This invention relates to vending machines. In particular, this invention relates to bulk vending machines.
Vending machines are a very popular method of selling merchandise. Bulk venders, for example, in which a metered amount of product stored in bulk in a bin is dispensed upon payment of a required amount of money, can be used for the self-service purchase of myriad types of products. Such vending machines provide a cost-effective means of selling bulk product, in part because they can be located in unsupervised locations and therefore involve very low overhead.
One of the consequences of locating a vending machine in an unsupervised location is that there is no salesperson to attract purchasers or interest prospective customers in the products being vended. The vending machine itself must have a sufficiently interesting and appealing presence to attract purchasers and interest purchasers in the product. Bulk vending machines are nevertheless a popular means of selling small merchandise such as toys and confectionery, part of their popularity being due to the entertainment value associated with the action of a purchaser and the visible reaction of the machine in the dispensing of bulk product. Children in particular are attracted by the visual appeal of bulk product displayed and the product dispensing process. As such, bulk vending machines virtually universally stock product in transparent bins for the visual appeal, and are often manufactured with very large product bins and/or elaborate dispensing paths made deliberately viewable by the purchaser, to increase visual appeal and entertainment value of the vending machine.
For these reasons, while in the past it was common to provide a single bulk vender which stored a single type of product for dispensing to a purchaser, more recently it has become common to locate a cluster or group of bulk venders in one location, sometimes referred to as a bulk vending “island.” This offers purchasers the choice of a variety of bulk product, for example different types of confectioneries, while at the same time increasing the visual appeal of the vending installation and thus increasing the attraction to prospective purchasers.
Systems have been designed for the selective actuation of one or more bulk venders in such a group of bulk venders actuated from a common control station. These systems have been known and used for many decades in self-contained vending machines which vend a variety of types of single articles. For example, in one such type of vending machine a plurality of a particular product item such as a candy bar, package of gum, bag of potato chips etc. is stocked in a coil which, when rotated, advances the product toward a dispensing portion of the machine. A window located at the front of the machine allows a purchaser to watch the dispensing operation. Multiple coils are provided for the vending of different items, each coil supporting a plurality of a particular item. In this type of vending machine a control panel is provided allowing the purchaser, following payment of the required amount, to select a particular article from the variety of articles stocked in the vender by entering an alphanumeric code visually associated with the coil containing the desired product. In response to the purchaser's selection, the coil containing the selected article is actuated through a single rotation, which in an auger-like fashion advances each article seated in the coil toward the front of the machine. By the end of the dispensing cycle the foremost product drops from the coil into a dispensing area accessible to the purchaser.
However, such machines are capable of dispensing only one item, and thus one product type, with each dispensing cycle. Similarly, in a conventional bulk vender island the selection of a product, whether directly or via a shared control panel, actuates only the particular vender containing the selected product and thus dispenses only the single type of product stored in the selected bulk vender. A purchaser may select product from different bulk venders in the island, but must purchase and collect the product from each bulk vender in separate individual transactions.
It would be advantageous to provide to purchasers an opportunity to create a mix of different product types, for example different types of confectioneries, in a single dispensing operation. Such venders would provide a virtually unlimited number of permutations and combinations of bulk mixtures, and allow a purchaser to select specific metered amounts of each product, the various products being dispensed into a single container.
Providing open rigid containers for receiving merchandise in such a multi-vender vending machine can result in dust or other contaminants accumulating in the container prior to a purchase. Also, automatically sealing a rigid container into which bulk product has been dispensed is an involved operation requiring both precision and the ability to accommodate slight deviations between containers, and is thus difficult to effect consistently.
Consumers in modern society are very health conscious, and need a high degree of confidence that the bulk product being dispensed is not contaminated. Consumers also often wish to know the nutritional content of foodstuffs being purchased, and in some regions regulations may require that the nutritional content and/or identification of ingredients of foodstuffs be made available to purchasers on food packages so that the information remains available after purchase of the product.
In drawings which illustrate by way of example only embodiments of the invention:
The present invention provides a vending machine for dispensing bulk product of different types into a single container, the container in the preferred embodiment being a bag.
According to one embodiment of the invention, a bagging system is provided whereby after a purchaser selects one or more of the plurality of bulk vender modules in the vending machine, a bag is loaded, opened and successively conveyed beneath each selected bulk vender to receive metered amounts of the bulk product selected by the purchaser. After the bag has been filled from each selected bulk vender module, the bag is sealed and dispensed to the user.
Thus, according to the invention the user receives a hermetically sealed container filled with the bulk product selection of the user's choosing, which may comprise one or a plurality of different products such as confectioneries, and sealed to prevent contamination. In a further embodiment of the invention, product identifying information, nutritional information and/or other information or indicia is printed onto the container, or onto a label affixed to the container, after the bag is loaded and prior to the dispensing process.
A plurality of vender modules contained within the housing 12 allow for the stocking and vending of different types of product from the vending machine 10. One type of module, for example, is a bulk vender module 20. The bulk vender modules 20 may be disposed in generally horizontal alignment, as illustrated in
In the preferred embodiment a user interface comprises a depressable or touch-sensitive keypad 60 (with an optional protective cover 60a, shown in phantom in
As shown in
The product bin 22, which is preferably also transparent so that the bulk product 2 stored in the vender 20 is visible to a purchaser through the window 14, is in communication with the dispensing mechanism 30 contained in the dispensing section. As shown in
In the embodiment illustrated in
The dispensing drum 32 is mounted on an axle 36 which is in turn rotationally fixed to a drum gear 38. A drive means affixed to the base 25 of the vender 20, for example an electric motor 50 having a drive shaft 52, rotates a drive gear 40 coupled to the drum gear 38 to rotate the drum 32 during the dispensing cycle.
In the embodiment shown, the drum gear 38 comprises an eccentric groove or raceway 39 cut or milled into its face. A stud 42 from which a dispensing chute 28 is suspended is lodged in the raceway 39 and travels along the eccentric path defined by the raceway 39, raising and lowering the dispensing chute 28 as the gear 38 turns. Thus, with each rotation of the drum gear 38 the dispensing chute 28 cycles from a raised position with the lower end of the dispensing chute 28 positioned above the level of the opening of a bag 4, as shown in
Since product sold in a bulk vender is often breakable, such as candies and other confectionery, in order to avoid breakage of product as it is dispensed from the bulk vending modules 20 through the dispensing chute 28 and into the bag 4, a damper 170 may be provided, as illustrated in
In one embodiment, illustrated in
During a dispensing cycle the drum 32 rotates in a forward (dispensing) direction as long as the receiver 94 detects light from the LED 92. If the spring 90 is deflected by articles 2 protruding from the dispensing slot 34 to the point that the spring 90 deflects and breaks the beam of light from the LED 92 to the receiver 94, for example as shown in
The specific bulk vender modules 20 from which product will be dispensed to a purchaser, and the amount of product dispensed from the venders 20 with each purchase, are determined by information input into the control panel interface 60 by the purchaser. Each selected vender 20 will be engaged through one or more dispensing cycles, in accordance with the purchaser's selection, and will dispense the purchased product into a single container in the manner described below.
A first embodiment of a bagging system 70 is illustrated in
In the embodiment shown a shuttle transport spindle 80 having a helical thread and driven by a shuttle drive motor 82, via a belt drive 84 or any other suitable drive means, is mounted to the back 12a of the housing 12. The shuttle transport spindle 80 extends through a complementary threaded bore in the transport member 78 projecting rearwardly from the shuttle 72, such that rotation of the spindle 80 in one direction or the other causes the shuttle 72 to move in a corresponding lateral direction beneath the bulk vender bins 20. The transport spindle 80 thus both maintains the upright orientation of the shuttle 72 and drives the shuttle 72 back and forth between the various venders 20, according to a sequence controlled by the vending machine processor (not shown). The shuttle drive motor 82 is thus activated and controlled by the processor to drive the transport spindle 80 in the appropriate direction to a position beneath a selected bulk vender module 20 responsive to control signals issued by the processor, which in turn correspond to purchase requests input by the purchaser into the control panel interface 60. Control signals are transmitted and power is supplied to the shuttle 72 over a flexible cable 75 (shown in
The control panel interface 60 is thus connected to the control processor in conventional fashion, such that when the purchaser touches the control panel interface 60 the processor receives signals representing one or more metered amounts of product to be dispensed from one or more of the plurality of bulk vender modules 20. The processor drives the shuttle transport spindle 80 in the appropriate direction and through the number of rotations required to position the shuttle 72 beneath each selected bulk vender module 20, in a sequence determined by the processor software, so that the metered amounts of bulk product will be dispensed from each vender 20 into the bag 4. The processor and associated software (or firmware) for accomplishing this is well known to those skilled in the art.
At any suitable time, for example at the beginning of a dispensing sequence, a bag 4 is loaded onto the shuttle 72. The shuttle 72 receives a bag 4 from a bag dispensing system comprising a bag reel 6 carrying a roll of bags 4. Conventionally each bag 4 in the roll comprises a double-walled cellophane (or other plastic) sheet, the sheet being either folded or fused along a bottom seam 4a to form a closed bottom. The roll of bags 4 has transverse seams 4b where the opposed walls of the roll are adhered or fused together to form closed sides of each bag 4, and transverse score lines 4c between adjacent side seams 4b, as best shown in
The roll of bags 4 is loaded onto the bag dispensing reel 6, routed around rollers 102, 104 and tensioning roller 100 as shown in
The bag 4 at the free end of the roll is loaded onto the shuttle 72. The shuttle 72 comprises a front face 72a supporting upper and lower clamp transport spindles 120, each rotatably anchored to the shuttle 72 at a downstream end and driven by clamp transport spindle motors 122. The clamp transport spindles 120 each have a helical thread and respectively extend through complementary threaded bores in upper and lower bag loading clamps 124. The bag loading clamps 124 are actuated between clamping and open positions by an actuator such as a solenoid or piston 126, preferably biased to the open position, and are driven laterally across the face 72a of the shuttle 72 by rotation of the clamp transport spindles 120 via servo motors 122 (best seen in
The bag loading clamps 124 thus clamp onto the leading (downstream) side edge 4b of a bag 4 to draw the bag 4 onto the face 72a of the shuttle 72, preferably clamping over upper and lower portions of the leading side edge of the bag 4, as shown in
At the position where the score line 4c between the bag 4 being loaded and the next upstream bag 3 in the roll reaches the space between the pairs of pinch rollers 110, 112, as shown in
Once the bag loading clamps 124 have reached the downstream end of the face 72a of the shuttle 72, a bag retaining clamp 130 is actuated by an actuator such as a solenoid or piston (not shown) to retain the trailing (upstream) side edge 4b of the bag 4 in position against the face 72a of the shuttle 72, as shown in
An actuator such as a solenoid or piston (not shown) then moves bag opening device 140 toward the bag 4 until the suction cup 142 contacts the front panel of the bag 4. The suction cup 142 grabs the front panel of the bag 4, and the suction device 140 is then retracted to open the bag, as shown in
In the operation of this embodiment, the product storage bins 22 of bulk vender modules 20 are filled by service personal, by opening the door 16a of the housing 12, opening the lid 24 of each product bin 22, pouring the desired product (for example one of a variety of different types of confectionery) into each respective product bin 22, and closing the lid 24. The service person also ensures that a sufficient supply of bags 4 is disposed on the reel 6, and that the free end of the roll of bags 4 is properly fed through fixed rollers 102, 104, the tensioning roller 100 and pinch rollers 110, 112 so that the leading side edge 4b of the bag 4 at the free end of the roll protrudes sufficiently to be reached by the bag loading clamps 124. If the type of product is being changed from a product previously stored in a particular vender 20, a label on the vender 20 may be changed to identify the new product, and/or the product identification may be recorded in the processor to be displayed on the control panel interface 60. The service person closes and locks the door 16 of the housing 12.
A purchaser who desires to purchase product selects the bulk vender module 20 (for example by number, product name, image or otherwise), as prompted by the display of the control panel interface 60, by touching the appropriate region of the control panel interface 60. The purchaser can select the same bulk vender module 20 multiple times to purchase a plurality of metered dispensing amounts of the same type of product, and/or other bulk vender modules 20 containing other products sought to be purchased as part of the product mix. When the purchaser is finished selecting (indicated for example by the purchaser touching a particular region of the control panel interface 60 displaying an ‘OK’ key or another end-of-sequence indicator), the control panel interface 60 displays the amount of money required to pay for the selected product. The user inserts the required amount of coinage into a coin slot 63a, or a bill of a sufficient denomination into the bill accepter slot 63b, or a card such as a credit card, debit card or gift card into the card reader slot 62, in order to make payment. When the correct amount of money for the selected amount of bulk product has been inserted (or the credit card or debit card payment has been made via card acceptor 62 and authorized), the vending machine dispensing cycle is initiated.
In the preferred embodiment, during the dispensing cycle the processor generates a vending sequence which loads a bag 4 into the shuttle 2, prints product identifying and/or nutritional information and/or other information or indicia onto the bag 4 (or onto a separate label), opens the bag 4, and then moves the shuttle 72 to a position beneath each selected vender 20 in the processor-generated sequence, and at the end of the dispensing sequence returns the shuttle 72 to the home position shown in
To load the bag 4 onto the shuttle 72, the upstream and downstream pinch rollers 110, 112 are actuated to move the bag 4 downstream until the leading side edge 4b of the bag 4 is disposed between the respective jaws of the bag loading clamps 124, which are preferably biased to the open position. The bag loading clamps 124 are then actuated to the clamping position by actuators 126, to clamp the leading side edge 4b of the bag 4. Clamp transport motors 122 are actuated to draw the bag 4 laterally across the face 72a of the shuttle 72 by rotation of the clamp transport spindles 120 within the threaded bores extending through the bag loading clamps 124, while the pinch rollers 110, 112 rotate in the forward (loading) direction, paying off the roll of bags as the leading bag 4 is being loaded.
When the score line 4c between the bag 4 being loaded and the next upstream bag 3 in the roll passes the upstream pinch rollers 110, as shown in
Once the bag 4 is fully extended across the front face 72a of the shuttle 72, the upstream bag retaining clamp 130 is actuated and depresses the trailing (upstream) side edge 4b of the bag 4 against the face 72a of the shuttle 72, to retain the bag 4 in position during printing and filling, as shown in
When the printing operation is complete, the bag opening device 140 is moved to the bag opening position, with the suction cup 142 contacting the front panel of the bag 4. The suction cup 142 grabs the front panel of the bag 4 and the suction device 140 is retracted to open the bag, as shown in
Once the loaded bag 4 is opened, the processor begins to drive the shuttle 72 in sequence to a position beneath (i.e. in substantially vertical alignment with) each selected bulk vender module 20. The processor drives shuttle drive motor 82, which rotates the shuttle transport spindle 80 as necessary to position the shuttle beneath the first of the bulk vender modules 20 in the vending sequence. Once the shuttle 72 reaches this position, the processor initiates a dispensing cycle of the bulk vender module 20 disposed above the shuttle 72 (and thus above the opening of the bag 4).
The processor starts dispensing drive motor 50 to rotate the driveshaft 52 through the required number of rotations to dispense the selected amount of bulk product from the bin 20. For example, the drum gear 38, and thus the drum 32, rotates through one full rotation with each dispensing cycle. With each dispensing cycle, the predetermined metered amount of bulk product in the product bin 22 is captured in the dispensing slot 34 as shown in
As the drum 32 moves from the home position shown in
The drum 32 returns to the home position, in the embodiment illustrated with the dispensing slot 34 in communication with the product in the product bin 22, to end the dispensing cycle for that particular vender 20.
When the processor determines that the first vender 20 in the vending sequence has completed its dispensing cycle, which may be accomplished in any suitable fashion including, without limitation, by monitoring the rotational progress of the dispensing mechanism or receiving a pulse from a limit switch (not shown), the processor moves the shuttle 72 to a position beneath the next bulk vender module 20 in the vending sequence, and the filling process is repeated. For each selected product, once the shuttle 72 is correctly positioned beneath the respective bulk vender module 20 containing that product, the dispensing drive motor 50 associated with that bulk vender module 20 rotates through the required number of rotations to dispense the purchased amount of bulk product into the opening of the bag 4.
The shuttle 72 may be positioned beneath each selected bulk vender module 20 in sequence (i.e. moving in a single direction), or may move back and forth between venders 20 in the order selected by the user or in a random order to increase the “entertainment” provided by the vending sequence (particularly to children). The processor monitors the current position of the shuttle 72, and the transport spindle drive motor 82 rotates the transport spindle 80 through the required number of turns in the required direction in order to reposition the shuttle 72 beneath the next bulk vender module 20 in the sequence. A spring-loaded support bar 77 may be provided on the face 72a of the shuttle 72, to assist in supporting the bag 4 as it is being filled.
Once all bulk vender modules 20 have dispensed their respective product as selected by the purchaser into the loaded bag 4, completing the vending sequence, the shuttle 72 returns to its home position and the bag 4 is closed, for example by pressure applied by opposed closing rails 146 against a ‘zipper’ closure integrated into the top of the bag 4, and thus hermetically seal the bag 4 for dispensing to the purchaser, as shown in
Once the filled bag 4 has been sealed, the shuttle 72 returns to the home position shown in
In one embodiment, shown in
As the user enters selections into the control panel interface 60, the selections correspond to indicia stored in the processor memory. The processor comprises a print driver, which tasks the print head 69 to print indicia corresponding to each selection made by the user onto the bag as shown in
The arm 302 comprises a lifting portion 302a having releasable attachment elements 304, such as suction cups, for lifting the top bag 5 in the stack. The arm 302 pivots to the loading position, carrying a bag 5 and positioning the bag 5 in the loaded position against the face of the shuttle 306. Clamps 308 are closed to grip the sides of the bag 5 and maintain it in position during the printing, filling and sealing processes.
The shuttle 306 travels along a track, such as track 76 illustrated in
One embodiment of a depletion detection system is shown in
A further embodiment of a depletion detection system is shown in
In one embodiment the depletion detection system comprising LEDs 150 and optical receivers 152 shown in
In the embodiment illustrated in
A secondary agitator 278 is disposed along the floor 248 of the product bin 242, toward the rear of the product bin. The secondary agitator 278 shown has a low profile, comprising blades 278a extending generally radially from a hub 278b, and serves to ensure that product resting on the floor 248 of the product bin 242 is agitated as the dispensing wheel 270 is rotated, and as such moves down the inclined floor 248 of the product bin 242 toward the dispensing wheel 270 each time product is purchased rather than stagnating in the upper portion of the inclined floor 248.
The dispensing wheel 270, primary agitator 274 and secondary agitator 278 are preferably (but not necessarily) driven by a common drive assembly 290 in the bulk vendor unit 240 shown, as illustrated in
Optionally the rear end of the drive shaft 292 is provided with a clutch mechanism 310 which locks the drive shaft 292 in specific positions, for example at 90° intervals, when the bulk vendor unit 240 is pulled forward to the servicing position shown in
In the preferred embodiment, a compartment extending partly or completely down the front of the product bin 42 and isolated from product in the remainder of the product bin 42 by a divider 43 is filled with product, which makes the product bin 42 look full from the front of the vending machine 10 (and thus more appealing to users) and identifies the specific product contained in that specific bulk vendor unit 40.
The vending machine 10 may comprise bulk venders 20 as shown, or other types of vendors and any combination thereof. For example, one or more vender modules may comprise the ribbon vender 18 described and illustrated in PCT Patent Application Serial No. PCT/CA2008/001486, which is incorporated herein by reference, with the packaged product stored beneath the vender module for dispensing as shown in
In some embodiments the display 61 may provide an “attract” mode to attract purchasers to the vending machine 10. The processor may be provided with software for playing a video game via the display 61, with suitable interfaces for the purchaser such as a joystick, motion sensors or the like.
Various embodiments of the present invention having been thus described in detail by way of example, it will be apparent to those skilled in the art that variations and modifications may be made without departing from the invention.
Number | Date | Country | Kind |
---|---|---|---|
2,753,719 | Sep 2011 | CA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2012/000902 | 9/28/2012 | WO | 00 | 3/20/2014 |