Vent assembly

Information

  • Patent Grant
  • 6786817
  • Patent Number
    6,786,817
  • Date Filed
    Friday, March 7, 2003
    21 years ago
  • Date Issued
    Tuesday, September 7, 2004
    20 years ago
Abstract
A vent assembly has a vent cover and sliding air flow regulator for controlling the flow of air through the vent cover. Plural sets of unique couplers may be used to interconnect the air flow regulator and vent cover for relative sliding motion. Desirably, two such couplers are provided at each end of the assembly with an associated one of such couplers being adjacent to each of the corners of the assembly in the event a rectangular assembly is provided.
Description




FIELD




The present invention relates to a vent assembly having an air flow regulator slidable relative to a vent cover to control the flow of air through the vent cover and wherein the air flow regulator is detachably coupled to the vent covering and also to related methods.




BACKGROUND




Vent assemblies with a cover and a sliding air flow regulator or grill of various constructions are known. For example, U.S. Pat. No. 5,472,380 to Sarazen, Jr. et al. is understood to illustrate a construction in which a register or vent cover slidably receives a slide grill. The register defines a groove between the underside of vanes of the register and the upper surface of ridges formed in opposed sidewalls of the register. A handle, or tab, which can be integrally formed as part of the slide grill, extends upwardly in the space between two vanes of the cover so that it can be used to slide the grill.




U.S. Pat. No. 2,930,309 to Prager is understood to disclose an adjustable ventilator which has a vaned louver plate on one surface of a wall. A slidable plate assembly is located at the opposite side of the wall. The slidable plate assembly includes a cover having a plurality of openings which overlies a slide plate. Handles extend through slots in the cover and are used to slide the slide plate to selectively block or open the openings through the cover.




U.S. Pat. No. 3,509,812 to James is understood to illustrate a construction of a ventilator having an apertured back member fixed to a supporting surface and a front apertured member which is slidably mounted to the back member.




Although constructions of this type are known, a need exists for an improved vent assembly and method.




SUMMARY




The present invention is directed toward new and unobvious aspects of a vent assembly and method acts alone and in various combinations and subcombinations with one another. The invention is not limited to a vent assembly or method which includes all of the various components described below in connection with the illustrated embodiments.




In accordance with a first embodiment, a vent assembly is described for controlling the flow of air through an opening. The assembly comprises a vent cover with a plurality of air flow openings. An air flow regulator is slidable relative to the vent cover from a first closed position in which the air flow regulator substantially blocks the flow of air through the air flow openings to second open positions in which air flow paths are provided through the air flow regulator and air flow openings. By substantially blocking the flow of air, it is meant that air flow is severely restricted as some air flow leakage or minimal air flow may still take place even though the air flow regulator is in the closed position. One or more open positions may be provided with air flow being less restricted by the air flow regulator as the air flow regulator is moved toward its most open position. In this embodiment, a first set of at least two discrete couplers interconnect the air flow regulator and the vent cover at a first end portion of the vent assembly. In addition, a second set of at least two discrete couplers interconnect the air flow regulator and the vent cover at a second end portion of the vent assembly. These couplers permit sliding of the air flow regulator relative to the vent cover. These couplers may each comprise at least one first coupler portion coupled to the air flow regulator and at least one second coupler portion frictionally coupled to the vent cover. The first coupler portion of each coupler may support the air flow regulator. The at least one second coupler portion may be inserted into a coupler receiving opening in the vent cover, such as into an air flow slot between vanes of the vent cover. The second coupler portion may frictionally engage the boundaries defining the coupler receiving opening, such as the walls of air flow directing vanes, to retain the air flow regulator in a coupled relationship to the vent cover.




As another aspect of an embodiment, the air flow regulator may comprise plural guide openings through which the plural couplers respectively extend. The guide openings guide the sliding motion of the air flow regulator. In desirable forms, the air flow guide openings may comprise elongated slots oriented in a direction parallel to the direction in which the air flow regulator slides.




Couplers which engage the air flow regulator may have a first angular compressible portion which is compressed when inserted into a respective coupler receiver opening. The compressible portion engages the vent cover within the coupler receiving opening to couple the air flow regulator to the vent cover. The compressible member may comprise a band of resilient spring material bent for compression upon insertion into the coupler receiving opening and biased against the walls of the coupler receiving opening.




As another aspect of an embodiment, the vanes may define slots oriented at a first angle relative to the inner major surface of the vent cover. In addition, the second coupler portions may comprise a band section of spring material formed with an acute angle.




In accordance with one specific embodiment, only two of said couplers are provided at each end portion of the vent assembly.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of one form of a vent cover assembly in accordance with an embodiment of the present invention.





FIG. 2

is a bottom view of a vent assembly in accordance with a second embodiment.





FIG. 3

is a view similar to

FIG. 2

with a slide member or air flow regulator shown in a fully opened position in the upper portion of FIG.


3


and in a closed position in the lower portion of FIG.


3


.





FIG. 4A

is a transverse sectional view of a portion of the vent assembly of

FIG. 3

taken along line


4


A—


4


A of FIG.


3


.





FIG. 4B

is a transverse sectional view of a portion of the vent assembly of

FIG. 3

taken along line


4


B—


4


B of FIG.


3


.





FIG. 5

illustrates one form of actuator for shifting the air flow regulator between open and closed positions with the actuator shown in an air flow regulator open position in FIG.


5


.





FIG. 6

is similar to

FIG. 5

with the actuator shown in an air flow regulator closed position in FIG.


6


.





FIG. 7

is a perspective view of the actuator embodiment shown in

FIGS. 5 and 6

.





FIG. 8

is a side elevational view of the actuator of FIG.


7


.





FIG. 9

illustrates a vent assembly with one form of couplers for coupling an air flow regulator or slide member to a vent cover.





FIG. 10A

is a side elevation view of one of the couplers of FIG.


15


.





FIG. 10B

is a side elevation view of another of the couplers of FIG.


9


.





FIG. 11

is a front view of one of the couplers of FIG.


9


.





FIG. 12

is a bottom plan view of the vent cover and air flow regulator assembly of FIG.


1


.





FIG. 13

is a schematic sectional view illustrating the installation of a coupler.





FIG. 14

is a transverse sectional view, taken along line


14





14


of FIG.


12


.





FIG. 15

is a longitudinal sectional view of the vent assembly of

FIG. 12

, taken along line


15





15


of FIG.


12


and with the vent assembly open.





FIG. 16

is like

FIG. 15

except with the vent assembly closed.





FIG. 17

illustrates a vent assembly usable at a corner location between a floor and wall of a building.





FIG. 18

is a sectional view of the vent assembly of

FIG. 17

, usable in a corner application.











DESCRIPTION OF ILLUSTRATED EMBODIMENTS





FIG. 1

illustrates one form of vent assembly comprising a vent cover


10


, which may be of any suitable durable material such as metal or wood, with wood being a desirable example. The illustrated vent cover has first and second major opposed surfaces


12


,


14


with a plurality of vent openings, some being indicated at


16


, which extend between surfaces


12


,


14


and through which air may flow. The illustrated vent cover


10


has an inward step around its perimeter, as indicated at


18


, with an overhanging projecting rim portion


20


about the perimeter of the vent cover. As can be seen in

FIG. 4A

, the undersurface of rim


20


may engage the upper surface


21


of a portion of a floor


22


or other support through which a duct opening


24


extends. The step


18


allows the vent cover to be inserted downwardly into the duct opening.




The air flow openings


16


in the illustrated vent cover may be of any configuration and comprise elongated slots which are spaced apart from one another by respective vanes. Two of these vanes are indicated at


26


in FIG.


1


. These vanes have wall surfaces which bound and define the respective sides of the air flow slots


16


and are typically angled to assist in directing air as it flows outwardly from the vent assembly. The vanes


26


extend between respective side members or portions


28


,


30


of the illustrated vent assembly. Side members


28


,


30


bound and define the respective ends of the air flow slots


16


. First and second end members or portions


32


,


34


extend between the respective side members


28


,


30


at the respective ends of the vent cover and complete a frame around the perimeter of the vent cover. A central crosspiece


36


is also provided approximately midway between the respective ends of the vent cover


10


. The crosspiece


36


also passes between side members


28


,


30


. The air flow slots


16


toward the right side of crosspiece


36


in

FIG. 1

may be angled to direct air away from the crosspiece. The slots at the opposite side of the crosspiece are typically angled in the opposite direction. One of these air flow slots, in

FIG. 1

the endmost air flow slot indicated at


16




a


to distinguish it from the other slots


16


, has a vent assembly actuator indicated generally at


40


positioned, in this example, at least partially therein. Actuator


40


is used to shift the position of an air flow regulator such as a slide member. The air flow regulator is slidably coupled to the vent cover


10


so as to be slid to various positions to control the flow of air from the duct and through the air flow slots


16


.





FIG. 2

illustrates the underside of a form of vent assembly having a vent cover


10


like that shown in

FIG. 1

except that the vent cover is of a shorter length than that shown in FIG.


1


and lacks the central crosspiece


36


.

FIG. 2

illustrates one form of an air flow regulator


50


which is slidably coupled to the vent cover


10


. In the form shown, the air flow regulator comprises a slide member


54


which may comprise a generally planar plate


55


having opposed first and second major surfaces


56


,


58


(see FIG.


4


A). In the illustrated form in

FIG. 2

, air flow regulator


50


is rectangular and has four corners. In the embodiment shown, the surface


56


is an upper surface of plate


54


and is positioned adjacent to the surface


14


of the vent cover


10


. In addition, the surface


58


is spaced away from the surface


14


and is exposed to view in the embodiment of

FIG. 2

when looking at the rear or underside of the vent assembly. The plate


55


has first and second reinforcing side flanges


60


,


62


. The respective flanges


60


,


62


project outwardly away from the surface


58


and away from the vent cover surface


14


. The illustrated slide member


54


has a plurality of spaced apart air flow openings extending between the surfaces


56


,


58


with some of these openings being indicated at


66


in FIG.


2


. Openings


66


may take any convenient configuration. In the illustrated form, these openings comprise elongated rectangular slots extending transversely relative to the longitudinal axis of the plate


55


. In

FIG. 2

, the slide member


54


is shown positioned in a fully open position. In this position, the slots


66


are aligned with corresponding air flow openings


16


of the vent cover. Consequently, minimal resistance is provided to the flow of air upwardly through the slide member and vent cover. In contrast, when slide member is shifted to a fully closed position, the portions of the slide member between the openings


66


are aligned with the air flow openings


16


through the vent cover. This substantially blocks the flow of air through the vent cover. Intermediate open positions are also possible depending upon the extent of the alignment of openings


66


with openings


16


. The upper portion of

FIG. 3

shows the vent assembly of

FIG. 2

with the slide member


54


in the open position. This corresponds to the position shown in FIG.


2


. In contrast, the lower portion of

FIG. 3

illustrates the vent assembly of

FIG. 2

with the slide member


54


shifted to the closed position.

FIG. 4A

shows a portion of the vent assembly of

FIG. 3

in the open position.

FIG. 4B

shows a portion of the vent assembly of

FIG. 3

in the closed position.





FIG. 2

also illustrates one form of an actuator engaging portion


70


of the slide member


54


. As can be seen in

FIGS. 5 and 6

, in connection with one specific form of actuator


40


, the actuator engaging member


70


comprises a lower portion


72


spaced below the surface


58


and coupled by a downwardly projecting flange portion


74


to the main body of the slide member


54


. Portion


72


of actuator engaging member


70


, in the form shown, is provided with an opening or slot


76


for receiving a toe or tab portion


80


of the actuator embodiment shown in

FIGS. 5

,


6


and


7


.




Although not required, for economic efficiency, slide member


54


may be formed out of a single sheet of material by simply cutting and bending the sheet in an appropriate manner. As a specific example, the slide member


54


may be formed of 18 to 20 gauge C.R. low carbon steel. The various embodiments are not limited to the form of slide member shown by member


54


or to the form of actuator engagement mechanism shown at


70


. For example, a pin or handle may project upwardly from the air flow regulator where it can be grasped and moved to slide the air flow regulator relative to the vent cover. The pin or handle typically would slide along a slot in the vent cover. Other actuator mechanisms may also be used.




Various forms of couplers may be used to slidably mount the slide member


54


to the vent cover


10


. Detachable couplers, particularly those which require no tools for installation, are particularly desirable. In accordance with an illustrated embodiment, a first set of plural couplers, such as at least two spaced apart couplers is positioned adjacent to a first end portion of the vent cover. The couplers of the first set are each inserted into a respective associated coupler guide opening (described below) and into engagement with the vent cover so as to slidably couple the air flow regular to the vent cover. Desirably at least one coupler of the first set is positioned adjacent to a first corner of the air flow regulator at the first end portion of the vent cover. In addition, desirably at least one other coupler of the first set of couplers is positioned at the opposite corner of the air flow regulator and at the first end portion of the vent cover. These couplers slidably couple the air flow regulator to the vent cover. In addition, a second set of plural couplers, such as at least two spaced apart discrete couplers are positioned adjacent to a second end portion of the vent cover and opposite to the first end portion of the vent cover. Each of the couplers of the second set are inserted through an associated coupler guide opening and into engagement with the vent cover. Desirably at least one coupler of the second set of couplers is positioned adjacent to a third corner of the air flow regulator at the second end portion of the vent cover. In addition, desirably a second coupler of the second set of couplers is positioned adjacent to the opposite corner of the air flow regulator at the second end portion of the vent cover. The second set of couplers also slidably couple the air flow regulator to the vent cover. In a desirable form, each coupler comprises at least one first coupler portion coupled to and supporting the air flow regulator so as to permit sliding movement of the air flow regulator or slide member. In addition, each such coupler desirably comprises at least one second coupler portion which frictionally engages the vent cover. As a specific example, second coupler portions which are compressed in at least one direction within coupler receiving openings of the vent cover may be used. As a more specifically desirable example, the coupler receiving openings in the vent cover may comprise one or more of the air flow openings. A particularly desirable form of coupler is a clip. As a specific example, the couplers may be made of a resilient band of material, such as of spring steel, bent into an appropriate shape.




In the embodiment shown in

FIG. 2

, a first set of two spaced apart couplers, each in the form of a clip


100


, are positioned at a first end portion of slide member


54


. In addition, a second set of couplers


102


, each in the form of a clip, are positioned at the opposite end portion of slide member


54


. The couplers


100


,


102


in the form shown are discrete clips that are spaced apart from one another. In the embodiment shown in

FIG. 2

, each coupler is adjacent to a respective one of the corners of the slide member


54


. Additional discrete couplers may be included in the first set and also in the second set, if desired.




The operation of the exemplary actuator


40


mentioned above will be best understood with reference to

FIGS. 5

,


6


,


7


and


8


. More specifically, with reference to

FIG. 7

, the actuator


40


, in the form shown, comprises a lever


84


having a first portion


86


which is coupled to the air flow regulator. More specifically, in the embodiment shown, the tab


80


projects from the lever first portion


86


for insertion into the opening


76


of actuator receiving portion


72


of the slide member. In addition, the illustrated lever


84


includes a pivot portion


88


which, as can be seen in

FIG. 5

, in the illustrated embodiment, is positioned at least partially within the slot


16




a


of the vent cover. More specifically, pivot portion


88


in the illustrated embodiment is configured for positioning entirely within the slot between walls of adjoining portions of the vent cover that define slot


16




a


. In addition, lever


84


comprises a grasping portion


90


which projects from the pivot portion and generally away from the air flow regulator or slide member


54


when the vent assembly is assembled.




As can be seen in

FIGS. 5

,


6


and


7


, the first or lower lever portion in the illustrated embodiment is not straight. In particular, the first lever portion


86


is bent, in this case, between the pivot portion and the tab


80


. In addition, a shoulder


92


is provided between tab


80


and the lever portion


86


. As can be seen in

FIGS. 5 and 6

, the shoulder


92


bears against the slot


76


as the actuator is operated.





FIG. 5

illustrates the slide member


54


in a fully open position. Lever


84


is pivoted in the direction indicated by arrow


94


to open the vent assembly. In contrast,

FIG. 6

illustrates the vent assembly in the closed position. The lever


84


is pivoted in the direction indicated by arrow


96


to close the vent assembly. As can be seen in

FIGS. 5 and 6

, curved exterior surfaces of the pivot portion


88


engage the walls defining slot


16




a


to guide this pivoting motion. In addition, with the configuration shown, as the actuator is pivoted toward its open position in the direction of arrow


94


, the distance d


1


between the pivot axis of pivot portion


88


and the undersurface


14


of vent cover


10


increases. That is, the pivot axis is shifted closer to vent cover surface


12


. In one specific configuration, the distance d


1


is 0.267 inches. In contrast, as the lever


84


of this configuration is shifted toward its closed position in the direction of arrow


96


in

FIG. 6

, the distance between the pivot axis of pivot portion


88


and surface


14


is decreased. This is indicated by d


2


in FIG.


6


. With the specific example shown, d


2


may be 0.22 inch. Thus, in effect, one form of lever


84


includes a floating pivot which moves toward the upper surface


12


of the vent cover


10


as the actuator is shifted toward its open position. This assists in maintaining the upper portion of lever


84


at a location where it is easier to reach for use in adjusting the position of the slide member


54


.




Although the dimensions of the lever form of actuator shown in

FIGS. 5

,


6


,


7


and


8


may vary, specific exemplary dimensions for a construction in which the distance between surface


58


of slide member


54


and the upper surface of engaging member


72


is 0.244 inch are as follows. The lettering and angle designations set forth below correspond to the lettering and angles used in FIG.


8


.



















Example 1




Example 2





























θ =




25 degrees




θ =




25 degrees







L


1


=




0.110 inch




L


1


=




0.156 inch







L


2


=




0.401 inch




L


2


=




0.375 inch







L


3


=




0.250 inch




L


3


=




0.272 inch







L


4


=




0.358 inch




L


4


=




0.440 inch







L


5


=




0.104 inch




L


5


=




0.077 inch







L


6


=




0.138 inch




L


6


=




0.094 inch







T =




0.057 inch




T =




0.062 inch















In addition, the width of the lever


84


may be 0.609 inch and width of the tab


80


may be 0.157 inch. The actuator lever


84


may be made of any suitable material and may, for example, be extruded of aluminum with the extrusion being separated into actuators of the appropriate width and with the tab


80


being formed by machining.




The clips


100


,


102


may take a number of forms. Desirable forms of clips


100


,


102


are illustrated in

FIGS. 9

,


10


A,


10


B, and


11


. With reference to

FIG. 9

, the air flow openings


16


,


16




a


through vent cover


10


, as mentioned above, are defined by vanes


26


and respective portions of the end pieces


32


,


34


. More specifically, the air flow openings are defined by respective spaced apart and adjacent walls


104


,


106


of these components. The walls may be angled relative to horizontal such as indicated in FIG.


9


. An exemplary angle is indicated at A in FIG.


9


. Although variable, an exemplary desirable angle for a wooden vent is 16 degrees either side of vertical (e.g., 74° or 106° from horizontal). This angle results in improved air flow throw and spread characteristics for a wooden vent cover with all of the vanes at the same angle or vanes at one side of the center of the vent cover at 74° and those at the opposite side of the center of the vent cover at 106°. Although not required, desirably, for this style of vent cover, the vane angle is within plus or minus three or four degrees of 16 degrees either side of vertical. In addition, the walls


104


,


106


are spaced apart a distance V


t


in

FIG. 9

, corresponding to the width of the air flow slots


16


. Although the dimensions of the air flow slots may vary, an exemplary V


t


is 0.24 inch.




The clips


100


may be identical to one another or, although less desirable, they may be of a different configuration. In addition, the clips


102


may be identical to one another or, although less desirable, they may also be of a different configuration. In the example of

FIG. 9

, clips


100


are identical to one another and clips


102


are also identical to one another. Clip


100


will be described in detail in connection with

FIGS. 10A and 11

. Clip


102


is shown in FIG.


10


B. The illustrated clip


100


comprises a first coupler portion which in this example comprises air flow regulator support portion


110


. As can be seen in

FIG. 9

, support portions


110


support the slide member


54


from below. That is, portions


110


of the respective clips


100


,


102


are typically positioned adjacent to surface


58


of the slide member


54


. In this example, there is no need for the clips


100


or the clips


102


to be interconnected. Also, by making support portion


110


of a band of material having a width and flat upper supporting surface, enhanced stable support of slide plate


54


is provided. In addition, the illustrated clip


100


comprises a coupler portion


120


comprised of at least two coupler sections


114


,


118


. These coupler sections have a cross-sectional dimension in one direction (the direction corresponding to the distance V


t


) which is greater than the distance V


t


. Consequently, when the coupler portion


120


is inserted into a receiving air flow slot


16


or


16




a


, the coupler portion


120


is compressed in at least one dimension for wedging or frictional fit within the receiving opening. As a result, the slide member


54


is held in place without requiring tools to interconnect the slide member to the vent cover in this example. The illustrated coupler portion


120


is comprised of an upwardly extending leg portion


114


, a curved end portion


116


, and a downwardly extending leg portion


118


. By making portions


114


,


118


to have an extended width, e.g. width w, greater bearing of the coupler


120


against the walls of the air flow slot is achieved.




Referring back to

FIG. 2

, at the location where clip portion


110


extends upwardly or transitions to the portion


114


, an associated guide opening is provided through the slide member


54


. These guide openings may comprise respective slots having longitudinal axes extending in a direction which is parallel to the direction of travel of the slide member


54


relative to the vent cover


10


. These slots are desirably of a width which is slightly wider than the width of the illustrated clips. Exemplary slots are indicated at


124


in FIG.


2


.




Desirably, the angle α (

FIG. 10A

) between support portion


110


and leg portion


114


is less than the angle A (FIG.


9


). Consequently, as can be understood from

FIG. 9

, when the clip is installed (e.g., clip


100


), an upwardly directed biasing force is exerted by the spring clip against the slide member


54


. For example, in

FIG. 10

, the angle α may range from 60 to 80 degrees with 70 degrees being a specifically desirable example for the illustrated vent cover. Thus, the angle α in

FIG. 10A

is desirably an acute angle. In

FIG. 10B

, the corresponding angle α′ is an obtuse angle. The angle α′ may range from 91 to 111 degrees with 101 degrees being a specifically desirable example for the illustrated vent cover. The angle β between leg portions


114


,


118


is also, in the

FIG. 10

form, desirably an acute angle and is selected such that adequate biasing forces are provided against the walls of a slot into which coupler section


120


is inserted. As a specific example, β may range from 30 to 50 degrees, with 40 degrees being a specifically desirable example. The clip


100


in this form holds the slide member securely in place against the undersurface


14


of the vent cover while still allowing the desired sliding movement. These clips


100


,


102


are of a simplified construction and in the desirable form shown, can be formed from a band of material by making only two bends in the material. Although less desirable, the clips may be of wire or other materials which are formed in an appropriate shape. In this illustrated example of clip


100


, the distal end of leg portion


118


hangs up on the wall of the vane and hold the slide member in place. Although less desirable, additional bends can be included in the clip.




Although variable, in one specific illustrative example, the dimensions of a specific clips


100


,


102


are as follows:




α=70 degrees for clip


100






α′=101 degrees for clip


102






β=40 degrees




R=0.04 inch radius of curvature




l


1


=0.31 inch




l


2


=0.38 inch




l


3


=0.38 inch




w=0.13 inch




The length l


1


, is desirably slightly greater than the distance V


t


between the walls of the air flow slot. The width w may vary and in a desirable form is at least five to ten times the thickness of the material used to form the clip. A resilient band of material, such as a rectangular strip of 0.016 inch thick S.S.TY.301 full hard stainless steel may be used for the clip.





FIGS. 12-16

illustrate an alternative embodiment of vent assembly. In these figures, corresponding components, even if they differ somewhat in configuration, have been given the same numbers as in the previously described embodiments. The slots


124


may be of a different configuration from those shown in this construction. For example, the slots


124


at the end of the slide member


54


adjacent to actuator engaging portion


70


may be open at one end.





FIG. 13

schematically illustrates the installation of a clip to couple the slide member


54


to the vent cover. A dashed lined member


118


schematically shows the position of leg section


118


if it were not bent by the wall of slot


16


as it is inserted to the solid line position indicated in FIG.


13


.

FIG. 15

shows the slide member


54


in an open position while

FIG. 16

shows the slide member in a closed position.





FIGS. 17 and 18

illustrate one form of an embodiment of a vent assembly which is suitable for a corner application. Given the low profile coupling and actuator configurations which may be used in accordance with embodiments described above, relatively little clearance is required to accommodate the vent assembly in such a corner application. By low profile, it is meant selecting components which project rearwardly from the vent cover a reduced amount. In one specific example, the side portions


28


,


30


of the vent cover


10


are beveled at


170


,


172


a desired amount for the particular application in question. For example, these edges may be beveled at 45 degree angles. As a result, edge


172


conforms to the configuration of a floor or other support


173


while edge


170


corresponds to the shape of a wall or other structure


171


. A duct


175


is shown in communication with the space beneath the vent assembly of FIG.


18


. The ends of the vent assembly in this embodiment may be closed by respective end members


180


,


182


which may be triangular in shape. When installed, the lower edges of these end members may rest on the floor surface


173


while the upright edges of these end pieces may bear against the wall


171


.




A building may have a plurality of vent assemblies of the various embodiments illustrated and described above.




Although described in connection with several illustrative embodiments, it should be noted that the present invention is not limited to the specific configurations disclosed to illustrate the invention. The present invention is directed toward novel and unobvious aspects and method acts alone and in various combinations and subcombinations with one another. I claim as my invention all such variations as fall within the scope and spirit of the following claims:



Claims
  • 1. A vent assembly for controlling the flow of air through an opening, comprising:a vent cover comprising a plurality of air flow openings; an air flow regulator slidable relative to the vent cover from a first closed position in which the air flow regulator substantially blocks the flow of air through the air flow openings to second open positions in which air flow paths are provided through the air flow regulator and the air flow openings; the air flow regulator defining a plurality of spaced apart coupler guide openings; and a first set of at least two spaced apart discrete couplers positioned adjacent to a first end portion of the vent cover and each being inserted through an associated one of the coupler guide openings and into engagement with the vent cover so as to slidably couple the air flow regulator to the vent cover, a second set of at least two spaced apart discrete couplers positioned adjacent to a second end portion of the vent cover and each being inserted though an associated one of the coupler guide openings and into engagement with the vent cover so as to slidably couple the air flow regulator to the vent cover, each of said couplers comprising a body having a first support portion positioned to support the air flow regulator and a second vent cover engagement portion inserted through the associated coupler guide opening and into an associated coupler receiving opening defined by the vent cover, the vent cover engagement portion frictionally engaging the vent cover within the associated coupler receiving opening.
  • 2. A vent assembly according to claim 1 wherein at least one of the couplers is of a band of material.
  • 3. A vent assembly according to claim 2 wherein the band of material is rectangular.
  • 4. A vent assembly according to claim 1 wherein each of the couplers is of a band of material.
  • 5. A vent assembly according to claim 4 wherein each band of material is rectangular.
  • 6. A vent assembly according to claim 2 wherein the second vent cover engagement portion of each coupler is compressed during insertion into the associated air flow opening.
  • 7. A vent assembly according to claim 1 wherein the coupler receiving openings each comprise a portion of an air flow opening.
  • 8. A vent assembly according to claim 2 wherein the band of material is formed with only two angles.
  • 9. A vent assembly according to claim 4 wherein each band of material has only two angles.
  • 10. A vent assembly according to claim 2 wherein the second vent cover engagement portion of each coupler has first and second leg portions with a first acute angle existing between the first and second leg portions.
  • 11. The vent assembly according to claim 10 wherein the first acute angle is from thirty to fifty degrees.
  • 12. A vent assembly according to claim 10 wherein the first acute angle is forty degrees.
  • 13. A vent assembly according to claim 10 wherein a second angle exists between the first support portion and the first leg portion.
  • 14. A vent assembly according to claim 13 wherein the second angle is an acute angle between sixty degrees and eighty degrees.
  • 15. A vent assembly according to claim 14 wherein second angle is seventy degrees.
  • 16. A vent assembly according to claim 13 wherein the second angle is an obtuse angle between ninety-one and one hundred and eleven degrees.
  • 17. A vent assembly according to claim 14 wherein second angle is one hundred and one degrees.
  • 18. A vent assembly according to claim 10 wherein a second acute angle exists between the first support portion and the first leg portion.
  • 19. A vent assembly according to claim 10 wherein a second obtuse angle exists between the first support portion and the first leg portion.
  • 20. A vent assembly for controlling the flow of air through an opening, the vent assembly comprising:a vent cover comprising a plurality of air flow openings; an air flow regulator of a rectangular shape with four corners, the air flow regulator being slidable relative to the vent cover from a first closed position in which the air flow regulator substantially blocks the flow of air through the air flow openings to second open positions in which air flow paths are provided through the air flow regulator and the air flow openings; at least four spaced apart discrete couplers, with a respective coupler being positioned adjacent to each of the corners of the air flow regulator, the couplers slidably coupling the air flow regulator to the vent cover, each of said couplers comprising at least one first coupler portion coupled to the air flow regulator and at least one second coupler portion frictionally coupled to the vent cover; wherein the vent cover comprises plural coupler receiving openings each for receiving a respective second coupler portion, each second coupler portion comprising a compressible member sized so as to be compressed in at least one direction when inserted into a respective one of the coupler receiver openings, the compressible member engaging the vent cover within the coupler receiver opening to couple the air flow regulator to the vent cover.
  • 21. A vent assembly according to claim 20 in which the compressible member comprises a band of spring steel.
  • 22. A vent assembly according to claim 20 wherein there are only four of such couplers.
  • 23. A vent cover according to claim 20 wherein first coupler portion comprises a rectangular air regulator support portion.
  • 24. A vent cover according to claim 20 wherein each coupler comprises a compressible member and a first coupler portion of a respective single one-piece band of material.
  • 25. A vent assembly according to claim 20 wherein the vent cover is supported at an acute angle relative to horizontal when the vent assembly is installed.
  • 26. A building comprising plural vent assemblies of claim 25.
  • 27. A building comprising plural vent assemblies of claim 20.
  • 28. A vent cover assembly comprising:vent cover means for positioning in a vent opening; air regulator means for controlling the flow of air through the vent opening; and plural discrete coupler means each formed of a band of material for slidably and frictionally coupling the air regulator means to the vent cover means, the coupler means being spaced apart so as to not contact one another.
  • 29. A vent assembly for controlling the flow of air through an opening, the vent assembly comprising:a vent cover comprising a plurality of air flow openings; an air flow regulator of a rectangular shape with four corners, the air flow regulator being slidable relative to the vent cover from a first closed position in which the air flow regulator substantially blocks the flow of air through the air flow openings to second open positions in which air flow paths are provided through the air flow regulator and the air flow openings; at least four spaced apart discrete couplers, with a respective coupler being positioned adjacent to each of the corners of the air flow regulator, the couplers slidably coupling the air flow regulator to the vent cover, each of said couplers comprising at least one first coupler portion coupled to the air flow regulator and at least one second coupler portion frictionally coupled to the vent cover; wherein the vent cover comprises plural coupler receiving openings each for receiving a respective second coupler portion, each second coupler portion comprising a compressible member sized so as to be compressed in at least one direction when inserted into a respective one of the coupler receiver openings, the compressible member engaging the vent cover within the coupler receiver opening to couple the air flow regulator to the vent cover; wherein both the compressible member and the first coupler portions are formed of a single band of material; and wherein each coupler has only two angles formed in the band of material, a first of the angles being formed at a transition from the first coupler portion to the second coupler portion and the other or second of the angles being an acute angle formed in the second coupler portion.
  • 30. A method of coupling an air flow regulator to a vent cover comprising:positioning the air flow regulator against the underside of the vent cover; and inserting a first set of at least two discrete air flow regulator supporting couplers partially through the air flow regulator and into frictional engagement with the vent cover, inserting a second set of at least two discrete air flow regulator supporting couplers partially through the air flow regulator and into frictional engagement with the vent cover, the first and second sets of couplers being at respective opposite first and second end portions of the air flow regulator from one another.
  • 31. A method according to claim 30 wherein the air flow regulator is rectangular with four corners, and wherein the act of inserting comprises inserting a first coupler in the form of a first clip of the first set of couplers adjacent to a first corner of the first end portion air flow regulator and a second coupler in the form of a second clip of the first set of couplers adjacent to a second corner of the first end portion of the air flow regulator, the second corner at the first end portion of the air flow regulator being spaced from the first corner of the first end portion of the air flow regulator, wherein the act of inserting also comprises inserting a first coupler in the form of a first clip of the second set of couplers adjacent to a first corner of the second end portion of the air flow regulator and a second coupler in the form of a second clip of the second set of couplers adjacent to a second corner of the second end portion of the air flow regulator, the second corner at the second end portion of the air flow regulator being spaced from the first corner at the second end portion of the air flow regulator.
  • 32. A method according to claim 31 wherein there are no other clips coupling the air flow regulator to the vent cover except the first and second sets of couplers.
  • 33. A method according to claim 31 wherein the act of inserting first and second sets of clips comprises inserting clips which are each of a band of material.
  • 34. A method according to claim 31 wherein the frictional engagement is accomplished by compressing a compressible end portion of each coupler with the compressed end portion engaging the vent cover.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of application Ser. No. 10/154,949, filed May 23, 2002, inventor Gary R. Orendorff, and entitled “Vent Assembly and Method”, which is incorporated in its entirety herein by reference.

US Referenced Citations (20)
Number Name Date Kind
1788721 Klomparens Jan 1931 A
2930309 Prager Mar 1960 A
3236171 Vaskov et al. Feb 1966 A
3509812 James May 1970 A
3528359 Sand Sep 1970 A
3589265 Hedrick Jun 1971 A
3938430 Koppang Feb 1976 A
3955483 Sunter May 1976 A
3955591 Baumann May 1976 A
4319520 Lanting et al. Mar 1982 A
4394958 Whitney et al. Jul 1983 A
4417687 Grant Nov 1983 A
4907500 Brown Mar 1990 A
5052440 Frank et al. Oct 1991 A
5163871 Huibregtse et al. Nov 1992 A
5472380 Sarazen, Jr. et al. Dec 1995 A
6066044 Orendorff May 2000 A
D432226 Orendorff Oct 2000 S
6227962 Orendorff May 2001 B1
6422935 Yampolski Jul 2002 B1
Foreign Referenced Citations (6)
Number Date Country
730.634 Aug 1932 FR
2 478 252 Sep 1981 FR
1 349 450 Apr 1974 GB
1 436 555 May 1976 GB
2 001 413 Jan 1979 GB
488694 Dec 1953 IT
Non-Patent Literature Citations (1)
Entry
Specification sheet entitled “Evaporative Diffusers” by Shoemaker, dated prior to filing of application.
Continuation in Parts (1)
Number Date Country
Parent 10/154949 May 2002 US
Child 10/383314 US