Venous valve, system, and method with sinus pocket

Information

  • Patent Grant
  • 8460365
  • Patent Number
    8,460,365
  • Date Filed
    Friday, May 27, 2011
    13 years ago
  • Date Issued
    Tuesday, June 11, 2013
    11 years ago
Abstract
A valve with a frame and valve leaflets that provide a sinus pocket. The valve provides for unidirectional flow of a liquid through the valve.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates to vascular medical devices, systems and methods; and more particularly to venous valves including a venous valve frame, and methods for forming and using the venous valve frame.


BACKGROUND OF THE DISCLOSURE

The venous system of the legs uses valves and muscles as part of the body's pumping mechanism to return blood to the heart. Venous valves create one way flow to prevent blood from flowing away from the heart. When valves fail, blood can pool in the lower legs resulting in swelling and ulcers of the leg. The absence of functioning venous valves can lead to chronic venous insufficiency.


Techniques for both repairing and replacing the valves exist, but are tedious and require invasive surgical procedures. Direct and indirect valvuoplasty procedures are used to repair damaged valves. Transposition and transplantation are used to replace an incompetent valve. Transposition involves moving a vein with an incompetent valve to a site with a competent valve. Transplantation replaces an incompetent valve with a harvested valve from another venous site.


Prosthetic valves can be transplanted into the venous system, but current devices are not successful enough to see widespread usage. One reason for this is the very high percentage of prosthetic valves reported with leaflet functional failures. These failures have been blamed primarily on improper sizing and tilted deployment of the prosthetic valve. In addition, a great number of leaflets of the prosthetic valves ultimately become fused to the vein wall.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B illustrate an embodiment of a venous valve according to the present disclosure.



FIGS. 2A and 2B illustrate an end view of embodiments of a venous valve according to the present disclosure.



FIGS. 3A-3E illustrate embodiments of valve frame configurations according to the present disclosure.



FIG. 4 illustrates an embodiment of a system that includes a valve according to the present disclosure.



FIG. 5 illustrates an embodiment of a system that includes a valve according to the present disclosure.



FIGS. 6A, 6B and 6C illustrate an embodiment of a system that includes a valve according to the present disclosure.



FIGS. 7A, 7B and 7C illustrate an embodiment of a system that includes a valve according to the present disclosure.



FIGS. 8A, 8B and 8C illustrate an embodiment of a system that includes a valve and a catheter having radiopaque markers according to the present disclosure.





DETAILED DESCRIPTION

Embodiments of the present disclosure are directed to vascular medical devices, systems and methods for valve replacement and/or augmentation. Particularly, the present disclosure provides venous valve frames, venous valves that utilize the venous valve frames, and methods for forming and using the venous valve frame and the venous valve. Various embodiments of the present disclosure can be used to replace and/or augment an incompetent valve in a body lumen.


Embodiments of the venous valve include a venous valve frame and valve leaflets that can be implanted through minimally-invasive techniques into the body lumen. In one example, embodiments of the apparatus, system, and method for valve replacement or augmentation may help to maintain antegrade blood flow, while decreasing retrograde blood flow in a venous system of individuals having venous insufficiency, such as venous insufficiency in the legs. Use of valve embodiments can also be possible in other portions of the vasculature.


The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. For example, 110 may reference element “10” in FIG. 1, and a similar element may be referenced as 210 in FIG. 2. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of valve. In addition, discussion of features and/or attributes for an element with respect to one Fig. can also apply to the element shown in one or more additional Figs. Embodiments illustrated in the figures are not necessarily to scale.



FIGS. 1A and 1B provide illustrations of various embodiments of a venous valve 100 of the present disclosure. The venous valve 100 can be implanted within the fluid passageway of a body lumen, such as for replacement and/or augmentation of a valve structure within the body lumen (e.g., a venous valve). In one embodiment, the venous valve 100 of the present disclosure may be beneficial to regulate the flow of a bodily fluid through the body lumen in a single direction.



FIGS. 1A and 1B illustrate one embodiment of the venous valve 100. Venous valve 100 includes a venous valve frame 102 and valve leaflets 104. In one embodiment, the valve frame 102 and the valve leaflets 104 of the venous valve 100 can resiliently radially collapse and expand, as will be described herein. Among other things, the valve frame 102 and the valve leaflets 104 define a lumen 106 of the venous valve 100. The lumen 106 allows for, amongst other things, fluid (e.g., blood) to move through the venous valve 100.


The valve frame 102 includes a first end 108 and a second end 110 opposite the first end 108. The first end 108 and the second end 110 define a length of the valve frame 102 and of the venous valve 100. In one embodiment, the length of venous valve 100 can have a number of values. As will be appreciated, the length of venous valve 100 can be determined based upon the location into which the venous valve 100 is to be implanted. In other words, the length of the venous valve 100 can be patient specific. Examples of values for the length include, but are not limited to, 20 millimeters to 80 millimeters. Other values are also possible.


The valve frame 102 can be formed in a wide variety of configurations. For example, the valve frame 102 can include a first structural member 112 and a second structural member 114 that together form a unitary structure with an open frame configuration. In one embodiment, the first structural member 112 defines an elongate base portion 116 that extends between the first end 108 and the second end 110 of the valve frame 102. As illustrated, the first structural member 112 defines openings through the valve frame 102 to provide at least a portion of the open frame configuration.


In addition, the first structural member 112 also defines a first perimeter value for the elongate base portion 116. In one embodiment, the first perimeter value can be essentially constant for the length of the valve frame 102. In other words, the outer limit of the area defined by the elongate base portion 116 remains essentially constant along the length of the valve frame 102. For example, an outer surface 118 of the first structural member 112 can define a circular cross-sectional area for the elongate base portion 116. As will be appreciated, other cross-sectional shapes are also possible, including but not limited to oval or elliptical.


In an alternative embodiment, the perimeter value changes along the length of the valve frame 102. For example, the outer surface 118 of the first structural member 112 can change from a first cross-sectional area having a first value for the elongate base portion 116 adjacent the first end 108 and the second end 110 to a second cross-sectional area having a second value larger than the first value. In one embodiment, the second cross-sectional area of the outer surface 118 of the first structural member 112 can, in conjunction with the second structural member 114 provide for a circular or round cross-sectional shape. Other cross-sectional shapes are also possible.


In an additional embodiment, the second structural member 114 helps to define a bulbous portion 120 of the valve frame 102. As illustrated, the second structural member 114 extends radially and longitudinally from the outer surface 118 of an area 122 defined by the first structural member 112 to form the bulbous portion 120. In one embodiment, the second structural member 114 helps to define a second perimeter value for the bulbous portion 120, where second perimeter value can be is greater than the first perimeter value.


As illustrated, the outer surface 118 of the first and second structural members 112, 114 can provide a perimeter of the bulbous portion 120 and the elongate base portion 116 having a predefined shape. For example, the first structural member 112 can define a first axis 124 of an elliptical shape and the second structural member 114 can define a second axis 126 of the elliptical shape. In one embodiment, the length of the second axis 126 can be at least twenty percent (20%) greater than the length of the first axis 124. In an additional embodiment, the length of the second axis 126 can be twenty percent (20%) to fifty percent (50%) greater than the length of the first axis 124. In a further embodiment, the length of the second axis 126 can be forty percent (40%) to forty-two percent (42%) greater than the length of the first axis 124.


In an additional embodiment, the length of the second axis 126 can be one (1) to four (4) millimeters greater than the length of the first axis 124. As will be more fully discussed herein, this allows for a gap of one-half (0.5) to two (2) millimeters to be maintained between a free edge of the valve leaflets 104 in their open configuration and the valve frame 102. In one embodiment, the length of the gap between each leaflet 104 and the valve frame 102 can be, but is not necessarily, equal.


In an additional example, the perimeter of the bulbous portion 120 and the elongate base portion 116 can have a round shape. For example, the first axis 124 of the first structure member 112 and the second axis 126 of the second structural member 114 can be essentially of equal length along the bulbous portion 120.



FIGS. 2A and 2B illustrate embodiments of the venous valve 200 according to the present disclosure. The embodiments illustrated in FIGS. 2A and 2B are end views of the venous valve illustrated in FIG. 1A taken along lines 2A-2A/2B-2B. As discussed herein, FIG. 2A illustrates the venous valve 200 where the first structural member 212 defining the first axis 224 and the second structural member 214 defining the second axis 226 provide an elliptical shape for the bulbous portion 220 of the valve frame 202. FIG. 2B illustrates the venous valve 200 where the first structural member 212 defining the first axis 224 and the second structural member 214 defining the second axis 226 provide a round shape for the bulbous portion 220 of the valve frame 202.


In addition, the first structural member 112 at each of the first end 108 and the second end 110 can include a first curve 128 and a second curve 130 opposite the first curve 128. In one embodiment, the first structural member 112 forming the first and second curve 128, 130 can move radially as the valve 100 radially collapses and expands. In the various embodiments described herein, the first and second curve 128, 130 can provide a spring force (e.g., elastic potential energy) to counter radial compression of the frame valve 102 towards its uncompressed state. As will be appreciated, the first and second curve 128, 130 can have a number of configurations, including turns defining angles and/or arcs (e.g., having a radius of curvature). Additional spring force can be imparted to the frame 102 from the compression of other portions of the valve frame 102 as well.


In one embodiment, the first and second curve 128, 130 at each of the ends 108, 110 can lay opposite each other on a respective plane that is parallel to the other plane. In addition, the first and second curve 128, 130 of the first end 108 can be positioned radially orthogonal to the first and second curve 128, 130 of the second end 110 of the base portion 116. As will be appreciated, the first and second curve 128, 130 at each of the ends 108, 110, however, need not either lay on planes that are parallel relative each other and/or be positioned radially orthogonal to each other.


The compressible nature of the valve 100 can accommodate changes in body lumen size (e.g., diameter of the body lumen) by flexing to expand and/or contract to change the diameter of the valve frame 102. In one embodiment, the first and second curve 128, 130 in the first structural member 112 can act as springs to allow the valve 100 to resiliently radially collapse and expand. The frame 102 can also provide sufficient contact and expansion force with the surface of a body lumen wall to encourage fixation of the valve 100 and to prevent retrograde flow within the body lumen around the edges of the frame 102 and the surface of a lumen when combined with a closed state of the valve leaflets attached thereto. Anchoring elements (e.g., barbs) can also be included with valve 100.


As will be appreciated, the first and second curve 128, 130 in the first structural member 112 can also include, but are not limited to, other shapes that allow for repeatable travel between the collapsed state and the expanded state. For example, the elastic regions can include integrated springs having a circular or an elliptical loop configuration. The embodiments are not, however, limited to these configurations as other shapes are also possible.


The first structural member 112 forming the first and second curve 128, 130 can also include a radial flare 132 that curves away from a center longitudinal axis 134. As illustrated, the radial flare 132 provides for an increase in the peripheral frame dimension at the first end 108 and/or the second end 110 of the valve frame 102. In one embodiment, the first structural member 112 can be pre- and/or post-treated to impart the radial flare 132. For example, the first structural member 112 forming the first and second curve 128, 130 of the valve frame 102 could be bent to impart the radial flare 132. The frame 102 could then be heat treated so as to fix the radial flare 132 into the first structural member 112. Other material treatments (e.g., plastic deformation, forging, elastic deformation with heat setting) are also possible to impart the radial flare as described herein, many of which are material specific.


The first structural member 112 and/or the second structural member 114 of the valve frame 102 can have similar and/or different cross-sectional geometries and/or cross-sectional dimensions along their length. The similarity and/or the differences in the cross-sectional geometries and/or cross-sectional dimensions can be based on one or more desired functions to be elicited from each portion of the frame 102. For example, the first structural member 112 and/or the second structural member 114 can have a similar cross-sectional geometry along its length. Examples of cross-sectional geometries include, but are not limited to, round (e.g., circular, oval, and/or elliptical), rectangular geometries having perpendicular sides, one or more convex sides, or one or more concave sides; semi-circular; triangular; tubular; I-shaped; T-shaped; and trapezoidal.


Alternatively, the cross-sectional dimensions of one or more geometries of the first structural member 112 and/or the second structural member 114 can change from one portion of the frame 102 to another portion of the frame 102. For example, portions of the first structural member 112 and/or the second structural member 114 can taper (i.e., transition) from a first geometric dimension to a second geometric dimension different than the first geometric dimension. These embodiments, however, are not limited to the present examples as other cross-sectional geometries and dimension are also possible. As such, the present disclosure should not be limited to the frames provided in the illustration herein.


The valve frame 102 further includes a valve leaflet connection location 136 along the first structural member 112 of the valve frame 102. In one embodiment, the valve leaflet connection location 136 includes portions of the first structural member 112 that can define the area 122, as well as surfaces of the first structural member 112 that define openings through the frame 102. For example, the first structural member 112 can include surfaces that define a first opening 138 and a second opening 140 for the valve leaflet connection location 136. In one embodiment, the first and second openings 138, 140 are adjacent a region of the bulbous portion 120 of the valve frame 102. The first and second openings 138, 140 are also illustrated as being positioned opposite each other along a common axis 144. In the present illustration, the common axis 144 is along the first axis 124 of the shape (e.g., elliptical, round) formed by the first and second structural member 112, 114.


In an additional embodiment, the valve leaflet connection location 136 further includes a predefined portion 146 along the first structural member 112 to which the valve leaflets 104 can be attached. As illustrated, the predefined portion 146 includes a portion of the first structural member 112 that extends between the first and second openings 138, 140 in the region of the bulbous portion 120. In one embodiment, the valve leaflets 104 can be coupled to the valve frame 102 through the first and second openings 138, 140 and the predefined portion 146 of the first structural member 112.


In addition to allowing the valve leaflets 104 to be coupled to the valve frame 102, the valve leaflet connection location 140 can also include predetermined dimensional relationships between portions of the valve leaflet connection location 136. For example, predetermined dimensional relationships can exist between the relative positions of the first and second openings 138, 140 and the predefined portion 146 of the first structural member 112. These dimensional relationships can help to better position the valve leaflets 104 in relation to the bulbous portion 120 of the valve frame 102.


For example, as illustrated the predefined portion 146 of the first structural member 112 extends away from the first and second opening 138, 140 to define a distal point 148 from the first and second openings 138, 140. In one embodiment, the distance between the first and second openings 138, 140 and a plane that is both orthogonal to the center longitudinal axis 134 and in contact with the distal point 148 is a predetermined length having a value of eighty-five percent (85%) of distance of the second axis 126.


In one embodiment, the valve leaflets 104 include a first valve leaflet 150 and a second valve leaflet 152. As illustrated, the first and second valve leaflets 150, 152 are connected to the valve leaflet connection location 136. The first and second valve leaflet 150, 152 have surfaces that define a commissure 154 that reversibly opens and closes for unidirectional flow of a liquid through the venous valve 100. As used herein, the commissure 154 includes portions of the valve leaflet 104 surfaces that reversibly form a connection to allow fluid to flow through the valve 100 in essentially one direction. For example, the surfaces of the first and second valve leaflets 150, 152 can move between a closed configuration in which fluid flow through the lumen 106 can be restricted and an open configuration in which fluid flow through the lumen 106 can be permitted.


In addition, the first and second openings 138, 140 can be radially symmetric around the longitudinal central axis 134 of the valve frame 102. As illustrated, the first and second openings 138, 140 can be positioned approximately one hundred eighty (180) degrees relative each other around the longitudinal central axis 134 of the frame 102. As will be appreciated, the first and second openings 138, 140 need not necessarily display an equally spaced symmetrical relationship as described above in order to practice the embodiments of the present disclosure. For example, the radial relationship can have the first and second openings 138, 140 positioned at values greater than one hundred eighty (180) degrees and less than one hundred eighty (180) degrees relative each other around the longitudinal central axis 134 of the frame 102.


In the present example, the first and second valve leaflet 150, 152 can be coupled, as described more fully herein, to at least the valve leaflet connection location 136 and the predefined portion 146 of the valve frame 102. As illustrated, the valve leaflets 104 include a region 156 of the valve leaflets 104 that can move relative the valve frame 102. The region 156 of the valve leaflets 104 can be unbound (i.e., unsupported) by the frame 102 and extends between the first and second openings 138, 140. This configuration permits the first and second valve leaflet 150, 152 to move (e.g., pivot) relative the first and second openings 138, 140 to allow the commissure 154 to reversibly open and close for unidirectional flow of the liquid through the venous valve 100.


In an additional embodiment, the valve leaflets 104 in their open configuration have a circumference that is less than the circumference of the valve frame 102. For example, as illustrated, the valve leaflets 104 in their open configuration include a gap 158 between a free edge 160 of the first and second valve leaflets 150, 152 and the bulbous portion 120 of the valve frame 102. As discussed herein, the length of the second axis 126 can be one (1) to four (4) millimeters greater than the length of the first axis 124. In one embodiment, this allows for the gap 158 between the free edge 160 of each valve leaflet 104 in their open position to be one-half (0.5) to two (2) millimeters from the bulbous portion 120 of the valve frame 102. In one embodiment, the length of the gap 158 between each leaflet 104 and the valve frame 102 can be, but is not necessarily, equal.


In one embodiment, the first and second valve leaflets 150, 152 and the bulbous portion 120 of the valve frame 102 provide surfaces that define a sinus pocket 162. As illustrated, the sinus pocket 162 provides a dilated channel or receptacle as compared to the elongate base portion 116 of the venous valve 100. In one embodiment, the presence of the sinus pocket 162 better ensures that the valve leaflets 104 do not come into contact with a significant portion of the valve frame 102 and/or the inner wall of the vessel in which the valve 100 is implanted. For example, the sinus pocket 162 can help prevent adhesion between the valve leaflets 104 and the vessel wall due to the presence of a volume of blood there between.


The sinus pocket 162 can also allows for improved valve leaflets 104 dynamics (e.g., opening and closing of the valve leaflets 104). For example, the sinus pocket 162 can allow for pressure differentials across the surfaces of the valve leaflets 104 that provide for more rapid closing of the valve leaflets 104 as the retrograde blood flow begins, as will be discussed herein.


In one embodiment, the free edge 160 of the first and second valve leaflets 150, 152 is adjacent the commissure 154. In one embodiment, the free edge 160 has a surface that defines a curve 164 between the first and second openings 138, 140. The curve 164 also has a bottom 166 relative the first and second openings 138, 140. The free edge 160 can have either a non-planar or a planar configuration. As illustrated, the free edge 160 of the first and second leaflets 150, 152 define the bottom 166 of the curve 164 that is at least a predetermined distance away from the second structural member 114 so as to define the gap 158 between the first and second leaflet 150, 152 and the second structural member 114.


In one embodiment, whether the free edge 160 has a planar or non-planar configuration can depend on what material is selected for forming the valve leaflets 104. For example, when a stiffer material (e.g., PTFE) is used for the valve leaflets 104 the free edge 160 can have more of a concave shape than a planar or straight shape. In other words, as illustrated in FIG. 1A, the free edge 160 transitions from a first position adjacent the first and second openings 138, 140 to a second position lower than the first position as illustrated approximately midway between the first and second openings 138, 140. So, the free edge 160 dips down to a low point approximately midway between and relative to the first and second openings 138, 140. In one embodiment, this shape allows the free edge 160 to form a catenary when the valve leaflets 104 are in their closed position, as illustrated in FIG. 1A. In an alternative embodiment, when an elastic material is used for the valve leaflets 104 the free edge 160 has more of a straight or planar shape. In other words, the free edge 160 maintains essentially the same relative position around the circumference of the valve leaflets 104.


In addition, the dimensions and configuration of the valve leaflets 104 can further include proportional relationships to structures of the valve frame 102. For example, the first and second leaflets 150, 152 can each have a predetermined length between the distal point 148 and the bottom 166 of the curve 164 that is at least fifty percent (50%) greater than a radius of the elongate base portion 116. In one embodiment, this dimensional relationship is taken when the valve leaflets 104 are in their closed position.


In addition to allowing the valve leaflets 104 to be coupled to the valve frame 102, the valve leaflet connection location 136 can also include predetermined dimensional relationships between portions of the valve leaflet connection location 136. For example, predetermined dimensional relationships can exist between the relative positions of the first and second openings 138, 140 and the predefined portion 146 of the first structural member 112. These dimensional relationships can help to better position the valve leaflets 104 in relation to the bulbous portion 120 of the valve frame 102.


In an additional embodiment, a predetermined portion of the surfaces of the valve leaflets 150, 152 that contact to define the commissure 154 can extend parallel to the center longitudinal axis 134 of the venous valve 100 when the valve 100 is in its closed configuration (FIG. 1A). For example, the predetermined portion of the surfaces of the valve leaflets 150, 152 can include twenty percent (20%) of the predetermined length of the valve leaflets 150, 152 between the distal point 148 and the bottom 166 of the curve 164. In other words, at least twenty percent (20%) of the length of the valve leaflet 150, 152 surfaces contact to form the commissure 154.


As will be appreciated, the free edge 160 when the valve leaflets 104 are in their open configuration can have a non-round shape. For example, the free edge 160 can have an eye shape or an oval shape with the second axis extending between the first and second openings 138, 140. As will be appreciated, other shapes for the valve leaflets 104 in their open configuration are also possible, including a round shape.


In one embodiment, under antegrade fluid flow (i.e., positive fluid pressure) from the second end 110 towards the first end 108 of the valve 100, the valve leaflets 104 can expand toward the inner surface 170 of the bulbous portion 120 of the frame 102 to create an opening through which fluid is permitted to move. In one example, the valve leaflets 104 each expand to define a semi-tubular structure having an oval cross-section when fluid opens the commissure 154.


As discussed herein, in the open configuration the gap 158 exists between the free edge 160 of the first and second valve leaflets 150, 152 and the bulbous portion 120 of the valve frame 102. In one embodiment, the size and shape of the valve leaflets 104 provides the gap 158 thereby preventing the valve leaflets 104 from touching the vein wall.


In addition, the size and shape of the valve leaflets 104 along with the gap 158 provides for more responsive opening and closing of the commissure 154 due to hydrodynamic relationships that are formed across the valve leaflets 104. For example, as the leaflets 104 are not in contact with the vessel wall and/or the bulbous portion 120 of the frame 102, the leaflets 104 can be more responsive to changes in the flow direction. The presence of the sinus pocket 162 allows slower moving fluid (e.g., blood) to move into the pocket and faster moving blood on the flow side of the leaflet 104 to create a pressure differential. This pressure differential across the valve leaflets 104 provides for the Bernoulli effect for which an increase in fluid flow velocity there occurs simultaneously a decrease in pressure. So, as fluid flow becomes retrograde the fluid velocity through the opening of the valve leaflets 104 is larger than the fluid flow in the sinus pocket 162. As a result, there is a lower pressure in the opening of the valve leaflets 104 that causes the opening to close more quickly as compared to valves without the sinus pocket 162.


In an additional embodiment, the configuration of the present embodiments allows the leaflets 104 to experience a low shear as compared to angled leaflets which are subject to high shear and direct impact with flowing blood. This can be attributed to the alignment of the valve leaflets 104 with the elongate base portion 116, and the adjacent vein segment, above and below the sinus pocket 162. The sinus pocket 162 also allows for recirculation of blood within the pocket 162 that cleans out potential thrombus buildup in the bottom of the pocket 162.


Valve 100 provides an embodiment in which the surfaces defining the commissure 154 provide a bi-leaflet configuration (i.e., a bicuspid valve) for valve 100. Although the embodiments in FIGS. 1A and 1B illustrate and describe a bi-leaflet configuration for the valve of the present disclosure, designs employing a different number of valve leaflets (e.g., tri-leaflet valve) may be possible. For example, additional connection points (e.g., three or more) could be used to provide additional valve leaflets (e.g., a tri-leaflet valve).


The embodiments of the frame described herein can also be constructed of one or more of a number of materials and in a variety of configurations. The frame embodiments can have a unitary structure with an open frame configuration. The frame can also be self-expanding. Examples of self-expanding frames include those formed from temperature-sensitive memory alloy which changes shape at a designated temperature or temperature range, such as Nitinol. Alternatively, the self-expanding frames can include those having a spring-bias. In addition, the valve frame 102 can have a configuration that allows the frame embodiments be radially expandable through the use of a balloon catheter. In this embodiment, the valve frame can be provided in separate pieces (e.g., two frame pieces) that are delivered individually to the implant site.


The embodiments of the frame 102 can also be formed from one or more contiguous frame members. For example, the first and second structural member 112, 114 of the frame 102 can be formed from a single contiguous member. The single contiguous member can be bent around an elongate tubular mandrel to form the frame. The free ends of the single contiguous member can then be welded, fused, crimped, or otherwise joined together to form the frame. In an additional embodiment, the first and second structural member 112, 114 of the frame 102 can be derived (e.g., laser cut, water cut) from a single tubular segment. In an alternative embodiment, methods of joining the first and second structural member 112, 114 of the frame 102 to create the elastic region include, but are not limited to, welding, gluing, and fusing the frame member. The frame 102 can be heat set by a method as is typically known for the material which forms the frame 102.


The valve frame 102 can be formed from a number of materials. For example, the frame can be formed from a biocompatible metal, metal alloy, polymeric material, or combination thereof. As described herein, the frame can be self-expanding or balloon expandable. In addition, the frame can be configured so as to have the ability to move radially between the collapsed state and the expanded state. Examples of suitable materials include, but are not limited to, medical grade stainless steel (e.g., 316L), titanium, tantalum, platinum alloys, niobium alloys, cobalt alloys, alginate, or combinations thereof. Additional frame embodiments may be formed from a shape-memory material, such as shape memory plastics, polymers, and thermoplastic materials. Shaped memory alloys having superelastic properties generally made from ratios of nickel and titanium, commonly known as Nitinol, are also possible materials. Other materials are also possible.


The lumen 106 can include a number of sizes. For example, the size of the lumen can be determined based upon the type of body lumen and the body lumen size in which the valve is to be placed. In an additional example, there can also be a minimum value for the width for the frame that ensures that the frame will have an appropriate expansion force against the inner wall of the body lumen in which the valve is being placed.


The valve 100 can further include one or more radiopaque markers (e.g., rivets, tabs, sleeves, welds). For example, one or more portions of the frame can be formed from a radiopaque material. Radiopaque markers can be attached to, electroplated, dipped and/or coated onto one or more locations along the frame. Examples of radiopaque material include, but are not limited to, gold, tantalum, and platinum.


The position of the one or more radiopaque markers can be selected so as to provide information on the position, location and orientation (e.g., axial, directional, and/or clocking position) of the valve during its implantation. For example, radiopaque markers can be configured radially and longitudinally (e.g., around and along portions of the first structural member 112) on predetermined portions of the valve frame 102 to allow the radial and axial position of the valve frame 102 to be determined. So in one embodiment a radiograph image of the valve frame 102 taken perpendicular to the valve leaflets 104 in a first clock position can produce a first predetermined radiograph image (e.g., an imaging having the appearance of an inverted “Y”) and a radiographic image taken perpendicular to the first and second openings 138, 140 in a second clock position can produce a second predetermined radiograph image (e.g., an imaging having the appearance of an upright “Y”) distinguishable from the first predetermined radiograph image.


In one embodiment, the first and second predetermined radiograph images allow the radial position of the leaflets 104 to be better identified within the vessel. This then allows a clocking position for the valve 100 to be determined so that the valve can be positioned in a more natural orientation relative the compressive forces the valve will experience in situ. In other words, determining the clocking of the valve as described herein allows the valve to be radially positioned in same orientation as native valve that it's replacing and/or augmenting.


In one embodiment, the material of the valve leaflets 104 can be sufficiently thin and pliable so as to permit radially-collapsing of the valve leaflets 104 for delivery by catheter to a location within a body lumen. The valve leaflets 104 can be constructed of a fluid-impermeable biocompatible material that can be either synthetic or biologic. Possible synthetic materials include, but are not limited to, expanded polytetrafluoroethylene (ePTFE), polytetrafluoroethylene (PTFE), polystyrene-polyisobutylene-polystyrene (SIBS), polyurethane, segmented poly(carbonate-urethane), Dacron, polyethlylene (PE), polyethylene terephthalate (PET), silk, Rayon, Silicone, or the like. Possible biologic materials include, but are not limited to, autologous, allogeneic or xenograft material. These include explanted veins and decellularized basement membrane materials (such as non-crosslinked bladder membrane or amnionic membrane), such as small intestine submucosa (SIS) or umbilical vein. As will be appreciated, blends or mixtures of two or more of the materials provided herein are possible. For example, SIBS can be blended with one or more basement membrane materials.


As described herein, a number of methods exist for attaching the valve leaflets 104 to the valve frame 102. For example, when positioned over the inter surface 114 of the frame 102, the valve leaflets 104 can be secured to the frame members 118 through the use of biocompatible staples, glues, sutures or combinations thereof. In an additional embodiment, the valve leaflets 104 can be coupled to the frame members 118 through the use of heat sealing, solvent bonding, adhesive bonding, or welding the valve leaflets 104 to either a portion of the valve leaflets 104 (i.e., itself) and/or the frame 102.


With respect to coupling the valve leaflets 104 to the first and second openings 138, 140 and the other portions of the valve leaflet connection location 136, the valve leaflets 104 can be passed from the inner surface 170 of the first structural member 112 and wrapped around at least a portion of the outer surface 118 adjacent the first and second openings 138, 140. For example, securing the valve leaflets 104 at the first and second openings 138, 140 can be accomplished by making longitudinal cuts of a predetermined length into the valve leaflets 104 adjacent the first and second openings 138, 140. In one embodiment, each cut creates two flaps adjacent each of the first and second openings 138, 140. The flaps can then pass through the frame adjacent the first and second openings 138, 140 and each of the two resulting flaps can be wrapped from the inner surface 170 around the frame 102 to the outer surface 118. The valve leaflets 104 can then be coupled to itself and/or the frame 102, as described herein. In addition, sutures can be passed through the first and second openings 138, 140 and the valve leaflets 104 so as to secure the valve leaflets 104 to the frame 102. In one embodiment, providing the flaps as described allows for the valve leaflets 104 to create a more fluid tight commissure 154 in the area adjacent the first and second openings 138, 140.


The valve leaflets 104 can have a variety of sizes and shapes. For example, each of the valve leaflets 104 can have a similar size and shape. Alternatively, each of the valve leaflets 104 need not have a similar size and shape (i.e., the valve leaflets can have a different size and shape with respect to each other).


In an additional embodiment, the valve leaflets 104 can include one or more support structures, where the support structures can be integrated into and/or onto the valve leaflets 104. For example, the valve leaflets 104 can include one or more support ribs having a predetermined shape. In one embodiment, the predetermined shape of the support ribs can include a curved bias so as to provide the valve leaflets 104 with a curved configuration. Support ribs can be constructed of a flexible material and have dimensions (e.g., thickness, width and length) and cross-sectional shape that allows the support ribs to be flexible when the valve leaflets 104 are urged into an open position, and stiff when the valve leaflets 104 are urged into a closed position upon experiencing sufficient back flow pressure from the direction downstream from the valve. In an additional embodiment, support ribs can also be attached to frame 102 so as to impart a spring bias to the valve leaflets in either the open or the closed configuration.


As described herein, the valve leaflets 104 can be located over at least the inner surface 170 of the frame 102. FIGS. 1A and 1B illustrate an embodiment of this configuration, where the material of the valve leaflets 104 extends over the inner surface 170 and the outer surface 118 of the first structural member 112 in the valve leaflet connection location 136, as described herein. Numerous techniques may be employed to laminate or bond the material of the valve leaflets 104 on the outer surface 118 and/or the inner surface 170 of the frame 102, including heat setting, adhesive welding, application of uniform force and other bonding techniques. The material of the valve leaflets 104 can also be joined to itself and/or the first structural member 112 according to the methods described in U.S. Patent Application Publication US 2002/0178570 to Sogard et al., which is hereby incorporated by reference in its entirety.


The material can also be coupled to the valve leaflet connection location 136 of the first structural member 112 so as to form the valve leaflets 104, as described herein. In one embodiment, the material for the valve leaflets 104 can be in the form of a sheet or a sleeve of material, as described herein, which can be connected to the frame 102. Alternatively, the material for the valve leaflets 104 can initially be in the form of a liquid that can be used to cast and/or form the valve leaflets 104 over the frame 102. Other forms, including intermediate forms, of the valve leaflets 104 are also possible.


The material of the valve leaflets 104 can be coupled to the valve leaflet connection location 136 of the first structural member 112, including the first and second openings 138, 140, in a variety of ways so as to provide the various embodiments of the valve of the present disclosure. For example, a variety of fasteners can be used to couple the material of the valve leaflets 104 to the frame 102 so as to form the valve 100. Suitable fasteners can include, but are not limited to, biocompatible staples, glues, sutures or combinations thereof. In an additional embodiment, the material of the valve leaflets 104 can be coupled to the frame 102 through the use of heat sealing, solvent bonding, adhesive bonding, or welding the material of the valve leaflets 104 to either a portion of the valve leaflets 104 (i.e., itself) and/or the frame 102.


The valve leaflets 104 may also be treated and/or coated with any number of surface or material treatments. For example, the valve leaflets 104 can be treated with one or more biologically active compounds and/or materials that may promote and/or inhibit endothelization and/or smooth muscle cell growth of the valve leaflets 104. Similarly, the valve leaflets 104 may be seeded and covered with cultured tissue cells (e.g., endothelial cells) derived from a either a donor or the host patient which are attached to the valve leaflets 104. The cultured tissue cells may be initially positioned to extend either partially or fully over the valve leaflets 104.


Valve leaflets 104 can also be capable of inhibiting thrombus formation. Additionally, valve leaflets 104 may either prevent or facilitate tissue ingrowth there through, as the particular application for the valve 100 may dictate. For example, valve leaflets 104 on the outer surface 112 may be formed from a porous material to facilitate tissue ingrowth there through, while valve leaflets 104 on the inner surface 114 may be formed from a material or a treated material which inhibits tissue ingrowth.



FIGS. 3A through 3E provide illustrations of different configurations of the valve frame 302 that have been cut to provide them in a planar view. As illustrated, the valve frame 302 includes the first and second structural members 312, 314 that form the elongate base portion 316 and the bulbous portion 320, respectively. In one embodiment, the first and second structural members 312, 314 of the elongate base portion 316 and the bulbous portion 320 can include a series of interconnected members. These interconnected members, in one embodiment, can act as spring members to help retain the expanded shape of the valve frame 302. In one embodiment, the interconnection of these members allows for the spring force of aligned springs integrated into the frame 302 to be added in series so as to increase the spring force potential of the frame 302.


As illustrated, the first and second structural members 312, 314 can have a number of different configurations that provide the elongate base portion 316 and the bulbous portion 320. As will be appreciated, other configurations are possible that provide the bulbous portion 320 and/or the elongate base portion 316. In addition, the bulbous portion 320 of the valve frame 302 can have a number of different configurations so as to provide the sinus pocket, as discussed herein. For example, the bulbous portion 320 can have one or more of a spherical, semi-spherical, oviod, semi-oviod, conical, semi-conical, torus, semi-torus, cylindrical, and semi-cylindrical. In addition, each of two or more of the sinus pockets of the valve frame 302 can have different shapes as discussed herein. In other words, the need not have the same shape as the other sinus pocket of the valve frame 302.


In addition, the first and second structural members 312, 314 can each have two or more cross-sectional shapes and/or two or more different dimensions (e.g., a greater width and depth of the first and second structural members 312, 314 for the portions of the elongate base portion 316 and/or the bulbous portion 320 as compared to the remainder of the elongate base and/or bulbous portion 316, 320.


As illustrated, the valve frame 302 can include the valve leaflet connection region 336 for coupling the valve leaflets. As discussed herein, the valve leaflet connection region 336 can include the first and second opening 338, 340 and the predetermined portion 346 of the first structural member 312.



FIG. 4 illustrates one embodiment of a system 480. System 480 includes valve 400, as described herein, reversibly joined to catheter 482. The catheter 482 includes an elongate body 484 having a proximal end 486 and a distal end 488, where valve 400 can be located between the proximal end 486 and distal end 488. The catheter 482 can further include a lumen 490 longitudinally extending to the distal end 488. In one embodiment, lumen 490 extends between proximal end 486 and distal end 488 of catheter 482. The catheter 482 can further include a guidewire lumen 492 that extends within the elongate body 484, where the guidewire lumen 492 can receive a guidewire for positioning the catheter 482 and the valve 400 within a body lumen (e.g., a vein of a patient).


The system 480 can further include a deployment shaft 494 positioned within lumen 490, and a sheath 496 positioned adjacent the distal end 488. In one embodiment, the valve 400 can be positioned at least partially within the sheath 496 and adjacent the deployment shaft 494. For example, the valve 400 can be fully or partially sheathed with the sheath 496. The deployment shaft 494 can be moved within the lumen 490 to deploy valve 400. For example, deployment shaft 494 can be used to push valve 400 from sheath 496 in deploying valve 400.



FIG. 5 illustrates an additional embodiment of the system 580. The catheter 582 includes elongate body 584, lumen 590, a retraction system 598 and a retractable sheath 596. The retractable sheath 596 can be positioned over at least a portion of the elongate body 584, where the retractable sheath 596 can move longitudinally along the elongate body 584. The valve 500 can be positioned at least partially within the retractable sheath 596, where the retractable sheath 596 moves along the elongate body 596 to deploy the valve 500. For example, the valve 500 can be fully or partially sheathed with the sheath 596.


In one embodiment, retraction system 598 includes one or more wires 501 coupled to the retractable sheath 596, where the wires are positioned at least partially within and extend through lumen 590 in the elongate body 584. Wires of the retraction system 598 can then be used to retract the retractable sheath 596 in deploying valve 500. In one embodiment, a portion of the elongate body 584 that defines the guidewire lumen 592 extends through the lumen 506 of the valve 500 to protect the valve 500 from the movement of the guidewire 509.



FIGS. 6A-6C illustrate an additional embodiment of the system 680. The system 680 includes a tubular sheath 611 having an elongate body 613 and a lumen 615. The system 680 further includes a delivery shaft 617 positioned within the lumen 615 of the tubular sheath 611. In one embodiment, the tubular sheath 611 and the delivery shaft 617 can move longitudinally relative each other.


In one embodiment, the system 680 includes a flexible cover 619 between the tubular sheath 611 and the delivery shaft 617. In one embodiment, the flexible cover 619 is connected to the tubular sheath 611 and the delivery shaft 617 at a fluid tight seal 621 so as to prevent the transmission of friction from the elongate body 613 to device 600 while the elongate body 613 is retracted during the deployment cycle. In one embodiment, this can be accomplished by creating intentional friction surfaces between the elongate body 613 and flexible cover 619 as is demonstrated in FIG. 6A or two layers of the flexible cover 619 as is demonstrated in FIG. 6B.


In one embodiment, the tubular sheath 611, the delivery shaft 617 and the flexible cover 619 can each be formed from a number of different materials. For the tubular sheath examples include, but are not limited to materials selected from one or more of ePTFE, PTFE, PE, PET, silicone, and polyurethanes. For the delivery shaft 617 examples include, but are not limited to, those selected from a metal, a metal alloy, and/or a polymer. Examples include, but are not limited one or more of ePTFE, PTFE, PE, nylons, PET, silicone, polyurethanes, and stainless steel (e.g., 316L).


In addition, the delivery shaft 617 can also include a configuration that imparts sufficient column rigidity to allow it to be pushed and/or pulled through the lumen 615. For example, the delivery shaft 617 can be formed with reinforcing members bound within the body of the delivery shaft 617 (e.g., an elongate braid of stainless steel co-extruded with a polymer). For the flexible cover 619 examples include, but are not limited to, materials selected from one or more of ePTFE, PTFE, PE, PET, nylons, and polyurethanes. As will be appreciated, other materials and configurations for forming the tubular sheath 611, the delivery shaft 617 and the flexible cover 619 are also possible.


As illustrated in FIGS. 6A-6C, the valve 600 can be positioned over the delivery shaft 615 adjacent a distal end 623 of the delivery shaft 617. In addition, the valve 600 can be held in the same relative location 625 as it is being deployed. As illustrated in FIG. 6A, the valve 600, a portion of the flexible cover 619 and the delivery shaft 617 can be positioned within the lumen 615 of the tubular sheath 611. In one embodiment, the configuration illustrated in FIG. 6A allows the valve 600 to be delivered in its compressed state to a predetermined location in the lumen of the body. Once at the predetermined location, the sheath 611 can then be moved relative the delivery shaft 617. FIG. 6B illustrates a situation where the sheath 611 has been pulled over the valve 600 location 625 and at least partially over the delivery shaft 617.


As illustrated, the flexible cover 619 has a tubular configuration that folds back inside of itself (i.e., its lumen) as the tubular sheath 611 is drawn over the valve 600 and the delivery shaft 617. In one embodiment, the lumen 615 of the sheath 611 can contain a lubricating fluid (e.g., saline) to allow the flexible cover 619 to more easily pass over itself as illustrated. As the tubular sheath 611 continues to be pulled back relative the delivery shaft 617 until the valve 600 is released, as illustrated in FIG. 6C. In one embodiment, the valve 600 can include a self-expanding frame that allows the valve 600 to deploy at location 625 once released.



FIGS. 7A-7C illustrate an additional embodiment of the system 780. The system 780 includes a tubular sheath 711 having an elongate body 713 and a lumen 715. The system 780 further includes a delivery shaft 717 positioned within the lumen 715 of the tubular sheath 711. In one embodiment, the tubular sheath 711 and the delivery shaft 717 can move longitudinally relative each other. In contrast to the system illustrated in FIG. 6A-6C, however, the system 780 does not include the flexible cover. As a result, the illustrated embodiment of system 780 allows for an increase in the size of the inner diameter of the elongate body 713 to be used by the delivery shaft and/or the valve 700 as compared to the elongate body that includes the flexible cover.


In one embodiment, the tubular sheath 711 and the delivery shaft 717 can each be formed from materials and have configurations as discussed herein for FIG. 6A-6C. As illustrated in FIGS. 7A-7C, the valve 700 can be positioned over the delivery shaft 715 adjacent a distal end 723 of the delivery shaft 717. In addition, the valve 700 can be held in the same relative location 725 as it is being deployed. As illustrated in FIG. 7A, the valve 700 and the delivery shaft 717 can be positioned within the lumen 715 of the tubular sheath 711. In one embodiment, the configuration illustrated in FIG. 7A allows the valve 700 to be delivered in its compressed state to a predetermined location in the lumen of the body. Once at the predetermined location, the sheath 711 can then be moved relative the delivery shaft 717. FIG. 7B illustrates a situation where the sheath 711 has been pulled at least partially over the valve 700 at location 725 and at least partially over the delivery shaft 717. As the tubular sheath 711 continues to be pulled back relative the delivery shaft 717 the valve 700 is released, as illustrated in FIG. 7C. In one embodiment, the valve 700 can include a self-expanding frame that allows the valve 700 to deploy at location 725 once released.


The embodiments of the present disclosure further include methods for forming the valve of the present disclosure, as described herein. For example, the valve frame can be formed in a number of different ways. In one embodiment, the valve frame can be formed by cutting a tube of material so as to form the first structural member into the elongate base portion and/or the second structural member into the bulbous portion of the valve frame. Examples of techniques for cutting include laser cutting and/or water jet cutting. Other cutting techniques are also possible. When the first structural member and the second structural member are formed separately, the two portions can be joined by a welding technique, such as laser welding. Other welding or bonding techniques are also possible.


Forming the second structural member into the bulbous portion that radially and longitudinally extends from the first structural member can be accomplished through a variety of techniques. For example, the tube of material that is cut to form the first and second structural members can either be formed with or have a bulbous portion bent into the tube of material. In other words, the tube has the bulbous portion before cutting out the first and second structural members.


Alternatively, the first and second structural members can be cut from the tube. The bulbous portion can then be bent into the second structural members of the valve frame to form the bulbous portion. As discussed herein, forming the bulbous portion can include shaping the first structural member and the second structural member into a predetermined shape, such as elliptical or round. Other shapes for the bulbous portion are also possible.


The valve frame can then be positioned over a mandrel having surfaces that support the elongate base portion and the bulbous portion of the valve frame. Once positioned, the valve frame can then be processed according to the material type used for the frame. For example, the valve frame can be heated on the mandrel to set the shape of the valve frame according to techniques as are known.


The method also includes providing the material in predefined shapes for the valve leaflets. The valve leaflet material is applied and coupled to the valve leaflet connection location of the valve frame, as discussed herein, to provide at least the first leaflet and the second leaflet of the valve having surfaces defining the reversibly sealable opening for unidirectional flow of a liquid through the valve. In one embodiment, the opening defined by the valve leaflets can be configured, as discussed herein, to create a Bernoulli Effect across the valve leaflets.


In one embodiment, coupling the material of the valve leaflets to the venous valve frame includes locating the free edge of the valve leaflets adjacent the bulbous portion to provide both the gap and the sinus pocket between the bulbous portion in the venous valve frame and the valve leaflets. As discussed herein, coupling the material of the valve leaflets to the venous valve frame can include configuring the valve leaflets such that at least the gap between the free edge of the valve leaflets and the bulbous portion in the venous valve frame is maintained as the valve leaflets cycles between their opened and closed position.


In an additional example, the valve can be reversibly joined to the catheter, which can include a process of altering the shape of the valve from a first shape, for example an expanded state, to the compressed state, as described herein. For example, the valve can be reversibly joined with the catheter by positioning valve in the compressed state at least partially within the sheath of the catheter. In one embodiment, positioning the valve at least partially within the sheath of the catheter includes positioning the valve in the compressed state adjacent the deployment shaft of the catheter. In an another embodiment, the sheath of the catheter functions as a retractable sheath, where the valve in the compressed state can be reversibly joined with the catheter by positioning the valve at least partially within the reversible sheath of the catheter. In a further embodiment, the catheter can include an inflatable balloon, where the balloon can be positioned at least partially within the lumen of the valve, for example, in its compressed state.


The embodiments of the valve described herein may be used to replace, supplement, or augment valve structures within one or more lumens of the body. For example, embodiments of the present disclosure may be used to replace an incompetent venous valve and help to decrease backflow of blood in the venous system of the legs.


In one embodiment, the method of replacing, supplementing, and/or augmenting a valve structure can include positioning at least part of the catheter including the valve at a predetermined location within the lumen of a body. For example, the predetermined location can include a position within a body lumen of a venous system of a patient, such as a vein of a leg.


In one embodiment, positioning the catheter that includes the valve within the body lumen of a venous system includes introducing the catheter into the venous system of the patient using minimally invasive percutaneous, transluminal catheter based delivery system, as is known in the art. For example, a guidewire can be positioned within a body lumen of a patient that includes the predetermined location. The catheter, including valve, as described herein, can be positioned over the guidewire and the catheter advanced so as to position the valve at or adjacent the predetermined location.


As described herein, the position of the one or more radiopaque markers can be selected so as to provide information on the position, location and orientation (e.g., axial, directional, and/or clocking position) of the valve during its implantation. For example, radiopaque markers can be configured radially and longitudinally on predetermined portions of the valve frame and/or the elongate body of the catheter to indicate not only a longitudinal position, but also a radial position of the valve leaflets and the valve frame (referred to as a clock position). In one embodiment, the radiopaque markers are configures to provide radiographic images that indicate the relative radial position of the valve and valve leaflets on the catheter.



FIGS. 8A-8C provide an illustration of the radiopaque markers 827 associated with the elongate body 884 of the catheter 882. As illustrated, the radiopaque markers 827 include a radial component 829 and a longitudinal component 831. Depending upon the radial position of the catheter 882, the radiopaque markers 827 can provide a different and distinguishable radiographic image. For example, in a first position 833 illustrated in FIG. 8A the longitudinal component 831 of the radiopaque markers 827 are aligned so as to overlap. As the catheter 882 is rotated, as illustrated in FIGS. 8B and 8C, the radiographic image of the radial component 829 and/or longitudinal component 831 of the radiopaque markers 827 changes.


The change in the relationship of the radial and longitudinal components 829, 831 as the catheter 882 is rotated allows for the relative position of the valve 800, valve frame and valve leaflets to be determined from the radiographic image. For example, the relative position of the first and second leaflet connection regions 826, 828 could be aligned with longitudinal component 831 of the radiopaque markers 827. This would allow the clock position for the valve 800 to be determined so that the valve can be positioned in a more natural orientation relative the compressive forces the valve will experience in situ. In other words, the allowing for clocking of the valve 800 as described herein allows the valve to be radially positioned in same orientation as native valve that it's replacing and/or augmenting.


As will be appreciated, other relative relationships between the radiopaque markers 827 and the position of the valve 800 on the catheter 882 are possible. So, embodiments of the present disclosure should not be limited to the present example. For example, additional radiopaque markers 827 on the valve 800 could be used either alone or in combination with radiopaque markers 827 on the catheter 882 to help in positioning the valve 800 within a lumen.


The valve can be deployed from the catheter at the predetermined location in a number of ways, as described herein. In one embodiment, valve of the present disclosure can be deployed and placed in a number of vascular locations. For example, valve can be deployed and placed within a major vein of a patient's leg. In one embodiment, major veins include, but are not limited to, those of the peripheral venous system. Examples of veins in the peripheral venous system include, but are not limited to, the superficial veins such as the short saphenous vein and the greater saphenous vein, and the veins of the deep venous system, such as the popliteal vein and the femoral vein.


As described herein, the valve can be deployed from the catheter in a number of ways. For example, the catheter can include the retractable sheath in which valve can be at least partially housed, as described herein. Valve can be deployed by retracting the retractable sheath of the catheter, where the valve self-expands to be positioned at the predetermined location. In an additional example, the catheter can include a deployment shaft and sheath in which valve can be at least partially housed adjacent the deployment shaft, as described herein. Valve can be deployed by moving the deployment shaft through the catheter to deploy valve from the sheath, where the valve self-expands to be positioned at the predetermined location. In an additional embodiment, the valve can be deployed through the use of an inflatable balloon.


Once implanted, the valve can provide sufficient contact and expansion force against the body lumen wall to prevent retrograde flow between the valve and the body lumen wall. For example, the valve can be selected to have a larger expansion diameter than the diameter of the inner wall of the body lumen. This can then allow valve to exert a force on the body lumen wall and accommodate changes in the body lumen diameter, while maintaining the proper placement of valve. As described herein, the valve can engage the lumen so as to reduce the volume of retrograde flow through and around valve. It is, however, understood that some leaking or fluid flow may occur between the valve and the body lumen and/or through valve leaflets.


In addition, the use of both the bulbous portion and/or elongate base portion of the valve can provide a self centering aspect to valve within a body lumen. In one embodiment, the self centering aspect resulting from the bulbous portion and/or elongate base portion of the valve may allow valve to maintain a substantially coaxial alignment with the body lumen (e.g., such as a vein) as valve leaflets deflect between the open and closed configurations so as to better seal the reversible opening when valve is closed.


While the present disclosure has been shown and described in detail above, it will be clear to the person skilled in the art that changes and modifications may be made without departing from the scope of the disclosure. As such, that which is set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. The actual scope of the disclosure is intended to be defined by the following claims, along with the full range of equivalents to which such claims are entitled.


In addition, one of ordinary skill in the art will appreciate upon reading and understanding this disclosure that other variations for the disclosure described herein can be included within the scope of the present disclosure. For example, the frame 102 and/or the valve leaflets 104 can be coated with a non-thrombogenic biocompatible material, as are known or will be known.


In the foregoing Detailed Description, various features are grouped together in several embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the embodiments of the disclosure require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims
  • 1. A valve comprising: a first structural member that defines an elongate base portion having a first end, a second end, and an outer surface concentrically arranged relative a longitudinal axis, wherein the outer surface provides at least two points of a perimeter of a first elliptical plane orthogonal to and passing through the longitudinal axis, and wherein the first structural member at each of the first end and the second end includes a first curve and a second curve opposite the first curve with the first curve and the second curve of the first end positioned radially orthogonal to the first curve and the second curve of the second end of the base portion;a second structural member that extends between the first end and the second end of the elongate base portion to define a bulbous portion, wherein the outer surface of the elongate base portion and the second structural member provide at least four points of a perimeter of a plane orthogonal to the longitudinal axis, wherein the plane has an area that is greater than the area of the first elliptical plane;a valve leaflet connection location along the first structural member of the venous valve frame; andat least two valve leaflets, each leaflet connected to the valve leaflet connection location.
  • 2. The valve of claim 1, wherein the perimeter of the plane for the bulbous portion-defines an elliptical shape.
  • 3. The valve of claim 2, wherein the first structural member defines a first axis of the elliptical shape and the second structural member defines a second axis of the elliptical shape that is twenty percent (20%) to fifty percent (50%) greater than the first axis.
  • 4. The valve of claim 2, wherein the first structural member defines a first axis of the elliptical shape and the second structural member defines a second axis of the elliptical shape that is one (1) to four (4) millimeters greater than the length of the first axis.
  • 5. The valve of claim 1, wherein the perimeter of the plane for the bulbous portion defines a round shape.
  • 6. The valve of claim 1, wherein the first curve and the second curve flare away from a center longitudinal axis.
  • 7. The valve of claim 1, wherein the first structural member includes surfaces defining a first opening and a second opening for the valve leaflet connection location, wherein the first and second openings are adjacent a region of the bulbous portion of the valve frame and positioned opposite each other along a common axis.
  • 8. The valve of claim 1, wherein the first elliptical plane is a circular plane.
  • 9. The valve of claim 1, wherein the at least two valve leaflets and the bulbous portion define a sinus pocket.
  • 10. A system comprising: a delivery catheter defining a lumen;a valve joined to the delivery catheter, the valve comprising: a first structural member that defines an elongate base portion having a first end, a second end, and an outer surface concentrically arranged relative a longitudinal axis, wherein the outer surface provides at least two points of a perimeter of a first elliptical plane orthogonal to and passing through the longitudinal axis, and wherein the first structural member at each of the first end and the second end includes a first curve and a second curve opposite the first curve with the first curve and the second curve of the first end positioned radially orthogonal to the first curve and the second curve of the second end of the base portion;a second structural member that extends between the first end and the second end of the elongate base portion to define a bulbous portion, wherein the outer surface of the elongate base portion and the second structural member provide at least four points of a perimeter of a plane orthogonal to the longitudinal axis, wherein the plane has an area that is greater than the area of the first elliptical plane;a valve leaflet connection location along the first structural member of the venous valve frame; andat least two valve leaflets, each leaflet connected to the valve leaflet connection location;a deployment shaft disposed within the lumen of the catheter; anda sheath positioned at a distal end of the catheter, the valve configured to be at least partially positioned within the sheath.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/509,604, filed on Jul. 27, 2009, which is a continuation of U.S. application Ser. No. 11/232,403, filed on Sep. 21, 2005, now U.S. Pat. No. 7,569,071, the entire contents of each hereby incorporated by reference.

US Referenced Citations (628)
Number Name Date Kind
3671979 Moulopoulos Jun 1972 A
4291420 Reul Sep 1981 A
4787901 Baykut Nov 1988 A
4872874 Taheri Oct 1989 A
4935030 Alonso Jun 1990 A
4994077 Dobben Feb 1991 A
5002567 Bona Mar 1991 A
5141491 Bowald Aug 1992 A
5163953 Vince Nov 1992 A
5219355 Parodi Jun 1993 A
5254127 Wholey Oct 1993 A
5327774 Nguyen Jul 1994 A
5332402 Teitelbaum Jul 1994 A
5370685 Stevens Dec 1994 A
5411552 Andersen May 1995 A
5469868 Reger Nov 1995 A
5480423 Ravenscroft Jan 1996 A
5500014 Quijano Mar 1996 A
5545214 Stevens Aug 1996 A
5554185 Block Sep 1996 A
5643208 Parodi Jul 1997 A
5693087 Parodi Dec 1997 A
5713953 Vallana Feb 1998 A
5716370 Williamson, IV Feb 1998 A
5735859 Fischell Apr 1998 A
5741326 Solovay Apr 1998 A
5741333 Frid Apr 1998 A
5800506 Perouse Sep 1998 A
5824061 Quijano Oct 1998 A
5879320 Cazenave Mar 1999 A
5895419 Tweden Apr 1999 A
5910170 Reimink Jun 1999 A
6010531 Donlon Jan 2000 A
6042607 Williamson, IV Mar 2000 A
6139575 Shu Oct 2000 A
6287334 Moll Sep 2001 B1
6312447 Grimes Nov 2001 B1
6355030 Aldrich Mar 2002 B1
6402780 Williamson, IV Jun 2002 B2
6419696 Ortiz Jul 2002 B1
6425916 Garrison Jul 2002 B1
6440164 DiMatteo Aug 2002 B1
6451054 Stevens Sep 2002 B1
6454799 Schreck Sep 2002 B1
6461366 Seguin Oct 2002 B1
6503272 Duerig Jan 2003 B2
6508833 Pavcnik Jan 2003 B2
6564805 Garrison May 2003 B2
6569196 Vesely May 2003 B1
6602286 Strecker Aug 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6635085 Caffey Oct 2003 B1
6666885 Moe Dec 2003 B2
6666886 Tranquillo Dec 2003 B1
6669725 Scott Dec 2003 B2
6673109 Cox Jan 2004 B2
6676698 McGuckin, Jr. Jan 2004 B2
6676702 Mathis Jan 2004 B2
6682558 Tu Jan 2004 B2
6682559 Myers Jan 2004 B2
6685739 DiMatteo Feb 2004 B2
6692512 Jang Feb 2004 B2
6695866 Kuehn Feb 2004 B1
6695878 McGuckin Feb 2004 B2
6709456 Langberg Mar 2004 B2
6709457 Otte Mar 2004 B1
6716241 Wilder Apr 2004 B2
6716244 Klaco Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6719784 Henderson Apr 2004 B2
6719786 Ryan Apr 2004 B2
6719787 Cox Apr 2004 B2
6719788 Cox Apr 2004 B2
6719789 Cox Apr 2004 B2
6719790 Brendzel Apr 2004 B2
6723038 Schroeder Apr 2004 B1
6723122 Yang Apr 2004 B2
6723123 Kazatchkov Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6726716 Marquez Apr 2004 B2
6726717 Alfieri Apr 2004 B2
6730118 Spenser May 2004 B2
6730121 Ortiz May 2004 B2
6730122 Pan May 2004 B1
6736845 Marquez May 2004 B2
6736846 Cox May 2004 B2
6749630 McCarthy Jun 2004 B2
6752813 Goldfarb Jun 2004 B2
6752828 Thornton Jun 2004 B2
6755857 Peterson Jun 2004 B2
6761734 Suhr Jul 2004 B2
6761735 Eberhardt Jul 2004 B2
6764494 Menz Jul 2004 B2
6764508 Roehe Jul 2004 B1
6764509 Chinn Jul 2004 B2
6764510 Vidlund Jul 2004 B2
6767362 Schreck Jul 2004 B2
6769434 Liddicoat Aug 2004 B2
6770083 Seguin Aug 2004 B2
6780200 Jansen Aug 2004 B2
6786924 Ryan Sep 2004 B2
6786925 Schoon et al. Sep 2004 B1
6790229 Berreklouw Sep 2004 B1
6790230 Beyersdorf Sep 2004 B2
6790231 Liddicoat Sep 2004 B2
6793673 Kowalsky Sep 2004 B2
6797000 Simpson Sep 2004 B2
6797001 Mathis Sep 2004 B2
6797002 Spence Sep 2004 B2
6802860 Cosgrove Oct 2004 B2
6805710 Bolling Oct 2004 B2
6805711 Quijano Oct 2004 B2
6810882 Langberg Nov 2004 B2
6821297 Snyders Nov 2004 B2
6824562 Mathis Nov 2004 B2
6830584 Seguin Dec 2004 B1
6830585 Artof Dec 2004 B1
6837902 Nguyen Jan 2005 B2
6840246 Downing Jan 2005 B2
6840957 DiMatteo Jan 2005 B2
6846324 Stobie Jan 2005 B2
6846325 Liddicoat Jan 2005 B2
6858039 McCarthy Feb 2005 B2
6869444 Gabbay Mar 2005 B2
6872226 Cali Mar 2005 B2
6875224 Grimes Apr 2005 B2
6875230 Morita Apr 2005 B1
6875231 Anduiza Apr 2005 B2
6881199 Wilk Apr 2005 B2
6881224 Kruse Apr 2005 B2
6883522 Spence Apr 2005 B2
6890352 Lentell May 2005 B1
6890353 Cohn May 2005 B2
6893459 Macoviak May 2005 B1
6893460 Spenser May 2005 B2
6896700 Lu May 2005 B2
6902576 Drasler Jun 2005 B2
6908478 Alferness Jun 2005 B2
6908481 Cribier Jun 2005 B2
6911043 Myers Jun 2005 B2
6913608 Liddicoat Jul 2005 B2
6916338 Speziali Jul 2005 B2
6918917 Nguyen Jul 2005 B1
6921407 Nguyen Jul 2005 B2
6921811 Zamora Jul 2005 B2
6926715 Hauck Aug 2005 B1
6926730 Nguyen Aug 2005 B1
6929653 Strecter Aug 2005 B2
6932838 Schwartz Aug 2005 B2
6936067 Buchanan Aug 2005 B2
6939359 Tu Sep 2005 B2
6942694 Liddicoat Sep 2005 B2
6945957 Freyman Sep 2005 B2
6945978 Hyde Sep 2005 B1
6945996 Sedransk Sep 2005 B2
6945997 Huynh Sep 2005 B2
6949122 Adams Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6951573 Dilling Oct 2005 B1
6953332 Kurk Oct 2005 B1
6955689 Ryan Oct 2005 B2
6958076 Acosta Oct 2005 B2
6962605 Cosgrove Nov 2005 B2
6964682 Nguyen-Thien-Nhon Nov 2005 B2
6964683 Kowalsky Nov 2005 B2
6964684 Ortiz Nov 2005 B2
6966925 Stobie Nov 2005 B2
6966926 Mathis Nov 2005 B2
6974464 Quijano Dec 2005 B2
6974474 Pavcnik Dec 2005 B2
6974476 McGuckin Dec 2005 B2
6976995 Mathis Dec 2005 B2
6979350 Moll Dec 2005 B2
6986775 Morales Jan 2006 B2
6989027 Allen Jan 2006 B2
6989028 Lashinski Jan 2006 B2
6997950 Chawla Feb 2006 B2
6997951 Solem Feb 2006 B2
7004176 Lau Feb 2006 B2
7007396 Rudko Mar 2006 B2
7011669 Kimblad Mar 2006 B2
7011681 Vesely Mar 2006 B2
7011682 Lashinski Mar 2006 B2
7018406 Seguin Mar 2006 B2
7018407 Wright Mar 2006 B1
7018408 Bailey Mar 2006 B2
7022134 Quijano Apr 2006 B1
7025780 Gabbay Apr 2006 B2
7033390 Johnson Apr 2006 B2
7037333 Myers May 2006 B2
7037334 Hlavka May 2006 B1
7041128 McGuckin, Jr. May 2006 B2
7041132 Quijano May 2006 B2
7044966 Svanidze May 2006 B2
7044967 Solem May 2006 B1
7048754 Martin May 2006 B2
7048757 Shaknovich May 2006 B2
7052487 Cohn May 2006 B2
7052507 Wakuda May 2006 B2
7063722 Marquez Jun 2006 B2
7066954 Ryan Jun 2006 B2
7070616 Majercak Jul 2006 B2
7070618 Streeter Jul 2006 B2
7077862 Vidlund Jul 2006 B2
7081131 Thornton Jul 2006 B2
7087064 Hyde Aug 2006 B1
7089051 Javerud Aug 2006 B2
7090695 Solem Aug 2006 B2
7967853 Eidenschink Jun 2011 B2
20010011187 Pavcnik Aug 2001 A1
20020013571 Goldfarb Jan 2002 A1
20020026216 Grimes Feb 2002 A1
20020082630 Menz Jun 2002 A1
20020123802 Snyders Sep 2002 A1
20020151970 Garrison Oct 2002 A1
20020178570 Sogard Dec 2002 A1
20020183835 Taylor Dec 2002 A1
20020183838 Liddicoat Dec 2002 A1
20020198594 Schreck Dec 2002 A1
20030050694 Yang Mar 2003 A1
20030130729 Paniagua Jul 2003 A1
20030163194 Quijano Aug 2003 A1
20030167071 Martin Sep 2003 A1
20030171806 Mathis Sep 2003 A1
20030199975 Gabbay Oct 2003 A1
20030229394 Ogle Dec 2003 A1
20030229395 Cox Dec 2003 A1
20030233142 Morales Dec 2003 A1
20030236568 Hojeibane Dec 2003 A1
20030236569 Mathis Dec 2003 A1
20040002719 Oz Jan 2004 A1
20040003819 St. Goar Jan 2004 A1
20040010305 Alferness Jan 2004 A1
20040015230 Moll Jan 2004 A1
20040015232 Shu Jan 2004 A1
20040015233 Jansen Jan 2004 A1
20040019374 Hojeibane Jan 2004 A1
20040019377 Taylor Jan 2004 A1
20040019378 Hlavka Jan 2004 A1
20040024447 Haverich Feb 2004 A1
20040024451 Johnson Feb 2004 A1
20040024452 Kruse Feb 2004 A1
20040030321 Fangrow Feb 2004 A1
20040030381 Shu Feb 2004 A1
20040030382 St. Goar Feb 2004 A1
20040030405 Carpentier Feb 2004 A1
20040034380 Woolfson Feb 2004 A1
20040034411 Quijano Feb 2004 A1
20040039436 Spenser Feb 2004 A1
20040039442 St. Goar Feb 2004 A1
20040039443 Solem Feb 2004 A1
20040044350 Martin Mar 2004 A1
20040044365 Bachman Mar 2004 A1
20040044403 Bischoff Mar 2004 A1
20040049207 Goldfarb Mar 2004 A1
20040049211 Tremulis Mar 2004 A1
20040049266 Anduiza Mar 2004 A1
20040059351 Eigler Mar 2004 A1
20040059411 Strecker Mar 2004 A1
20040059412 Lytle, IV Mar 2004 A1
20040060161 Leal Apr 2004 A1
20040073301 Donlon Apr 2004 A1
20040073302 Rourke Apr 2004 A1
20040078072 Tu Apr 2004 A1
20040078074 Anderson Apr 2004 A1
20040082910 Constantz Apr 2004 A1
20040082923 Field Apr 2004 A1
20040082991 Nguyen Apr 2004 A1
20040087975 Lucatero May 2004 A1
20040088045 Cox May 2004 A1
20040088046 Speziali May 2004 A1
20040092858 Wilson May 2004 A1
20040093060 Seguin May 2004 A1
20040093070 Hojeibane May 2004 A1
20040093080 Helmus May 2004 A1
20040097979 Svanidze May 2004 A1
20040098098 McGuckin, Jr. May 2004 A1
20040098112 DiMatteo May 2004 A1
20040102839 Cohn May 2004 A1
20040102840 Solem May 2004 A1
20040102842 Jansen May 2004 A1
20040106976 Bailey Jun 2004 A1
20040106990 Spence Jun 2004 A1
20040106991 Hopkins Jun 2004 A1
20040111096 Tu Jun 2004 A1
20040117009 Cali Jun 2004 A1
20040122448 Levine Jun 2004 A1
20040122512 Navia Jun 2004 A1
20040122513 Navia Jun 2004 A1
20040122514 Fogarty Jun 2004 A1
20040122515 Chu Jun 2004 A1
20040122516 Fogarty Jun 2004 A1
20040127979 Wilson Jul 2004 A1
20040127980 Kowalsky Jul 2004 A1
20040127981 Randert Jul 2004 A1
20040127982 Machold Jul 2004 A1
20040133220 Lashinski Jul 2004 A1
20040133267 Lane Jul 2004 A1
20040133273 Cox Jul 2004 A1
20040138742 Myers Jul 2004 A1
20040138743 Myers Jul 2004 A1
20040138744 Lashinski Jul 2004 A1
20040138745 Macoviak Jul 2004 A1
20040148018 Carpentier Jul 2004 A1
20040148019 Vidlund Jul 2004 A1
20040148020 Vidlund Jul 2004 A1
20040153052 Mathis Aug 2004 A1
20040153146 Lashinski Aug 2004 A1
20040153147 Mathis Aug 2004 A1
20040158321 Reuter Aug 2004 A1
20040162610 Liska Aug 2004 A1
20040167539 Keuhn Aug 2004 A1
20040167619 Case Aug 2004 A1
20040167620 Ortiz Aug 2004 A1
20040172046 Hlavka Sep 2004 A1
20040176839 Huynh Sep 2004 A1
20040176840 Langberg Sep 2004 A1
20040181238 Zarbatany Sep 2004 A1
20040186444 Daly Sep 2004 A1
20040186558 Pavcnik Sep 2004 A1
20040186561 Mcguckin Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs Sep 2004 A1
20040193191 Starksen Sep 2004 A1
20040193253 Thorpe Sep 2004 A1
20040193260 Alferness Sep 2004 A1
20040199155 Mollenauer Oct 2004 A1
20040199183 Oz Oct 2004 A1
20040199191 Schwartz Oct 2004 A1
20040204758 Eberhardt Oct 2004 A1
20040206363 Mccarthy Oct 2004 A1
20040210240 Saint Oct 2004 A1
20040210301 Obermiller Oct 2004 A1
20040210303 Sedransk Oct 2004 A1
20040210304 Seguin Oct 2004 A1
20040210305 Shu Oct 2004 A1
20040210306 Quijano Oct 2004 A1
20040210307 Khairkhahan Oct 2004 A1
20040215333 Duran Oct 2004 A1
20040215339 Drasler Oct 2004 A1
20040220654 Mathis Nov 2004 A1
20040220657 Nieminen Nov 2004 A1
20040225322 Garrison Nov 2004 A1
20040225344 Hoffa Nov 2004 A1
20040225348 Case Nov 2004 A1
20040225352 Osborne Nov 2004 A1
20040225353 McGuckin, Jr. Nov 2004 A1
20040225354 Allen Nov 2004 A1
20040225355 Stevens Nov 2004 A1
20040225356 Frater Nov 2004 A1
20040230117 Tosaya Nov 2004 A1
20040230297 Thornton Nov 2004 A1
20040236411 Sarac Nov 2004 A1
20040236418 Stevens Nov 2004 A1
20040236419 Milo Nov 2004 A1
20040243153 Liddicoat Dec 2004 A1
20040243219 Fischer Dec 2004 A1
20040243227 Starksen Dec 2004 A1
20040243228 Kowalsky Dec 2004 A1
20040243230 Navia Dec 2004 A1
20040254600 Zarbatany Dec 2004 A1
20040254636 Flagle Dec 2004 A1
20040260276 Rudko Dec 2004 A1
20040260317 Bloom Dec 2004 A1
20040260322 Rudko Dec 2004 A1
20040260389 Case Dec 2004 A1
20040260390 Sarac Dec 2004 A1
20040260393 Randert Dec 2004 A1
20040260394 Douk Dec 2004 A1
20040267357 Allen Dec 2004 A1
20050004583 Oz Jan 2005 A1
20050004667 Swinford Jan 2005 A1
20050010285 Lambrecht Jan 2005 A1
20050010287 Macoviak Jan 2005 A1
20050015112 Cohn Jan 2005 A1
20050021056 St. Goar Jan 2005 A1
20050021136 Xie Jan 2005 A1
20050027261 Weaver Feb 2005 A1
20050027348 Case Feb 2005 A1
20050027351 Reuter Feb 2005 A1
20050027353 Alferness Feb 2005 A1
20050033398 Seguin Feb 2005 A1
20050033419 Alferness Feb 2005 A1
20050033446 Deem Feb 2005 A1
20050038506 Webler Feb 2005 A1
20050038507 Alferness Feb 2005 A1
20050043790 Seguin Feb 2005 A1
20050043792 Solem Feb 2005 A1
20050049679 Taylor Mar 2005 A1
20050049692 Numamoto Mar 2005 A1
20050049696 Siess Mar 2005 A1
20050049697 Sievers Mar 2005 A1
20050054977 Laird Mar 2005 A1
20050055079 Duran Mar 2005 A1
20050055087 Starksen Mar 2005 A1
20050055088 Liddicoat Mar 2005 A1
20050055089 Macoviak Mar 2005 A1
20050060029 Le Mar 2005 A1
20050060030 Lashinski Mar 2005 A1
20050065460 Laird Mar 2005 A1
20050065550 Starksen Mar 2005 A1
20050065594 Dimatteo Mar 2005 A1
20050065597 Lansac Mar 2005 A1
20050070998 Rourke Mar 2005 A1
20050075584 Cali Apr 2005 A1
20050075659 Realyvasquez Apr 2005 A1
20050075662 Pedersen Apr 2005 A1
20050075712 Biancucci Apr 2005 A1
20050075713 Biancucci Apr 2005 A1
20050075717 Nguyen Apr 2005 A1
20050075718 Nguyen Apr 2005 A1
20050075719 Bergheim Apr 2005 A1
20050075720 Nguyen Apr 2005 A1
20050075723 Schroeder Apr 2005 A1
20050075724 Svanidze Apr 2005 A1
20050075725 Rowe Apr 2005 A1
20050075726 Svanidze Apr 2005 A1
20050075728 Nguyen Apr 2005 A1
20050075729 Nguyen Apr 2005 A1
20050075730 Myers Apr 2005 A1
20050075731 Artof Apr 2005 A1
20050080483 Solem Apr 2005 A1
20050085900 Case Apr 2005 A1
20050085903 Lau Apr 2005 A1
20050085904 Lemmon Apr 2005 A1
20050090846 Pedersen Apr 2005 A1
20050096735 Hojeibane May 2005 A1
20050096738 Cali May 2005 A1
20050096739 Cao May 2005 A1
20050096740 Langberg May 2005 A1
20050101975 Nguyen May 2005 A1
20050102026 Turner May 2005 A1
20050107810 Morales May 2005 A1
20050107811 Starksen May 2005 A1
20050107812 Starksen May 2005 A1
20050107872 Mensah May 2005 A1
20050113910 Paniagua May 2005 A1
20050119673 Gordon Jun 2005 A1
20050119734 Spence Jun 2005 A1
20050119735 Spence Jun 2005 A1
20050125011 Spence Jun 2005 A1
20050131438 Cohn Jun 2005 A1
20050137449 Nieminen Jun 2005 A1
20050137450 Aronson Jun 2005 A1
20050137451 Gordon Jun 2005 A1
20050137676 Richardson Jun 2005 A1
20050137681 Shoemaker Jun 2005 A1
20050137682 Justin Jun 2005 A1
20050137685 Nieminen Jun 2005 A1
20050137686 Salahieh Jun 2005 A1
20050137688 Salahieh Jun 2005 A1
20050137689 Salahieh Jun 2005 A1
20050137690 Salahieh Jun 2005 A1
20050137691 Salahieh Jun 2005 A1
20050137692 Haug Jun 2005 A1
20050137693 Haug Jun 2005 A1
20050137694 Haug Jun 2005 A1
20050137696 Salahieh Jun 2005 A1
20050137697 Salahieh Jun 2005 A1
20050137698 Salahieh Jun 2005 A1
20050137699 Salahieh Jun 2005 A1
20050137700 Spence Jun 2005 A1
20050137701 Salahieh Jun 2005 A1
20050137702 Haug Jun 2005 A1
20050143807 Pavcnik Jun 2005 A1
20050143809 Salahieh Jun 2005 A1
20050143810 Dauner Jun 2005 A1
20050143811 Realyvasquez Jun 2005 A1
20050149014 Hauck Jul 2005 A1
20050149179 Mathis Jul 2005 A1
20050149180 Mathis Jul 2005 A1
20050149181 Eberhardt Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050159811 Lane Jul 2005 A1
20050165477 Anduiza Jul 2005 A1
20050165478 Song Jul 2005 A1
20050171472 Lutter Aug 2005 A1
20050171601 Cosgrove Aug 2005 A1
20050177227 Heim Aug 2005 A1
20050177228 Solem Aug 2005 A1
20050182483 Osborne Aug 2005 A1
20050184122 Hlavka Aug 2005 A1
20050187614 Agnew Aug 2005 A1
20050187616 Realyvasquez Aug 2005 A1
20050187617 Navia Aug 2005 A1
20050192606 Paul Sep 2005 A1
20050192665 Spenser Sep 2005 A1
20050197692 Pai Sep 2005 A1
20050197693 Pai Sep 2005 A1
20050197694 Pai Sep 2005 A1
20050203549 Realyvasquez Sep 2005 A1
20050203605 Dolan Sep 2005 A1
20050203614 Forster Sep 2005 A1
20050203615 Forster Sep 2005 A1
20050203616 Cribier Sep 2005 A1
20050203617 Forster Sep 2005 A1
20050203618 Sharkawy Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216077 Mathis Sep 2005 A1
20050216078 Starksen Sep 2005 A1
20050222675 Sauter Oct 2005 A1
20050222678 Lashinski Oct 2005 A1
20050228422 Machold Oct 2005 A1
20050228479 Pavcnik Oct 2005 A1
20050228486 Case Oct 2005 A1
20050228494 Marquez Oct 2005 A1
20050228495 Macoviak Oct 2005 A1
20050228496 Mensah Oct 2005 A1
20050234541 Hunt Oct 2005 A1
20050234546 Nugent Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050240202 Shennib Oct 2005 A1
20050240255 Schaeffer Oct 2005 A1
20050240259 Sisken Oct 2005 A1
20050240262 White Oct 2005 A1
20050244460 Alferiev Nov 2005 A1
20050246013 Gabbay Nov 2005 A1
20050251251 Cribier Nov 2005 A1
20050256566 Gabbay Nov 2005 A1
20050261704 Mathis Nov 2005 A1
20050261759 Lambrecht Nov 2005 A1
20050267493 Schreck Dec 2005 A1
20050267560 Bates Dec 2005 A1
20050267565 Dave Dec 2005 A1
20050267571 Spence Dec 2005 A1
20050267573 Macoviak Dec 2005 A9
20050267574 Cohn Dec 2005 A1
20050272969 Alferness Dec 2005 A1
20050273160 Lashinski Dec 2005 A1
20050278015 Dave Dec 2005 A1
20050283178 Flagle Dec 2005 A1
20050288779 Shaoulian Dec 2005 A1
20060000715 Whitcher Jan 2006 A1
20060004439 Spenser Jan 2006 A1
20060004442 Spenser Jan 2006 A1
20060009804 Pederson Jan 2006 A1
20060009841 Mcguckin Jan 2006 A1
20060009842 Huynh Jan 2006 A1
20060013805 Hebbel Jan 2006 A1
20060013855 Carpenter Jan 2006 A1
20060015136 Besselink Jan 2006 A1
20060015178 Moaddeb Jan 2006 A1
20060015179 Bulman-Fleming Jan 2006 A1
20060020275 Goldfarb Jan 2006 A1
20060020327 Lashinski Jan 2006 A1
20060020332 Lashinski Jan 2006 A1
20060020334 Lashinski Jan 2006 A1
20060020335 Kowalsky Jan 2006 A1
20060020336 Liddicoat Jan 2006 A1
20060025750 Starksen Feb 2006 A1
20060025784 Starksen Feb 2006 A1
20060025787 Morales Feb 2006 A1
20060025854 Lashinski Feb 2006 A1
20060025855 Lashinski Feb 2006 A1
20060025856 Ryan Feb 2006 A1
20060025857 Bergheim Feb 2006 A1
20060030747 Kantrowitz Feb 2006 A1
20060030866 Schreck Feb 2006 A1
20060030882 Adams Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060036317 Vidlund Feb 2006 A1
20060041305 Lauterjung Feb 2006 A1
20060041306 Vidlund Feb 2006 A1
20060047297 Case Mar 2006 A1
20060047338 Jenson Mar 2006 A1
20060047343 Oviatt Mar 2006 A1
20060052804 Mialhe Mar 2006 A1
20060052867 Revuelta Mar 2006 A1
20060058817 Starksen Mar 2006 A1
20060058865 Case Mar 2006 A1
20060058871 Zakay Mar 2006 A1
20060058889 Case Mar 2006 A1
20060064115 Allen Mar 2006 A1
20060064116 Allen Mar 2006 A1
20060064118 Kimblad Mar 2006 A1
20060064174 Zadno Mar 2006 A1
20060069400 Burnett Mar 2006 A1
20060069429 Spence Mar 2006 A1
20060069430 Rahdert Mar 2006 A9
20060074483 Schrayer Apr 2006 A1
20060074484 Huber Apr 2006 A1
20060074485 Realyvasquez Apr 2006 A1
20060085060 Campbell Apr 2006 A1
20060089708 Osse Apr 2006 A1
20060095115 Bladillah May 2006 A1
20060095125 Chinn May 2006 A1
20060099326 Keogh May 2006 A1
20060100697 Casanova May 2006 A1
20060100699 Vidlund May 2006 A1
20060106278 Machold May 2006 A1
20060106279 Machold May 2006 A1
20060106456 Machold May 2006 A9
20060111660 Wolf May 2006 A1
20060111773 Rittgers May 2006 A1
20060111774 Samkov May 2006 A1
20060116572 Case Jun 2006 A1
20060116756 Solem Jun 2006 A1
20060122686 Gilad Jun 2006 A1
20060122692 Gilad Jun 2006 A1
20060122693 Biadillah Jun 2006 A1
20060127443 Helmus Jun 2006 A1
20060129235 Seguin Jun 2006 A1
20060129236 McCarthy Jun 2006 A1
20060135476 Kutryk Jun 2006 A1
20060135964 Vesely Jun 2006 A1
20060135967 Realyvasquez Jun 2006 A1
20060136044 Osborne Jun 2006 A1
20060136045 Flagle Jun 2006 A1
20060136052 Vesely Jun 2006 A1
20060136054 Berg Jun 2006 A1
20060142846 Pavcnik Jun 2006 A1
20060142847 Shaknovich Jun 2006 A1
20060142848 Gabbay Jun 2006 A1
20060142854 Alferness Jun 2006 A1
20060149358 Zilla Jul 2006 A1
20060149360 Schwammenthal Jul 2006 A1
20060149367 Sieracki Jul 2006 A1
20060149368 Spence Jul 2006 A1
20060161133 Laird Jul 2006 A1
20060161248 Case Jul 2006 A1
20060161249 Realyvasquez Jul 2006 A1
20060161250 Shaw Jul 2006 A1
20060167468 Gabbay Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060167542 Quintessenza Jul 2006 A1
20060167543 Bailey Jul 2006 A1
20110251678 Eidenschink Oct 2011 A1
Foreign Referenced Citations (168)
Number Date Country
0380666 Aug 1990 EP
0466518 Jan 1992 EP
0604022 Jun 1994 EP
2728457 Jun 1996 FR
8800459 Jan 1988 WO
9015582 Dec 1990 WO
9501669 Jan 1995 WO
9619159 Jun 1996 WO
9803656 Jan 1998 WO
9846115 Oct 1998 WO
9904724 Feb 1999 WO
0067679 Nov 2000 WO
0115650 Mar 2001 WO
0117462 Mar 2001 WO
0166043 Sep 2001 WO
03047468 Jun 2003 WO
03084443 Oct 2003 WO
2004019825 Mar 2004 WO
2004021893 Mar 2004 WO
2004023980 Mar 2004 WO
2004030568 Apr 2004 WO
2004030569 Apr 2004 WO
2004030570 Apr 2004 WO
2004032724 Apr 2004 WO
2004032796 Apr 2004 WO
2004037128 May 2004 WO
2004037317 May 2004 WO
2004039432 May 2004 WO
2004043265 May 2004 WO
2004043273 May 2004 WO
2004043293 May 2004 WO
2004045370 Jun 2004 WO
2004045378 Jun 2004 WO
2004045463 Jun 2004 WO
2004047677 Jun 2004 WO
2004060217 Jul 2004 WO
2004060470 Jul 2004 WO
2004062725 Jul 2004 WO
2004066803 Aug 2004 WO
2004066826 Aug 2004 WO
2004069287 Aug 2004 WO
2004075789 Sep 2004 WO
2004080352 Sep 2004 WO
2004082523 Sep 2004 WO
2004082527 Sep 2004 WO
2004082528 Sep 2004 WO
2004082536 Sep 2004 WO
2004082537 Sep 2004 WO
2004082538 Sep 2004 WO
2004082757 Sep 2004 WO
2004084746 Oct 2004 WO
2004084770 Oct 2004 WO
2004089246 Oct 2004 WO
2004089250 Oct 2004 WO
2004089253 Oct 2004 WO
2004091449 Oct 2004 WO
2004091454 Oct 2004 WO
2004093638 Nov 2004 WO
2004093726 Nov 2004 WO
2004093728 Nov 2004 WO
2004093730 Nov 2004 WO
2004093745 Nov 2004 WO
2004093935 Nov 2004 WO
2004096100 Nov 2004 WO
2004103222 Dec 2004 WO
2004103223 Dec 2004 WO
2004105584 Dec 2004 WO
2004105651 Dec 2004 WO
2004112582 Dec 2004 WO
2004112585 Dec 2004 WO
2004112643 Dec 2004 WO
2004112652 Dec 2004 WO
2004112657 Dec 2004 WO
2004112658 Dec 2004 WO
2005000152 Jan 2005 WO
2005002424 Jan 2005 WO
2005002466 Jan 2005 WO
2005004753 Jan 2005 WO
2005007017 Jan 2005 WO
2005007018 Jan 2005 WO
2005007036 Jan 2005 WO
2005007037 Jan 2005 WO
2005048883 Jan 2005 WO
2005009285 Feb 2005 WO
2005009286 Feb 2005 WO
2005009505 Feb 2005 WO
2005009506 Feb 2005 WO
2005011473 Feb 2005 WO
2005011534 Feb 2005 WO
2005011535 Feb 2005 WO
2005013860 Feb 2005 WO
2005018507 Mar 2005 WO
2005021063 Mar 2005 WO
2005023155 Mar 2005 WO
2005025644 Mar 2005 WO
2005027790 Mar 2005 WO
2005027797 Mar 2005 WO
2005034812 Apr 2005 WO
2005039428 May 2005 WO
2005039452 May 2005 WO
2005046488 May 2005 WO
2005046528 May 2005 WO
2005046529 May 2005 WO
2005046530 May 2005 WO
2005046531 May 2005 WO
2005049103 Jun 2005 WO
2005051226 Jun 2005 WO
2005055811 Jun 2005 WO
2005055883 Jun 2005 WO
2005058206 Jun 2005 WO
2005065585 Jul 2005 WO
2005065593 Jul 2005 WO
2005065594 Jul 2005 WO
2005070342 Aug 2005 WO
2005070343 Aug 2005 WO
2005072654 Aug 2005 WO
2005072655 Aug 2005 WO
2005079706 Sep 2005 WO
2005082288 Sep 2005 WO
2005082289 Sep 2005 WO
2005084595 Sep 2005 WO
2005087139 Sep 2005 WO
2005087140 Sep 2005 WO
2006000763 Jan 2006 WO
2006000776 Jan 2006 WO
2006002492 Jan 2006 WO
2006004679 Jan 2006 WO
2006005015 Jan 2006 WO
2006009690 Jan 2006 WO
2006011127 Feb 2006 WO
2006012011 Feb 2006 WO
2006012013 Feb 2006 WO
2006012038 Feb 2006 WO
2006012068 Feb 2006 WO
2006012322 Feb 2006 WO
2006019498 Feb 2006 WO
2006026371 Mar 2006 WO
2006026377 Mar 2006 WO
2006026912 Mar 2006 WO
2006027499 Mar 2006 WO
2006028821 Mar 2006 WO
2006029062 Mar 2006 WO
2006031436 Mar 2006 WO
2006031469 Mar 2006 WO
2006032051 Mar 2006 WO
2006034245 Mar 2006 WO
2006035415 Apr 2006 WO
2006041505 Apr 2006 WO
2006044679 Apr 2006 WO
2006048664 May 2006 WO
2006050459 May 2006 WO
2006050460 May 2006 WO
2006054107 May 2006 WO
2006054930 May 2006 WO
2006055982 May 2006 WO
2006060546 Jun 2006 WO
2006063108 Jun 2006 WO
2006063181 Jun 2006 WO
2006063199 Jun 2006 WO
2006064490 Jun 2006 WO
2006065212 Jun 2006 WO
2006065930 Jun 2006 WO
2006066148 Jun 2006 WO
2006066150 Jun 2006 WO
2006069094 Jun 2006 WO
2006070372 Jul 2006 WO
2006073628 Jul 2006 WO
2006076890 Jul 2006 WO
Related Publications (1)
Number Date Country
20110230949 A1 Sep 2011 US
Continuations (2)
Number Date Country
Parent 12509604 Jul 2009 US
Child 13117770 US
Parent 11232403 Sep 2005 US
Child 12509604 US