1 |
20180303993 | Schwammenthal et al. | Oct 2018 | A1 |
20190046702 | Siess et al. | Feb 2019 | A1 |
20190138350 | Kaneko et al. | May 2019 | A1 |
20190175340 | Tuval | Jun 2019 | A1 |
20190175806 | Tuval et al. | Jun 2019 | A1 |
20190209758 | Tuval et al. | Jul 2019 | A1 |
20190239998 | Tuval et al. | Aug 2019 | A1 |
20190269840 | Tuval et al. | Sep 2019 | A1 |
20200254162 | Schwammenthal et al. | Aug 2020 | A1 |
20200288988 | Goldvasser | Sep 2020 | A1 |
20210236797 | D'Ambrosio et al. | Aug 2021 | A1 |
20210268261 | Tuval et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2013205145 | May 2013 | AU |
2013257469 | Mar 2016 | AU |
2701809 | Apr 2009 | CA |
1219136 | Jun 1999 | CN |
1033690 | Jul 1958 | DE |
10336902 | Aug 2004 | DE |
1339443 | Sep 2003 | EP |
1651290 | May 2006 | EP |
1827531 | Sep 2007 | EP |
1871441 | Jan 2008 | EP |
2047872 | Apr 2009 | EP |
2047873 | Apr 2009 | EP |
2217300 | Aug 2010 | EP |
2218469 | Aug 2010 | EP |
2234658 | Oct 2010 | EP |
2282070 | Feb 2011 | EP |
2298374 | Mar 2011 | EP |
2299119 | Mar 2011 | EP |
2301598 | Mar 2011 | EP |
2308524 | Apr 2011 | EP |
2314331 | Apr 2011 | EP |
2345440 | Jul 2011 | EP |
2366412 | Sep 2011 | EP |
2376788 | Oct 2011 | EP |
2408489 | Jan 2012 | EP |
2424587 | Mar 2012 | EP |
2475415 | Jul 2012 | EP |
2607712 | Jun 2013 | EP |
2040639 | Feb 2014 | EP |
2662099 | Sep 2014 | EP |
2427230 | Dec 2014 | EP |
2396050 | Jan 2015 | EP |
2835141 | Feb 2015 | EP |
2840954 | Mar 2015 | EP |
2841122 | Mar 2015 | EP |
2841124 | Mar 2015 | EP |
2860849 | Apr 2015 | EP |
2868331 | May 2015 | EP |
2868332 | May 2015 | EP |
2999496 | Mar 2016 | EP |
3000492 | Mar 2016 | EP |
3000493 | Mar 2016 | EP |
3055922 | Aug 2016 | EP |
3062730 | Sep 2016 | EP |
3108909 | Dec 2016 | EP |
3127562 | Feb 2017 | EP |
3216467 | Sep 2017 | EP |
3222302 | Sep 2017 | EP |
3287154 | Feb 2018 | EP |
3287155 | Feb 2018 | EP |
3326567 | May 2018 | EP |
3329951 | Jun 2018 | EP |
3338825 | Jun 2018 | EP |
3205360 | Aug 2018 | EP |
3359214 | Aug 2018 | EP |
3359215 | Aug 2018 | EP |
3398624 | Nov 2018 | EP |
3398625 | Nov 2018 | EP |
3407930 | Dec 2018 | EP |
3446729 | Feb 2019 | EP |
3446730 | Feb 2019 | EP |
3606575 | Feb 2020 | EP |
3737436 | Nov 2020 | EP |
3897814 | Oct 2021 | EP |
2012505038 | Mar 2012 | JP |
9013321 | Nov 1990 | WO |
199401148 | Jan 1994 | WO |
9744071 | Nov 1997 | WO |
9934847 | Jul 1999 | WO |
9934847 | Jul 1999 | WO |
2001083016 | May 2000 | WO |
0107787 | Feb 2001 | WO |
2002070039 | Mar 2001 | WO |
0183016 | Nov 2001 | WO |
2002038085 | May 2002 | WO |
03006096 | Jan 2003 | WO |
04073796 | Feb 2003 | WO |
03103745 | Dec 2003 | WO |
2004073796 | Sep 2004 | WO |
2005020848 | Mar 2005 | WO |
2007112033 | Oct 2007 | WO |
2007127477 | Nov 2007 | WO |
2008005747 | Jan 2008 | WO |
2008055301 | May 2008 | WO |
2009010963 | Jan 2009 | WO |
2009091965 | Jul 2009 | WO |
2009129481 | Oct 2009 | WO |
2010133567 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2011035926 | Mar 2011 | WO |
2011047884 | Apr 2011 | WO |
2011076441 | Jun 2011 | WO |
2012007141 | Jan 2012 | WO |
2013032849 | Mar 2013 | WO |
2013148697 | Oct 2013 | WO |
2013183060 | Dec 2013 | WO |
2014141284 | Sep 2014 | WO |
2015063277 | May 2015 | WO |
2015177793 | Nov 2015 | WO |
2016185473 | Nov 2016 | WO |
2017053361 | Mar 2017 | WO |
2017081561 | May 2017 | WO |
2018033920 | Feb 2018 | WO |
2018061001 | Apr 2018 | WO |
2018061002 | Apr 2018 | WO |
2018078615 | May 2018 | WO |
2018096531 | May 2018 | WO |
2018158636 | Sep 2018 | WO |
2018172848 | Sep 2018 | WO |
2018220589 | Dec 2018 | WO |
2019125899 | Jun 2019 | WO |
2019138350 | Jul 2019 | WO |
2019158996 | Aug 2019 | WO |
2021159147 | Aug 2021 | WO |
Entry |
---|
Non-Final Office Action for U.S. Appl. No. 16/242,797 dated Nov. 16, 2021. |
Notice of Allowance for U.S. Appl. No. 15/574,948 dated Nov. 18, 2021. |
Communication for European Application No. 15753493.4 dated Jul. 17, 2019. |
Corrected Notice of Allowance for U.S. Appl. No. 15/312,034 dated Feb. 12, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 15/423,368 dated Apr. 17, 2019. |
Extended European Search Report for European Application No. 19212211.7 dated Mar. 31, 2020. |
Extended European Search Report for European Application No. 19215724.6 dated Apr. 1, 2020. |
Extended European Search Report for European Application No. 19216488.7 dated Apr. 1, 2020. |
Extended European Search Report for European Application No. 19216593.4 dated Apr. 6, 2020. |
Extended European Search Report for European Application No. 20179137.3 dated Oct. 9, 2020. |
Final Office Action for U.S. Appl. No. 15/574,948 dated Aug. 26, 2020. |
Final Office Action for U.S. Appl. No. 15/888,771 dated Apr. 28, 2020. |
Final Office Action for U.S. Appl. No. 16/273,898 dated Nov. 5, 2020. |
International Search Report and Written Opinion from International Application No. PCT/IB2020/054759 dated Nov. 13, 2020. |
International Search Report and Written Opinion from International Application No. PCT/IL2017/051092 dated Jan. 16, 2018. |
International Search Report and Written Opinion from International Application No. PCT/IL2017/051273 dated Apr. 17, 2018. |
International Search Report and Written Opinion from International Application No. PCT/IL2019/050334 dated Jun. 17, 2019. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2020/054759 dated Jul. 30, 2020. |
Issue Notification for U.S. Appl. No. 15/312,034 dated Feb. 19, 2020. |
Issue Notification for U.S. Appl. No. 15/423,368 dated May 8, 2019. |
Issue Notification for U.S. Appl. No. 16/022,445 dated Jul. 10, 2019. |
Issue Notification for U.S. Appl. No. 16/035,871 dated Dec. 29, 2020. |
Issue Notification for U.S. Appl. No. 16/278,323 dated Nov. 24, 2020. |
Issue Notification for U.S. Appl. No. 16/281,385 dated Jun. 16, 2021. |
Issue Notification for U.S. Appl. No. 16/335,786 dated Jun. 2, 2021. |
Issue Notification for U.S. Appl. No. 16/345,389 dated May 26, 2021. |
Non-Final Office Action for U.S. Appl. No. 15/574,948 dated Jan. 13, 2020. |
Non-Final Office Action for U.S. Appl. No. 15/888,771 dated Jun. 1, 2021. |
Non-Final Office Action for U.S. Appl. No. 15/888,771 dated Oct. 4, 2019. |
Non-Final Office Action for U.S. Appl. No. 16/022,445 dated Aug. 9, 2018. |
Non-Final Office Action for U.S. Appl. No. 16/035,871 dated Jan. 22, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/22,445 dated Aug. 9, 2018. |
Non-Final Office Action for U.S. Appl. No. 16/273,898 dated Feb. 17, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/273,898 dated Jun. 18, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/278,323 dated May 22, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/281,385 dated Oct. 14, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/335,786 dated Sep. 17, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/345,389 dated Oct. 26, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/682,016 dated Sep. 20, 2021. |
Notice of Allowance for U.S. Appl. No. 15/312,034 dated Jan. 15, 2020. |
Notice of Allowance for U.S. Appl. No. 15/312,034 dated Jun. 27, 2019. |
Notice of Allowance for U.S. Appl. No. 15/423,368 dated Apr. 4, 2019. |
Notice of Allowance for U.S. Appl. No. 16/022,445 dated Mar. 18, 2019. |
Notice of Allowance for U.S. Appl. No. 16/035,871 dated Aug. 28, 2020. |
Notice of Allowance for U.S. Appl. No. 16/035,871 dated Dec. 4, 2020. |
Notice of Allowance for U.S. Appl. No. 16/273,898 dated Jun. 30, 2021. |
Notice of Allowance for U.S. Appl. No. 16/278,323 dated Oct. 29, 2020. |
Notice of Allowance for U.S. Appl. No. 16/281,385 dated Mar. 8, 2021. |
Notice of Allowance for U.S. Appl. No. 16/335,786 dated Feb. 22, 2021. |
Notice of Allowance for U.S. Appl. No. 16/345,389 dated Feb. 16, 2021. |
Office Action for Australian Application No. 2015262870 dated Apr. 29, 2019. |
Office Action for Australian Application No. 2019202647 dated Jun. 26, 2019. |
Office Action for Australian Application No. 2020201055 dated Sep. 15, 2020. |
Office Action for Chinese Application No. 201810418034.0 dated Aug. 4, 2020. |
Office Action for Chinese Application No. 201810418034.0 dated Dec. 24, 2020. |
Office Action for Chinese Application No. 201810418034.0 dated Nov. 1, 2019. |
Office Action for Chinese Application No. 201811196500.1 dated Aug. 28, 2020. |
Office Action for Chinese Application No. 201910109564.1 dated Feb. 1, 2021. |
Office Action for Japanese Application No. 2015/562562 dated Jan. 29, 2019. |
Office Action for Japanese Application No. 2016/568548 dated Mar. 18, 2019. |
Office Action for Japanese Application No. 2020-009045 dated Feb. 1, 2021. |
Restriction Requirement for U.S. Appl. No. 15/888,771 dated Apr. 15, 2019. |
Restriction Requirement for U.S. Appl. No. 16/035,871, dated Sep. 27, 2019. |
Restriction Requirement for U.S. Appl. No. 16/677,893 dated Sep. 22, 2021. |
U.S. Appl. No. 14/567,439, filed Dec. 11, 2014. |
U.S. Appl. No. 14/774,081, filed Sep. 9, 2015. |
U.S. Appl. No. 15/574,948, filed Nov. 17, 2017. |
U.S. Appl. No. 16/022,445, filed Jun. 28, 2018. |
U.S. Appl. No. 16/275,559, filed Feb. 14, 2019. |
U.S. Appl. No. 16/276,965, filed Feb. 15, 2019. |
U.S. Appl. No. 16/277,411, filed Feb. 15, 2019. |
U.S. Appl. No. 16/278,323, filed Feb. 18, 2019. |
U.S. Appl. No. 16/281,264, filed Feb. 21, 2019. |
U.S. Appl. No. 16/281,385, filed Feb. 21, 2019. |
U.S. Appl. No. 16/345,389, filed Apr. 26, 2019. |
U.S. Appl. No. 16/677,893, filed Nov. 8, 2019. |
U.S. Appl. No. 16/682,016, filed Nov. 13, 2019. |
U.S. Appl. No. 16/859,100, filed Apr. 27, 2020. |
U.S. Appl. No. 16/859,492, filed Apr. 27, 2020. |
U.S. Appl. No. 62/162,881, filed May 18, 2015. |
U.S. Appl. No. 62/425,814, filed Nov. 23, 2016. |
U.S. Appl. No. 62/401,403, filed Sep. 29, 2016. |
Coxworth, “Artificial Vein Valve Could Replace Drugs For Treating Common Circulatory Problem”, Published on Gizmag website (http://www.gizmag.com/artificial-venous-valve-cvi/21785/), Mar. 9, 2012. |
Doty et al., “Effect of increased renal venous pressure on renal function”, The Journal of Trauma: Injury, Infection, and Critical Care, Issue, vol. 47 (6), Dec. 1999, p. 1000. |
Firth, et al., “Raised venous pressure: a direct cause of sodium retention in oedema?”, Lancet, 1, 1988, pp. 1033-1035. |
Gomes, et al., “Heterologous valve inplantation in the infra-renal vena cava for treatment of the iliac venous valve regurgitation disease”, experimental study; Rev Bras Cir Cardiovasc, 17(4), 2002, pp. 367-369. |
Uthoff, et al., “Central Venous Pressure At Emergency Room Presentation Predicts Cardiac Rehospitalization In Patients With Decompensated Heart Failure”, European Journal of Heart Failure, vol. 12, Mar. 11, 2010, 8 Pages. |
Advisory Action for U.S. Appl. No. 15/888,771 dated May 4, 2022. |
Communication Pursuant to Article 94(3) for European Patent Application No. 20179137.3 dated Nov. 9, 2021. |
Examination Report for Canadian Application No. 2,948,121 dated Dec. 15, 2021. |
Examination Report for Indian Application No. 201917018650 dated Dec. 9, 2021. |
Final Office Action for U.S. Appl. No. 15/888,771 dated Dec. 9, 2021. |
Final Office Action for U.S. Appl. No. 16/859,100 dated Jul. 13, 2022. |
Issue Notification for U.S. Appl. No. 15/574,948 dated Mar. 16, 2022. |
Issue Notification for U.S. Appl. No. 16/682,016 dated Mar. 23, 2022. |
Issue Notification for U.S. Appl. No. 16/682,269 dated Mar. 23, 2022. |
Non-Final Office Action for U.S. Appl. No. 15/888,771 dated May 25, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/677,893 dated Jan. 11, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/677,893 dated Jul. 1, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/682,269 dated Sep. 20, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/859,100 dated Apr. 29, 2022. |
Notice of Allowance for U.S. Appl. No. 15/574,948 dated Jan. 27, 2022. |
Notice of Allowance for U.S. Appl. No. 15/888,771 dated Jun. 28, 2022. |
Notice of Allowance for U.S. Appl. No. 16/682,016 dated Feb. 23, 2022. |
Notice of Allowance for U.S. Appl. No. 16/682,269 dated Feb. 23, 2022. |
Office Action for Japanese Application No. 2019-520097 dated Oct. 26, 2021. |
European Search Report for European Application No. 13800935 dated Jan. 12, 2016. |
European Search Report for European Application No. 14762232.8 dated Sep. 28, 2016. |
Final Office Action for U.S. Appl. No. 14/931,363 dated Jun. 1, 2017. |
Final Office Action for U.S. Appl. No. 15/312,034 dated Jan. 17, 2019. |
International Search Report and Written Opinion from International Application No. PCT/IL2015/050532 dated Jan. 27, 2016. |
International Search Report and Written Opinion from International Application No. PCT/IL2016/050525 dated Oct. 14, 2016. |
International Search Report and Written Opinion from International Application No. PCT/IL2013/050495 dated Nov. 22, 2013. |
International Search Report and Written Opinion from International Application No. PCT/IL2014/050289 dated Sep. 11, 2014. |
Invitation to pay additional fees for International Application No. PCT/IL2015/050532 dated Nov. 17, 2015. |
Issue Notification for U.S. Appl. No. 14/931,363 dated Feb. 21, 2018. |
Non-Final Office Action for U.S. Appl. No. 14/405,144 dated Feb. 22, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/405,144 dated Jul. 14, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/567,439 dated Nov. 16, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/774,081 dated May 24, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/774,081 dated Oct. 12, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/931,363 dated Feb. 15, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/931,363 dated Oct. 3, 2016. |
Non-Final Office Action for U.S. Appl. No. 15/423,368 dated Jun. 6, 2018. |
Notice of Allowance for U.S. Appl. No. 14/567,439 dated Jun. 2, 2017. |
Notice of Allowance for U.S. Appl. No. 14/774,081 dated Apr. 11, 2018. |
Notice of Allowance for U.S. Appl. No. 14/931,363 dated Dec. 12, 2017. |
Notice of Allowance for U.S. Appl. No. 14/931,363 dated Oct. 12, 2017. |
Notice of Allowance for U.S. Appl. No. 15/423,368 dated Nov. 13, 2018. |
Office Action for Chinese Application No. 201380037335.4 dated Mar. 22, 2017. |
Office Action for Chinese Application No. 201380037335.4 dated Oct. 17, 2016. |
Office Action for Chinese Application No. 201380037335.4 dated Sep. 20, 2017. |
Office Action for European U.S. Appl. No. 13/800,935 dated Sep. 30, 2016. |
Office Action for Japanese Application No. 2015-562562 dated Jun. 13, 2018. |
Office Action for Japanese Application No. 2015562562 dated Oct. 27, 2017. |
Restriction Requirement for U.S. Appl. No. 14/567,439 dated Aug. 23, 2016. |
Restriction Requirement for U.S. Appl. No. 14/774,081 dated Mar. 9, 2017. |
Restriction Requirement for U.S. Appl. No. 14/931,363 dated Jul. 22, 2016. |
U.S. Appl. No. 14/405,144, filed Dec. 2, 2014. |
U.S. Appl. No. 15/423,368, filed Feb. 2, 2017. |
U.S. Appl. No. 16/273,898, filed Feb. 12, 2019. |
U.S. Appl. No. 61/656,244, filed Jun. 6, 2013. |
U.S. Appl. No. 61/779,803, filed Mar. 13, 2013. |
U.S. Appl. No. 61/914,470, filed Dec. 11, 2013. |
U.S. Appl. No. 61/914,475, filed Dec. 11, 2013. |
U.S. Appl. No. 62/000,192, filed May 19, 2014. |
Agarwal, et al., “Newer-generation ventricular assist devices.”, Best Practice & Research Clinical Anaesthesiology, 26.2, 2012, pp. 117-130. |
Alba, et al., “The future is here: ventricular assist devices for the failing heart”, Expert review of cardiovascular therapy, 7.9, 2009, pp. 1067-1077. |
Burnett, et al., “Renal Interstitial Pressure And Sodium Excretion During Renal Vein Constriction”, American Physiological Society, 1980, pp. F279-F282. |
Coxworth, “Artificial vein valve could replace drugs for treating common circulatory problem”, Published on Gizmag website (http://www.gizmag.com/artificial-venous-valve-cvi/21785/), Mar. 9, 2012, pp. 2. |
Damman, et al., “Decreased Cardiac Output, Venous Congestion And The Association With Renal Impairment In Patients With Cardiac Dysfunction”, European Journal of Heart Failure, vol. 9, 2007, pp. 872-878. |
Damman, et al., “Increased Central Venous Pressure Is Associated With Impaired Renal Function And Mortality In A Broad Spectrum Of Patients With Cardiovascular Disease”, Journal of American College of Cardiology, vol. 53, 2009, pp. 582-588. |
Doty, et al., “The Effect Of Increased Renal Venous Pressure On Renal Function”, The Journal of Trauma,, vol. 47(6), Dec. 1999, pp. 1000-1003. |
Felker, et al., “Anemia As A Risk Factor And Therapeutic Target In Heart Failure”, Journal of the American College of Cardiology, vol. 44, 2004, pp. 959-966. |
Firth, et al., “Raised Venous Pressure: A Direct Cause Of Sodium Retention In Oedema?”, The Lancet, May 7, 1988, pp. 1033-1036. |
Forman, et al., “Incidence, Predictors At Admission, And Impact Of Worsening Renal Function Among Patients Hospitalized With Heart Failure”, Journal of American College of Cardiology, vol. 43, 2004, pp. 61-67. |
Fraser, et al., “The use of computational fluid dynamics in the development of ventricular assist devices”, Medical engineering & physics, 33.3, 2011, pp. 263-280. |
Gomes, et al., “Heterologous Valve Implantation In The Infra-Renal Vena Cava For Treatment Of The Iliac Venous Valve Regurgitation Disease: Experimental Study”, Rev Bras Cir Cardiovasc, vol. 17(4), 2002, pp. 367-369. |
Haddy, et al., “Effect Of Elevation Of Intraluminal Pressure On Renal Vascular Resistance”, Circulation Research Journal Of The American Heart Association, vol. 4, 1956, pp. 659-663. |
Heywood, et al., “High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure”, a report from the ADHERE database. J Cardiac Fail, vol. 13, 2007, pp. 422-430. |
Heywood, et al., “High Prevalence Of Renal Dysfunction And Its Impact On Outcome In 118,465 Patients Hospitalized With Acute Decompensated Heart Failure: A Report From The ADHERE Database”, Journal of Cardiac Failure, vol. 13, 2007, pp. 422-430. |
Hillege, et al., “Renal Function As A Predictor Of Outcome In A Broad Spectrum Of Patients With Heart Failure”, Circulation Journal of the American Heart Association, vol. 113, 2006, pp. 671-678. |
Hillege, et al., “Renal Function, Neurohormonal Activation, And Survival In Patients With Chronic Heart Failure”, Circulation Journal of the American Heart Association, vol. 102, 2000, pp. 203-210. |
Hsu, et al., “Review of recent patents on foldable ventricular assist devices”, Recent Patents on Biomedical Engineering, 5.3, 2012, pp. 208-222. |
Ikari, “The Physics Of Guiding Catheter; The IKARI Guiding Catheter In TRI”, available at httu:i /www.docstoc.com/docs/148136553/The-[KARI-catheter—anovel-guide-for-TRI—, uploaded on Mar. 8, 2013. |
Kafagy, et al., “Design of axial blood pumps for patients with dysfunctional fontan physiology: computational studies and performance testing”, Artificial organs, 39.1, 2015, pp. 34-42. |
Kang, et al., “Fluid dynamics aspects of miniaturized axial-flow blood pump”, Bio-medical materials and engineering, 24.1, 2014, pp. 723-729. |
Koochaki, et al., “A new design and computational fluid dynamics study of an implantable axial blood pump”, Australasian Physical & Engineering Sciences in Medicine, 36.4, 2013, pp. 417-422. |
Lauten, et al., “Heterotopic Transcatheter Tricuspid Valve Implantation: First-In-Man Application Of A Novel Approach To Tricuspid Regurgitation”, European Heart Journal, (1-7 as printed), Feb. 15, 2011, pp. 1207-1213. |
Mcalister, et al., “Renal Insufficiency And Heart Failure: Prognostic And Therapeutic Implications From A Prospective Cohort Study”, Circulation Journal of the American Heart Association, 109, 2004, pp. 1004-1009. |
Mullens, et al., “Elevated Intra-Abdominal Pressure In Acute Decompensated Heart Failure. A Potential Contributor To Worsening Renal Function”, Journal of the American College of Cardiology, vol. 51, 2008, pp. 300-306. |
Mullens, et al., “Importance Of Venous Congestion For Worsening Of Renal Function In Advanced Decompensated Heart Failure”, Journal of American College of Cardiology, vol. 53, 2009, pp. 589-596. |
Mullens, et al., “Prompt Reduction In Intra-Abdominal Pressure Following Large-Volume Mechanical Fluid Removal Improves Renal Insufficiency In Refractory Decompensated Heart Failure”, Journal of Cardiac Failure, vol. 14, 2008, pp. 508-514. |
Notarius, et al., “Central Venous Pressure During Exercise: Role Of Muscle Pump”, Canadian Journal of Physiology and Pharmacology, vol. 74(6), 1996, pp. 647-651. |
Park, et al., “Nutcracker Syndrome: Intravascular Stenting Approach”, Nephrol Dial Transplant, vol. 15, 2000, pp. 99-101. |
Reul, et al., “Blood pumps for circulatory support”, Perfusion-Sevenoaks, 15.4, 2000, pp. 295-312. |
Schmitz-Rode, et al., “An Expandable Percutaneous Catheter Pump For Left Ventricular Support”, Journal of the American College of Cardiology, vol. 45, 2005, pp. 1856-1861. |
Semple, et al., “Effect Of Increased Renal Venous Pressure On Circulatory “Autoregulation” Of Isolated Dog Kidneys”, Circulation Research Journal of The American Heart Association, vol. 7, 1959, pp. 643-648. |
Song, et al., “Axial flow blood pumps”, ASAIO journal, 49, 2003, pp. 355-364. |
Tang, et al., “Anemia In Chronic Heart Failure: Prevalence, Etiology, Clinical Correlates, And Treatment Options”, Circulation Journal of the American Heart Association, vol. 113, 2006, pp. 2454-2461. |
Throckmorton, et al., “Design of a protective cage for an intra vascular axial flow blood pump to mechanically assist the failing Fontan”, Artificial organs, 33.8, 2009, pp. 611-621. |
Thunberg, et al., “Ventricular assist devices today and tomorrow”, Journal of cardiothoracic and vascular anesthesia, 24.4, 2010, pp. 656-680. |
Timms, “A review of clinical ventricular assist devices”, Medical engineering & physics, 33.9, 2011, pp. 1041-1047. |
Uthoff, et al., “Central venous pressure at emergency room presentation predicts cardiac rehospitalization in patients with decompensated heart failure”, European Journal of Heart Failure, 12, 2010, pp. 469-476. |
Wencker, “Acute Cardio-Renal Syndrome: Progression From Congestive Heart Failure To Congestive Kidney Failure”, Current Heart Failure Reports, vol. 4, 2007, pp. 134-138. |
Winton, “The Control Of Glomerular Pressure By Vascular Changes Within The Mammalian Kidney, Demonstrated By The Actions Of Adrenaline”, Journal of Physiology, vol. 73, Nov. 1931, pp. 151-162. |
Winton, “The Influence Of Venous Pressure On The Isolated Mammalian Kidney”, Journal of Physiology, vol. 72(1), Jun. 6, 1931, pp. 49-61. |
Wood, “The Mechanism Of The Increased Venous Pressure With Exercise In Congestive Heart Failure”, Journal of Clinical Investigation, vol. 41(11), 1962, pp. 2020-2024. |
Wu, et al., “Design and simulation of axial flow maglev blood pump”, International Journal of Information Engineering and Electronic Business, 3.2, 2011, p. 42. |
Yancy, et al., “Clinical Presentation, Management, And In-Hospital Outcomes Of Patients Admitted With Acute Decompensated Heart Failure With Preserved Systolic Function. A Report From The Acute Decompensated Heart Failure National Registry (ADHERE) Database”, Journal of the American College of Cardiology, vol. 47(1), 2006, pp. 76-84. |
Examination Report for European Application No. 20179137.3 dated Jan. 5, 2023. |
Issue Notification for U.S. Appl. No. 15/888,771 dated Oct. 12, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/677,893 dated Dec. 28, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/859,492 dated Oct. 14, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/320,742 dated Dec. 7, 2022. |
Office Action for Japanese Application No. 2022-31553 dated Dec. 23, 2022. |
Restriction Requirement for U.S. Appl. No. 16/859,492 dated Jul. 28, 2022. |
“Compendium of Technical and Scientific Information for the Hemopump Temporary Cardiac Assist System”, Johnson & Johnson Interventional Systems, 1988, pp. 1-15. |
Achour, et al., “Mechanical Left Ventricular Unloading Prior to Reperfusion Reduces Infarct Size in a Canine Infarction Model”, Catheterization and Cardiovascular Interventions 64, 2005, pp. 182-192. |
Butler, et al., “The Hemopump—A New Cardiac Prothesis Device”, Reprinted from IEEE Transactions on Biomedical Engineering, vol. 37, No. 2, Feb. 1990, pp. 192-195. |
Chan, et al., “Rapid manufacturing techniques in the development of an axial blood pump impeller”, Proc. Instn Mech. Engrs vol. 217 Part H: J. Engineering in Medicine, 2003, pp. 469-475. |
Dekker, et al., “Efficacy of a New Intraaortic Propeller Pump vs the Intraaortic Balloon Pump”, Chest, vol. 123, Issue 6, Jun. 2003, pp. 2089-2095. |
Flameng, “Temporary Cardiac Assist with an Axial Pump System”, Steinkopff Verlag Darmstadt, 1991, 79 pages. |
Frazier, et al., “First Human Use of the Hemopump, a Catheter-Mounted Ventricular Assist Device”, Annual of Thoracic Surgeons, vol. 49, 1990, pp. 299-304. |
Frazier, et al., “Treatment of Cardiac Allograft Failure by use of an IntraAortic Axial Flow Pump”, Journal of Heart Transplantation, St. Louis, vol. 9, No. 4, pp. 408-414, Jul. 1990. |
Gunther, et al., “Experimentelle Radiologie”, Life Sciences, Berichte Aus Der Rheinischwestfälischen Technischen Hochschule Aachen Ausgabe Feb. 2002, 9 pages. |
Ledoux, et al., “Left Ventricular Unloading With Intra-aortic Counter Pulsation Prior to Reperfusion Reduces Myocardial Release of Endothelin-1 and Decreases Infarction Size in a Porcine Ischemia-Reperfusion Model”, Catheterization and Cardiovascular Interventions 72, 2008, pp. 513-521. |
Merhige, et al., “Effect of the Hemopump Left Ventricular Assist Device on Regional Myocardial Perfusion and Function”, Reduction of Ischemia during Coronary Occlusion, Johnson & Johnson Interventional Systems Supplement 3, Circulation vol. 80, No. 5, Nov. 1989, pp. III-159-III-166. |
Roundtree, et al., “The Hemopump Cardiac Assist System: Nursing Care of the Patient”, Reprinted from Critical Care Nurse, Apr. 1991. |
Scholz, et al., “Mechanical left Ventricular Unloading During High Risk Coronary Angioplasty: First Use of a New Percutaneous Transvalvular Left Ventricular Assist Device”, Catheterization and Cardiovascular Diagnosis 31, 1994, pp. 61-69. |
Siess, “System Analysis and Development of Intravascular Rotation Pumps for Cardiac Assist”, Helmholtz-Institute—Chapter 3, Jun. 1998, 17 pages. |
Smalling, et al., “Improved Regional Myocardial Blood Flow, Left Ventricular Unloading, and Infarct Salvage Using an Axial-Flow, Transvalvular Left Ventricular Assist Device”, A Comparison With Intra-Aortic Balloon Counterpulsation and Reperfusion Alone in a Canine Infarction Model, Presented in part at the American College of Cardiology 38th Annual Scientific Session, Mar. 1990, pp. 1152-1160. |
Smalling, et al., “The Hemopump: A transvalvular, axial flow, left ventricular assist device”, Coronary Artery Disease, Circulatory support devices in clinical cardiology, vol. 2 No. 6, pp. 666-671, Aug. 1991. |
Smalling, et al., “Transvalvular Left Ventricular Assistance in Cardiogenic Shock Secondary to Acute Myocardial Infarction”, Evidence for Recovery From Near Fatal Myocardial Stunning, JACC vol. 23, No. 3, pp. 637-644, Mar. 1, 1994. |
Tamareille, et al., “Left ventricular unloading before reperfusion reduces endothelin-1 release and calcium overload in porcine myocardial infarction”, Cardiopulmonary Support and Physiology, The Journal of Thoracic and Cardiovascular Surgery, vol. 136, No. 2, 2008, pp. 343-351. |
Wampler, “Newspaper Articles”, Captain Hemo, 1988, 6 pages. |
Wampler, “Newsweek”, Captain Hemo, May 16, 1988, 3 pages. |
Wampler, “THI Today”, Captain Hemo, Summer 1988, 2 pages. |
Wampler, “Time Magazine”, Captain Hemo, May 1988, 2 pages. |
Wampler, et al., “Treatment of Cardiogenic Shock With the Hemopump Left Ventricular Assist Device”, Annual of Thoracic Surgery, vol. 52, pp. 560-513, 1991. |
Wampler, “U.S. News & World Report”, Captain Hemo, pp. 1-2, May 16, 1988. |
Communication Pursuant to Article 94(3) EPC for European Patent Application No. 19216488.7 dated Oct. 19, 2021. |
Examination Report for Canadian Application No. 2,948,121 dated Jul. 8, 2021. |
Issue Notification for U.S. Appl. No. 16/273,898 dated Oct. 13, 2021. |
Office Action for Chinese Application No. 201780072633.5 dated May 26, 2021. |
Office Action for Japanese Application No. 2020-93277 dated Jun. 23, 2021. |
U.S. Appl. No. 16/750,354, filed Jan. 23, 2020. |
U.S. Appl. No. 61/656,244, filed Jun. 6, 2012. |
U.S. Appl. No. 62/412,631, filed Oct. 25, 2016. |
U.S. Appl. No. 62/543,540, filed Aug. 10, 2017. |
U.S. Appl. No. 62/615,538, filed Jan. 10, 2018. |
U.S. Appl. No. 62/665,715, filed May 2, 2018. |
U.S. Appl. No. 62/681,868, filed Jun. 7, 2018. |
U.S. Appl. No. 62/727,605, filed Sep. 6, 2021. |
Examination Report for Australian Application No. 2021225141 dated Oct. 10, 2022. |
Notice of Acceptance for Australian Application No. 2017364359 dated Nov. 17, 2022. |
Office Action for Canadian Application No. 3,039,302 dated Mar. 21, 2023. |
Office Action for Canadian Application No. 3,080,800 dated Mar. 21, 2023. |
Office Action for Canadian Application No. 3,126,978 dated Nov. 1, 2022. |
Office Action for Canadian Application No. 3,137,274 dated Mar. 29, 2023. |
U.S. Appl. No. 62/727,605, filed Sep. 6, 2018. |
Issue Notification for U.S. Application No. 16/859,100 dated Apr. 26, 2023. |
Issue Notification for U.S. Appl. No. 16/859,492 dated Apr. 26, 2023. |
Issue Notification for U.S. Appl. No. 17/320,742 dated Apr. 26, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/677,893 dated May 9, 2023. |
Notice of Allowance for U.S. Appl. No. 16/859,100 dated Mar. 7, 2023. |
Notice of Allowance for U.S. Appl. No. 16/859,492 dated Mar. 15, 2023. |
Notice of Allowance for U.S. Appl. No. 17/320,742 dated Mar. 22, 2023. |
U.S. Appl. No. 15/312,034, filed Nov. 17, 2016. |
U.S. Appl. No. 15/888,771, filed Feb. 5, 2018. |
U.S. Appl. No. 18/130,205, filed Apr. 4, 2023. |
U.S. Appl. No. 18/130,534, filed Apr. 4, 2023. |
U.S. Appl. No. 18/130,698, filed Apr. 4, 2023. |
Extended European Search Report for European Patent Application No. 23174906.0 dated Aug. 21, 2023. |
Notice of Allowance for U.S. Appl. No. 16/677,893 dated Oct. 19, 2023. |
Number | Date | Country | |
---|---|---|---|
20220151774 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
61656244 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15423368 | Feb 2017 | US |
Child | 16273898 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16273898 | Feb 2019 | US |
Child | 17487145 | US | |
Parent | 14405144 | US | |
Child | 15423368 | US |