1. Field of the Invention
The present invention relates to vending machine locks.
2. Description of Related Art
Prior art vending machine locks have been known to be subject to vandalism, for example, by drilling. In addition, many of the prior art vending machine locks provide poor access control. Several other shortcomings also exist. It is therefore an object of the present invention to provide an improved vending machine lock.
According to an aspect of the invention, a wireless lock assembly is provided. The lock assembly includes a latch assembly that includes a wireless, electrically operated latching component, and a manually movable latching component. The wireless, electrically operated latching component is movable between activated and inactivated positions. The electrically operated latching component will remain in the activated position for a predetermined period of time, after which it will return to the inactivated position. The lock assembly also includes a handle assembly that is manually movable from a non-enabled position into an enabled position when the electrically operated latching component is moved to its activated position. When the handle assembly is in its enabled position, it can be manually moved so as to move the manually movable latching component from a locking condition to a releasing condition. The handle assembly can be manually moved from its non-enabled position to its enabled position by manual engagement and depression of an exposed surface portion thereof.
According to an aspect of the invention, a wireless lock assembly for being mounted on a vending machine door and for locking the vending machine door to a vending machine body is provided. The wireless lock assembly includes a latch assembly that includes a wireless, electrically operated latching component, and a manually movable latching component. The manually movable latching component includes a bolt that is engageable with a bolt receiver to be carried by the vending machine body. The lock assembly also includes a handle assembly that includes a handle portion. The handle assembly is manually movable between a non-enabled position in which the handle portion is retracted, and an enabled position in which the handle portion is extended. When the handle portion is extended, it can be manually engaged and moved in a predetermined manner. The handle portion is operatively connected with the manually movable latching component so that manual movement of the handle component in the predetermined manner will operate to move the bolt in a disengaged relation with the bolt receiver. The handle portion can be manually moved from being retracted to being extended when the electrically operated latching component has been actuated. The handle portion is retained in said retracted position by a detent and is moved to the extended position by a spring in response to manual release of the detent.
According to an aspect of the invention, a wireless lock assembly is provided. The wireless lock assembly includes a latch assembly that includes a wireless, electrically operated latching component, and a manually movable latching component. The lock assembly also includes a handle assembly that has a manually engageable portion. The manually engageable portion is manually rotatable to generate rotational movement of the manually movable latching component from a locking condition to a releasing condition after the electrically operated latching component is wirelessly activated. The manually engageable portion is formed from hardened steel and is devoid of any key hole or key contacting region.
According to an aspect of the invention, a wireless lock assembly is provided. The lock assembly includes a latch assembly that includes a solenoid and a wireless signal receiving circuit which operates the solenoid. The latch assembly further includes a manually movable locking bolt. The solenoid is movable from an inactivated position to an activated position for a predetermined period of time upon receipt of a signal from the circuit, after which the solenoid returns to the inactivated position. The lock assembly also includes a handle assembly that includes a detent and a manually engageable portion. The detent normally retains the manually engageable portion in a non-enabled position and the detent permits the manually engageable portion to be manually moved to an enabled position when the solenoid is moved to its activated position. When the manually engageable portion is moved to the enabled position, it can be manually rotated so as to move the locking bolt from a locking condition to a releasing condition. The manually engageable portion can be manually moved from its non-enabled position to its enabled position by manual engagement and depression thereof.
According to an aspect of the invention, a wireless lock assembly is provided. The lock assembly includes a latch assembly that includes a solenoid and a wireless signal receiving circuit which operates the solenoid. The latch assembly further includes a manually movable locking bolt. The solenoid is movable from an inactivated position to an activated position for a predetermined period of time upon receipt of a signal from the circuit, after which the solenoid returns to the inactivated position. The lock assembly also includes a handle assembly that includes a solenoid engaging portion and a manually engageable portion. The solenoid engaging portion is configured to receive a portion of the solenoid to normally retain the manually engageable portion in a non-enabled position and the manually engageable portion is configured to be manually moved to an enabled position when the solenoid is moved to its activated position. When the manually engageable portion is moved to the enabled position, it can be manually rotated so as to move the locking bolt from a locking condition to a releasing condition. The manually engageable portion can be manually moved from its non-enabled position to its enabled position by manual engagement and depression thereof.
These and other aspects, features, and advantages of the invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are part of this disclosure and which illustrate, by way of example, the principles of this invention.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, and in which:
The lock assembly 100 according to an embodiment of the present invention comprises, among other components, a latch assembly 102 and a handle assembly 104.
The latch assembly 102 includes a steel case shell 106, which houses a solenoid assembly 108. The solenoid contains coil windings, which, when energized, creates an electromagnetic field that drives an internal plunger 111 (see
A locking bolt assembly 112, shown in greater detail in
The driver portion 116 has a “double D” cross-sectional configuration and extends through a central aperture in a nylon washer 132 (see
As best seen in
The stem portion 142 of the handle member 140 is essentially cylindrical and hollow in shape and defines an opening 143, with a flattened internal surface portion 145, as shown in
The stem portion 142 carries therein a cam spring 147, having one end 150 bearing against an inner surface of the handle member 140, and an opposite end 152 bearing against end surfaces 154 of a cam member 156. The stem portion 142 also contains a detent member 160. As will be described, the detent member 160 is capable of limited movement in a direction along axis A in
When the lock assembly 100 is at rest in a locking configuration, an upper end 174 of the detent member extends through a side opening 176 in stem portion 142, and at least partially extends through an aligned opening 178 in the case shell 106 (see
In addition, when the lock assembly 100 is at rest in a locking condition, the threads 114 of bolt portion 113 threaded to receiving threads within the vending machine to prevent axial movement of the bolt portion 113, and to lock the door that carries the lock assembly 100. The coil spring 128 (see
When the solenoid assembly 108 is activated, it forces the plunger 111, and hence plunger attachment 110, to the left in
At this point, the user may elect to manually engage the front surface 204 (see
As a result of handle member 140 being manually forced inwards (towards the right in
The detent member 160 is moved down sufficiently so that the upper end 174 thereof moves out of locking engagement with the side surface 198 in the side opening 178 of case shell 106. When the handle member 140 is released, the detent member 160 rides back up the ramp, but not enough to allow it to engage the slot in the case. With the solenoid assembly powered, the plunger attachment 110 remains displaced keeping the cam 156 displaced as the handle 140 is released. This minimizes the travel of the detent on the ramp sufficiently to keep it from re-locking as the handle is opened.
When manual inward force to the handle member 140 is released, the detent member 160 remains down (it does start to move back “up,” but not enough to engage the case) and the handle member is pushed outwardly along axis B (to the left in
The user is then able to rotate the handle member 140 in a counterclockwise direction. This rotation is translated to the locking bolt 112, through the insert 188. Specifically, the peripheral configuration of insert 188 cooperates with the inner surface configuration of handle stem portion 142, with one end 189 of the insert 188 (the lower end in
In one embodiment, an anti-drill protective sleeve 210 (shown in
A bolt spring 212, washer 214, and e-clip 216 are placed on the assembly to absorb the energy imparted to the entire assembly when the door is “slammed closed.” As the door of a vending machine is closed, the bolt 112 is forced into engagement with its mating nut on the body of the machine. The impact of this collision can be substantial depending on the velocity imparted to the door. To negate this energy, the design allows the bolt relative movement to the case along its axis. As this movement occurs, the e-clip 216 attached to the bolt 112 presses against a washer 214 which in turn compresses a spring 212 against the end of the case. Ultimately the kinetic energy generated by the impact is converted to potential energy in the spring 212, keeping the energy dissipation from occurring in the other components of the assembly.
In one embodiment, the solenoid assembly 108 is operated upon an appropriate electrical signal received from a wireless micro-circuit 300 which is electrically communicated with the solenoid. The solenoid assembly 108 and wireless micro-circuit 300 together form an electrically operated latching component 310, as shown in
In one embodiment, the micro-circuit 300 maintains the solenoid assembly 108 energized for a predetermined period of time, such as 8-15 seconds, and more preferably 10 seconds. As a result, if within this predetermined period the operator does not apply manual force to the front surface 204 of the handle member 140, the operator will not subsequently be able to manually release the lock unless the solenoid is re-energized again. That is, when the solenoid is energized, the cam member 156 is axially forced along axis B by the solenoid plunger. The cam member moves so that the slots 164 are positioned such that the side flanges 162 are at intersection of the slots 164 and cam ramp 202. In this position, the lock assembly is not unlocked, but is in a position that enables manual unlocking by pushing the front surface 204 inwards so that the detent member 160 is moved towards the solenoid and the side flanges 162 are forced along cam ramp 202 so as to move the detent member 160 inwards relative to the handle member 140, along axis A, into the unlocking position thereof. However, if the front surface 204 of the handle member 140 is not pushed in within the predetermined period of time during which the solenoid remains activated (e.g., 8-15 seconds), then the solenoid will return to its original state, and the cam member 156 will move therewith so that the side flanges 162 are positioned closer towards the open end of the slots 164, away from cam ramp 202. Thus, manual force applied to front surface 204 after the predetermined activation period will have no effect on the lock assembly 100. As a result, inadvertent actuation of the solenoid by service personnel (e.g., when leaving the vending machine) will not enable unlocking of the lock assembly by the public because the lock assembly 100 will automatically return to a state in which it cannot be manually unlocked with a short time period.
Another embodiment of a lock assembly 400 is shown in
The handle 402 is preferably made from hardened steel, and may have a chrome finish. The handle 402 has a generally “T” shaped configuration, with a stem portion 408 and a hand engaging portion 410, as shown in
The latch assembly 404 includes a case shell 412 that is configured to receive a pair of solenoids 414. The solenoids 414 are disposed on opposite sides of a longitudinal axis 416 that extends through the case shell 412. The case shell 412 receives the stem portion 408 of the handle 402 at one end, and the locking bolt assembly 406 at an opposite end, as shown in
The locking bolt assembly 406 includes a bolt 418 that has threads 420 on an exterior surface thereof, and a coupler 422 that is connected to the bolt 418 at one end and to a driver 424 at an opposite end. The coupler 422 and the case shell 412 are constructed and arranged so that the coupler 422 may be connected to the case shell 412 with a clip 425. As shown in
As shown in
The driver 424 may be connected to the coupler 422 via a pin 436. As shown in
The handle 402 may be connected to the driver 424 via a pin 444, as shown in
Each solenoid 414 includes a coil 450, a plunger 452, and a spring 454. The spring 454 biases the plunger 452 outward from the coil 450. When the coil 450 is energized, which will be discussed in further detail below, the plunger 452 overcomes the bias of the spring 454 and retracts into the coil 450. As described above, each solenoid 414 is placed in the case shell 412. A casing 456 may be used to cover the solenoids 414 and a substantial portion of the case shell 412. The casing 456 may be a single piece, or may be a plurality of pieces, as shown in
Each plunger 452 is configured to engage a solenoid engaging portion 458 in the stem portion 408 of the handle 402, thereby locking the handle 402 in a locked position relative to the case shell 412. The solenoid engaging portion may be a recess, or an opening. The illustrated embodiment is not intended to be limiting in any way. When the coils 450 are initially energized, the plungers 452 may not be able to retract into the coils 450 because of a shear force that is present between the plungers 452 and the stem portion 408 of the handle 402, due to the biasing force of the spring 440 on the driver 424 and handle 402. Pushing the handle 402 against the bias of the spring 440 relieves the shear force, thereby allowing the plungers 452 to retract into the coils 450.
Once the plungers 452 have disengaged from the solenoid engaging portions 458, the hand engaging portion 410 of the handle 402 may be grasped by the user and pulled outward and away from the case shell 412 so that the user may then more easily rotate the handle 402, thereby causing rotation of driver 424, the coupler 422, and the bolt 418. The handle 402 may be rotated until the bolt 418 unscrews from the remainder of the vending machine. Once the bolt 418 has been unscrewed, the door of the vending machine may be opened. To relock the vending machine, the user may close the door, grasp the handle 402, rotate the handle 402 so that the bolt 418 reengages the matching threads in the machine and secure the door in a closed position. When the bolt 418 is fully reengaged, the solenoid engaging portions 458 in the stem portion 408 of the handle realign with the plungers 452 of the solenoids 414 that are no longer energized. The biasing force of the springs 454 on the plungers 452 move the plungers 452 to engage the solenoid engaging portions 458, thereby locking the handle 402 in place.
In an embodiment, the solenoids 414 may be energized upon an appropriate signal received from a wireless micro-circuit 462. The micro-circuit 462 may be attached to the case shell 412 with an adhesive 464, as shown in
In an embodiment, the micro-circuit 462 maintains the solenoids 414 in an energized state for a predetermined period of time, such as 8-15 second, and more preferably 10 seconds. As a result, if within this predetermined period of time the user does not apply the manual force to the handle 402 to relieve the shear force between the plungers 452 and the solenoid engaging portions 458 in the stem portion 408 of the handle 402, the user will not subsequently be able to manually release the bolt 418 unless the solenoids are re-energized again. This ensures that the lock assembly 400 will relock in a short period of time, even if the user accidentally energized the solenoids 414. Many of the tamper resistant attributes described above may also be used in the lock assembly 400 shown in
The scope of the present invention is not limited to the above described non-limiting embodiments, but is encompassed by the following claims and equivalents.
This application claims the benefit of priority from U.S. Provisional Patent Application No. 60/655,724, filed Feb. 24, 2005, the entire content of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60655724 | Feb 2005 | US |