This application, and the innovations and related subject matter disclosed herein, (collectively referred to as the “disclosure”) generally concern vented acoustic transducers and related methods and systems. Some configurations of disclosed acoustic transducers combine or integrate attributes and structure conventionally found distributed between or among separate system components or modules. Such configurations can eliminate one or more conventional components while retaining one or more functions conventionally provided by the eliminated component. More particularly but not exclusively, acoustic transducers having a vented acoustic diaphragm are disclosed. Examples of acoustic-transducers include loudspeaker transducers, and microphone transducers. Both can have a barometrically-vented diaphragm and are but specific examples of disclosed acoustic transducers used herein to facilitate description of innovative principles that can be applied among a variety of transducer embodiments, as will be appreciated by those of ordinary skill in the art following a careful review of this disclosure. As well, this disclosure describes examples of systems and methods pertaining to innovative acoustic transducers.
In general, an acoustic signal constitutes a vibration that propagates through a carrier medium, such as, for example, a gas, a liquid, or a solid. An acoustic transducer, in turn, is a device configured to convert an incoming acoustic signal to another form of signal (e.g., an electrical signal), or vice-versa. Thus, an acoustic transducer in the form of a loudspeaker can convert an incoming signal (e.g., an electro-magnetic signal) to an emitted acoustic signal, while an acoustic transducer in the form of a microphone can be configured to convert an incoming acoustic signal to another form (e.g., an electro-magnetic signal).
A loudspeaker can emit an acoustic signal in a carrier medium by vibrating or moving an acoustic diaphragm to induce, or otherwise inducing, a pressure variation or other vibration in the carrier medium. For example, an electromagnetic loudspeaker arranged as a direct radiator can induce a time-varying magnetic flux in a coil (e.g., a wire formed of copper clad aluminum wrapped around, for example, a bobbin) by passing a corresponding time-varying current through the coil (sometimes referred to in the art as a “voice coil”). The coil can be positioned adjacent one or more magnets (e.g., a permanent magnet having a fixed, or an electromagnet having a variable, magnetic field). A resultant force as between the magnetic flux emanated from the coil and the magnetic field(s) of the one or more magnets can urge the coil into motion, preferably a pistonic motion in some embodiments.
The coil, in turn, can be directly or indirectly coupled with an acoustic diaphragm configured to induce a pressure variation in a surrounding carrier medium as the diaphragm moves in correspondence with the, e.g., pistonic, movement of the coil. The diaphragm can be rigid, or semi-rigid, and often is light weight to reduce inertial effects and allow the acoustic diaphragm to vibrate or otherwise induce a pressure variation or other vibration in a surrounding or adjacent carrier medium. The coil and/or the bobbin can provide a measure of structural stability to the membrane, as to maintain predominately pistonic movement in the diaphragm.
Further, the diaphragm can be suspended from or otherwise movably supported by a frame. A suitable suspension system generally provides a restoring force to the diaphragm to maintain the coil in a desired position and/or orientation. The suspension allows for controlled axial (e.g., pistonic) motion, while largely preventing lateral motion or tilting that could cause the coil to strike another motor component, or otherwise induce distortion or mechanical inefficiency leading to degraded performance of the transducer.
Conversely, despite having a similar physical arrangement compared to the just-described loudspeaker, a microphone transducer can be configured to convert an incoming acoustic signal to, for example, an electrical signal. For example, an acoustic diaphragm of a microphone transducer can vibrate, move, or otherwise respond to a pressure variation received through a surrounding or adjacent carrier medium. Movement of the coil through the magnetic field can induce a corresponding electrical current through the coil. Accordingly, a time-varying movement of the coil can induce a corresponding time-varying electrical current through the coil. Such a time-varying electrical current can be converted to a machine-readable form (e.g., digitized).
Regardless of their precise configuration, performance or operation of such acoustic transducers can be negatively affected, and such transducers can even be rendered inoperable, if the mode of emitting or receiving an acoustic signal is inhibited or prevented. For example, some use conditions can apply a load to a conventional acoustic diaphragm sufficient to inhibit or prevent movement or vibration of the diaphragm. More specifically, a large pressure gradient applied across a conventional acoustic diaphragm can bias the diaphragm to an outermost (or innermost) position of displacement. As another example, a contaminant can prevent or inhibit movement of an acoustic diaphragm past a given position within the diaphragm's typical range-of-displacement. In either event, operation of the acoustic transducer, whether configured as a loudspeaker or a microphone, can be negatively affected, or the transducer can be altogether rendered inoperable. Examples of negative effects include acoustic distortion or lower-than-normal amplitude (e.g., emitted or detected loudness). Such performance degradation can continue until the pressure gradient is equalized, or the contaminant is removed.
Barometrically venting an acoustic enclosure or module has been proposed to alleviate or to eliminate such pressure-induced performance degradation. As but one example, U.S. Pat. No. 9,363,587, which is hereby incorporated by reference as fully as if reproduced herein in its entirety, for all purposes, disclosed a pressure vent for speaker or microphone modules.
Moreover, acoustic transducers, as well as modules and systems incorporating such transducers, continue to be made smaller. However, it may be desirable in some instances for an acoustic transducer, and more particularly for an acoustic diaphragm, to maintain a physical size above a lower threshold size to achieve desired acoustic properties and/or functional attributes.
Thus, a need remains for acoustic transducers suitable for use across a wide range of environmental (or ambient) pressures. As well, a need remains for acoustic transducers configured to meet or to exceed desired acoustic performance targets. And, a need exists for such acoustic transducers to be configured for use in a compact physical environment.
The innovations disclosed herein overcome many problems in the prior art and address one or more aforementioned or other needs. In some respects, the innovations disclosed herein generally concern vented acoustic transducers, and more particularly, but not exclusively acoustic transducers having a vented acoustic diaphragm. Related methods and systems also are disclosed.
A disclosed acoustic transducer incorporates a barometrically vented acoustic diaphragm. Such an acoustic transducer can equalize barometric pressure across the acoustic diaphragm, while retaining sufficient surface area and/or sufficient volume for the acoustic diaphragm to meet or exceed aggressive acoustic targets (e.g., desired sound pressure levels across various selected frequency bands).
Notably, disclosed acoustic transducers stand in stark contrast to acoustic transducers incorporated in previously proposed acoustic modules. Those previously proposed acoustic modules incorporated an acoustic transducer separate from a barometric vent. As a consequence, such previously proposed acoustic modules can have difficulty meeting acoustic targets in area- or volume-constrained applications because the corresponding acoustic diaphragm has limited size to allow for a separate, e.g., spaced-apart, or adjacent, barometric vent.
By contrast, disclosed acoustic transducers eliminate the need for a separate barometric vent, while retaining the pressure-equalization function and capability of prior barometric vents. Consequently, disclosed acoustic transducers and modules incorporating them can provide a larger acoustic diaphragm relative to previous vented acoustic-modules, while still being barometrically vented. Vented acoustic diaphragms, as described herein, can allow disclosed acoustic transducers and modules incorporating them to meet or exceed acoustic targets in area- or volume-constrained applications, while retaining barometric-pressure-equalization capabilities previously only attainable by way of acoustic modules having a separate acoustic transducer and barometric-vent in a relatively larger volume.
Disclosed acoustic transducers have an acoustic diaphragm. The acoustic diaphragm has opposed first and second major surfaces and defines a barometric vent configured to equalize a barometric pressure gradient between the first and second major surfaces. Such a vent can include a gas-permeable region. In some instances, the gas-permeable region also is liquid-impermeable below a selected pressure gradient across the vent.
In some instances, an aperture defined by the acoustic diaphragm forms the barometric vent. A gas-permeable vent membrane can be coupled with the acoustic diaphragm and can extend across the aperture. Such a vent membrane can inhibit movement of liquid across the membrane. For example, the vent membrane can prevent movement of water across (or through) the vent membrane for hydrostatic pressure gradients (e.g., a hydrostatic driving force) across the vent membrane below a selected threshold hydrostatic pressure gradient. A representative example of a vent membrane can be formed of PTFE or ePTFE, though other suitable materials can be used in place of or in addition to PTFE or ePTFE. Such materials include, for example, polymerized fibers (e.g., polyvinylidene fluoride, or polyvinylidene difluoride, both of which generally are referred to in the art as “PVDF” and are inert thermoplastic fluoropolymers produced by the polymerization of vinylidene difluoride).
In general, a suitable vent membrane for a particular application can permit a flow of gas therethrough while being impermeable to a liquid at liquid breakthrough pressures below a selected threshold pressure.
As used herein, the term “PTFE” means polytetrafluoroethylene. PTFE, commonly referred to by the DuPont trademark Teflon® or the ICI trademark Fluon®, is well known for its chemical resistance, thermal stability, and hydrophobicity. Expanded PTFE, sometimes also referred to as ePTFE, has a porous structure defined by a web of interconnected fibrils. ePTFE commonly has a porosity of about 85% by volume, but because of its hydrophobicity, has a relatively high liquid breakthrough pressure (i.e., a threshold hydrostatic pressure below which the ePTFE remains impermeable to the liquid) for a variety of liquids, including water.
Some disclosed acoustic transducers have a liquid-impermeable encapsulant (or, more generally, laminate) extending at least partially across one or both of the first and the second major surfaces of the acoustic diaphragm. Such an encapsulant or laminate can enhance liquid-impermeability of the acoustic diaphragm with little or no degradation in acoustic performance. An example of such an encapsulant or laminate includes overmolded silicone applied to the respective one or both of the first and the second major surfaces of the acoustic diaphragm. The encapsulant or laminate can define one or more apertures positioned in correspondence to the gas-permeable vent membrane, or vent region.
In some embodiments, a segment of an outer periphery of the vent membrane and a corresponding portion of the acoustic diaphragm form a laminated construction. For example, an outer periphery of the vent membrane can be adhered or otherwise sealably affixed to the first major surface or to the second major surface in a region adjacent the aperture in the acoustic diaphragm.
Moreover, some acoustic diaphragm embodiments have a laminated construction, where a first layer defines the first major surface and a second layer defines the second major surface. With such an arrangement, the segment of the outer periphery of the vent membrane can be positioned between the first layer and the second layer of the acoustic diaphragm.
Some disclosed acoustic transducers have more than one aperture extending through the acoustic diaphragm. Accordingly, the aperture described above can constitute a first aperture, and the acoustic diaphragm can define at least a second aperture spaced apart from the first aperture. Nonetheless, the vent membrane can have a unitary construction spanning across the first aperture and the second aperture. In other embodiments, the vent membrane is segmented such that separate vent membranes are applied across each respective aperture, or group of apertures.
Some disclosed acoustic diaphragms can include one or more features arranged to place the vent membrane in tension. For example, a given acoustic diaphragm can have one or more vent-membrane anchors positioned outward of each aperture forming an opening of the barometric vent. The vent membrane can be affixed or otherwise mounted to the vent-membrane anchors, and the vent membrane anchors and/or a portion of the acoustic diaphragm can be configured to urge outwardly of the aperture, tensioning the vent membrane.
A single-layer acoustic diaphragm can provide such tension by having a conical, a concave or a convex, or otherwise recessed or protruding shape that can be partially “flattened” after the vent membrane is affixed or otherwise mounted to the diaphragm. Such flattening can urge an interface region of the acoustic diaphragm outward of the aperture(s) defining the barometric vent, placing the vent membrane in tension.
A laminated acoustic diaphragm can be similarly flattened to place a vent membrane in tension. Additionally, or alternatively, the first layer of the acoustic diaphragm and the second layer of the acoustic diaphragm define complementarily shaped contours configured to matingly engage with the vent membrane. When such a construct is at least partially flattened, the vent membrane can be placed in tension. In some instances, one or the other of the layers is partially flattened when the first layer and the second layer are matingly engaged with each other, placing the vent membrane into tension.
Despite there being a wide variety of types of acoustic transducers, some disclosed electromagnetic transducers have a voice coil coupled with the acoustic diaphragm, such that the diaphragm and the coil are movable in correspondence with each other. A magnet can be so positioned adjacent the voice coil as to cause a magnetic field of the magnet to interact with a magnetic flux corresponding to an electrical current through the voice coil. In some instances, the magnet constitutes an inner magnet, and the transducer can have an outer magnet, with the voice coil being positioned between the inner magnet and the outer magnet. The voice coil can be arranged to move pistonically to and fro between a distal-most position and a proximal-most position relative to the inner magnet.
The inner magnet and the vent membrane and/or the second major face of the acoustic diaphragm can be complementarily configured relative to each other. For example, the inner magnet can be configured to support the vent membrane and/or the second major face of the acoustic diaphragm against a barometric pressure urging the vent membrane and/or the second major face of the acoustic diaphragm into contact with the inner magnet.
Some acoustic transducers can have a circuit board positioned within an outer periphery of the barometric vent. An outer edge of the circuit board can be spaced apart from the outer periphery of the aperture through the acoustic diaphragm to define a gap. The vent membrane can span the gap between the outer edge of the circuit board and the outer periphery of the aperture.
Some acoustic transducers have a diaphragm with an aperture. A flexible circuit board, sometimes referred to as “flex circuit” or “flex” in the art, can span across the aperture. In some instances, the flex can sealingly mate with the diaphragm around a periphery of the aperture. The flex can be perforated or otherwise define one or more through-hole apertures sized to permit a desired flow of gas to pass therethrough. The flex, in turn, can be operatively coupled with one or more components. Such a component can include a sensor of various types, and/or other functional and/or computational attributes. A vent membrane of a type described herein can span across each of the one or more through-hole apertures defined by the flex.
The circuit board can be operatively coupled with (e.g., can have mounted thereto or have integrally formed therewith) a displacement sensor configured to measure a displacement of the circuit board, and thus displacement of a region of the acoustic diaphragm adjacent the circuit board. Additionally, or alternatively, the circuit board can be operatively coupled with a pressure transducer configured to detect a change in barometric pressure above a selected lower-threshold change in barometric pressure.
A combined center-of-mass of the acoustic diaphragm, the vent membrane, and the circuit board can be substantially coincident with an axis-of-movement of the acoustic diaphragm. For example, the acoustic diaphragm can move pistonically along a centrally positioned longitudinal axis, and the combined center-of-mass can be positioned on or sufficiently near the longitudinal axis that the assembly of the acoustic diaphragm, the vent membrane, and the circuit board do not tilt, move in-band, or otherwise deviate from a sufficiently uniform pistonic motion as to cause an unsuitable deterioration in performance of the acoustic transducer (e.g., to induce distortion, lose efficiency, or otherwise prevent the diaphragm from vibrating as intended).
Also disclosed are systems and methods related to disclosed acoustic transducers. For example, a disclosed acoustic module can have a barometrically vented acoustic transducer arranged as indicated herein. The module can also have a chassis configured to mount the acoustic-transducer module to another module or housing. A suspension system can movably couple the acoustic diaphragm of the transducer with the chassis or a frame.
As another example, a water-resistant electronic device can include a housing defining an interior chamber and having an exterior. A passage can extend through the housing from the exterior of the housing to the interior chamber. An acoustic-transducer module can sealably couple with the housing at an interface region corresponding to the passage so as to inhibit a flow of gas or liquid across the interface region. The acoustic-transducer module can have a barometrically vented acoustic diaphragm arranged as described herein. As but one example, a hydrophobic vent membrane can sealingly engage with the acoustic diaphragm and span across an aperture or other opening in the acoustic diaphragm so as to form a water-resistant barometric vent within the acoustic diaphragm. The barometric vent can be configured to permit a pressure-equalization flow of gas across the acoustic diaphragm and to inhibit a flow of liquid, into or out of the interior chamber across the acoustic diaphragm. Accordingly, a barometric pressure within the interior chamber can be equalized with a barometric pressure external to the housing, while preventing or inhibiting intrusion of water or other contaminants to the interior chamber. An electronic component that otherwise would be susceptible to damage if exposed to a liquid (e.g., water) can be positioned in the interior chamber of the housing.
The foregoing and other features and advantages will become more apparent from the following detailed description, which proceeds with reference to the accompanying drawings.
Unless specified otherwise, the accompanying drawings illustrate aspects of the innovations described herein. Referring to the drawings, wherein like numerals refer to like parts throughout the several views and this specification, several embodiments incorporating presently disclosed principles are illustrated by way of example, and not by way of limitation.
The following describes various innovative principles concerning vented acoustic transducers, and related methods and systems, by way of reference to specific embodiments. For example, certain aspects of disclosed subject matter pertain to vented acoustic diaphragms, and more particularly but not exclusively to water-resistant vents in acoustic diaphragms. Embodiments of such vents described in context of specific acoustic transducer configurations (e.g., electrodynamic loudspeakers or microphones), particular module arrangements, and particular system arrangements, are but particular examples of contemplated vented acoustic transducers and related systems chosen as being convenient illustrative examples of disclosed principles. Nonetheless, one or more of the disclosed principles can be incorporated in various other embodiments of acoustic transducers, modules, and systems to achieve any of a variety of corresponding system characteristics.
Thus, vented acoustic transducers, modules, and systems (and associated techniques) having attributes that are different from those specific examples discussed herein can embody one or more presently disclosed innovative principles, and can be used in applications not described herein in detail. Accordingly, such alternative embodiments can also fall within the scope of this disclosure.
Referring to
For example, an aperture 21 can extend through the diaphragm 11 to define a passageway, or vent, extending from the first major surface 11a to the second major surface 11b. The vent can be sized to permit a given flow rate of an ambient fluid, e.g., air or another gas, or a liquid, to pass therethrough with a selected degree of pressure (or head) loss. Such a barometric vent can equalize a static pressure gradient across the diaphragm as between the first major surface 11a and the second major surface 11b, while still allowing the acoustic diaphragm to move, e.g, pistonically, or otherwise vibrate to emit or to receive an acoustic signal in a carrier medium. For example, a hydraulic diameter of the gas-permeable aperture can be smaller than a shortest-expected acoustic wave length corresponding to a range of operating frequencies for the acoustic transducer 10.
Nonetheless, inhibiting a liquid or a contaminant from passing through the vent 20 while allowing a flow of gas through the vent might be desired in some, e.g., water-resistant or dusty, applications. As shown in
Depending on physical characteristics possessed by the vent membrane 24, the membrane 24 can inhibit contaminants and/or liquids from passing through the vent, while being gas permeable. For example, a mesh screen having a pore size smaller than suspended contaminant particles can prevent or inhibit such particles from entering or passing through the vent 20. A vent membrane 24 formed of PTFE or ePTFE, or an alternative thereto, can prevent or inhibit a liquid (and particulate contaminants) from passing through the aperture 21 while permitting a desired flow of gas therethrough. In some vent-membrane embodiments, a coating or a treatment can be applied to enhance oleophobicity of the membrane. Such a treatment can be rendered ineffective or less effective if exposed to a surfactant (e.g., soap) that lowers a surface energy of a liquid. Moreover, such a surfactant can also reduce breakthrough pressure that a given membrane can withstand.
Other vent-membrane embodiments can have a composite or a laminate construction. For example, plural layers of material can be laminated together. In one example, a woven or knit material can be laminated to ePTFE or PTFE to add tensile and/or shear strength to the membrane. In other embodiments, a composite vent membrane can be formed by forming ePTFE (or other material) around a lattice structure (e.g., a knit or woven sheet material, like a fabric or screen, formed of any of a variety of materials).
An acoustic diaphragm having a gas-permeable and water-impermeable region need not have a perforation or other aperture covered by a laminated vent membrane adhered to the diaphragm. Rather, a support structure for the diaphragm, or even the diaphragm itself, can be perforated, as generally depicted in
Some acoustic transducers, as with the embodiment shown in
The illustrated transducer 10 shown in
A voice coil 4 is physically coupled with the second major surface 11b of the diaphragm 11. In
In the particular embodiment shown in
Referring now to
The gasket 27 can be formed of any material suitable for applying such a compressive load to the vent membrane and pressure-sensitive adhesive layer. Nonetheless, such a gasket formed of a gas- and/or liquid-impermeable material can confer additional advantages, both during use and during manufacturing. For example, a liquid-impermeable gasket 27 can seal against the magnet under a sufficient hydrostatic load to prevent liquid, which might otherwise pass through the vent membrane 25, from entering a chamber behind the diaphragm (e.g., a chamber as in
Additionally, a gas-impermeable gasket 27 can permit hydrostatic and/or barometric testing of the diaphragm, as during manufacturing, without using water or some other liquid, which can be undesirable in relation to consumer and other electronics. For example, a rapid increase in barometric pressure applied to the vented diaphragm in
Rather than using a rapid increase in barometric pressure to urge the gasket into a sealing engagement with the magnet, a sufficient electrical current, e.g., a sufficient DC current, can be applied to the voice coil to urge the vented region of the diaphragm, e.g., the gasket land 27a, toward and into contact with the magnet 3. As above, once a sealing engagement between the gasket 27 and the magnet 3 is attained, barometric pressure can be increased, as desired.
Similarly, the diaphragm 11 can be selectively positioned relative to the magnet 3 under a variety of pressure gradients applied across the diaphragm 11. For example, a selected DC current can be applied to the voice coil to selectively adjust a “neutral” position of the diaphragm under a given pressure gradient across the diaphragm.
As noted above, alternative constructions are possible. For example, the vent membrane 25 can be in registration with the first major surface 11a of the diaphragm as shown in
Aligning the aperture through the annular adhesive 26 with an aperture 21 through the diaphragm can be difficult. For example, an individual aperture 21 can have a relatively small diameter, as when the barometric vent through the diaphragm 11 is defined by a plurality of individual apertures 21. Such an embodiment is described more fully below in relation to
To provide improved dimensional tolerances with regard to position of the adhesive layer 26 relative to the aperture 21 through the diaphragm 11, the annular adhesive layer can define an aperture having a relatively larger cross-sectional dimension, e.g., diameter, as compared to a comparable cross-sectional measure of the aperture 21 through the diaphragm. Such an arrangement is shown in
In addition to driving the diaphragm 11 with a DC current to adjust a pistonic offset of the diaphragm from its neutral position, as described above, a large-magnitude impulse can displace the diaphragm rapidly. With a membrane in registration with the first (e.g., exterior) major surface of the diaphragm 11, as described, the diaphragm (and the vent membrane) can displace water or other contaminants without urging the membrane away from the diaphragm. For example, the diaphragm and membrane assembly just described can be used as a positive-displacement pump, as to eject water from a chamber around the front side 11a of the diaphragm 11. As the assembly urges against the water or other contaminant, the membrane 25 will be compressed between the water or contaminant and the diaphragm 11, rather than urged away from the diaphragm as it would be if positioned in registration with the back side 11b of the diaphragm. Nonetheless, the diaphragm arrangement described in relation to
Referring now to
Referring now to
In other embodiments, a flexible circuit board, sometimes referred to as “flex circuit” or “flex” in the art, can span from the outer periphery 33 across the aperture. For example, the flex can sealingly mate with the diaphragm 31 outward of the periphery 33 of the aperture. The flex can be perforated or otherwise define one or more through-hole apertures sized to permit a desired flow of gas to pass therethrough. The flex, in turn, can be operatively coupled with one or more components. Such a component can include a sensor of various types, and/or other functional and/or computational attributes. A vent membrane of a type described herein can span across each of the one or more through-hole apertures defined by the flex. In another embodiment, the diaphragm 11 (
The circuit board 37 (or flex) can include a sensor 36 and/or an integrated circuit. The sensor can be a displacement sensor configured to measure a displacement of the acoustic diaphragm 31. In another instance, the sensor 36 can be a pressure transducer configured to detect a change in barometric pressure above a selected lower-threshold change in barometric pressure. In yet another instance, the sensor 36 can be a wet pressure sensor configured to determine a hydrostatic pressure in a region of a fluid (e.g., a liquid) adjacent the vent membrane 35. A combined center-of-mass of the acoustic diaphragm 31, the vent membrane 35, and the circuit board 37, together with any components mounted thereto, including the sensor 36, can be substantially coincident with an axis-of-movement of the acoustic diaphragm 31.
Several details pertaining to construction of an acoustic diaphragm having a barometric vent are described in relation to
A second layer of the acoustic diaphragm 42 also has an aperture 44. A vent membrane 45 spans the aperture 44 and an outer region 46 of the membrane overlies a corresponding region 47 of the diaphragm positioned outward of the aperture. In
Nonetheless, the membrane 45 can be applied to the opposed lower, or second, major surface of the diaphragm 42, as shown in
Referring still to
Some disclosed acoustic diaphragms can include one or more features arranged to place the vent membrane in tension. For example, a given acoustic diaphragm can have one or more vent-membrane anchors (not shown) positioned outward of each aperture 43, 44 forming an opening of the barometric vent. The vent membrane can be affixed or otherwise mounted to the vent-membrane anchors, and the vent membrane anchors and/or a portion of the acoustic diaphragm can be configured to urge outwardly of the aperture, tensioning the vent membrane.
As depicted in
Although barometric vents having a single aperture are described above, some barometric vents in an acoustic diaphragm have a plurality of apertures. In
Referring now to
The module 95 is sealably coupled with the housing 91 at an interface region 95a corresponding to a passage defined by the housing 91 so as to inhibit a flow of gas or liquid across the interface region. Such a sealing engagement prevents a liquid or a gas from seeping into or out of the interior chamber 92 through a passage other than through the barometric vent membrane 97.
In
Referring now to
In general, however, a need remains to vent from the outside to the inside of the device. However, it is difficult to have a barometric vent that takes up limited space, survives required water entry pressure, and allows enough air flow in all conditions for the pressure sensor to measure accurately and timely (pressure adjustments may not be fast enough and could introduce error in the measurements). Also, prior vents can become blocked with water or other contaminants and not allow the device to equalize or to allow the pressure sensor to read accurately.
A pressure sensor, sometimes referred to in the art as a “wet” pressure sensor can be ported directly to the housing. Many such sensors can survive in excess of a 10 bar water pressure, and yet can provide extremely accurate pressure resolutions. Such sensors are readily available commercially from a variety of vendors.
As noted above, venting an acoustic diaphragm, transducer or module as described herein can allow a relatively larger transducer compared to implementations having separate diaphragms and barometric vents. A laterally larger transducer can be beneficial, as when a product's height, or thickness, reduces. In such an instance, the transducer can be made to be longer in one or more coordinate directions in an attempt to maintain good, or at least satisfactory, acoustic performance as compared to prior proposals of discrete vents and transducers. Beyond reclaiming space conventionally occupied by a barometric vent in favor of a vented transducer, such a transducer can actively clear water from the transducer, which in turn can remove water from the barometric vent and allow the system to “breathe”. Additionally, disclosed barometric vents can also be better protected from clogging or damage as compared to prior proposals in which the barometric vent is directly ported through a wall of the housing 91.
An intermediate stage 100 of forming an over mold 5 relative to the suspension 6 and the diaphragm 11 (
Jaws 103 extend from the die set 101, 102 in opposed relation to each other with the diaphragm 11 positioned therebetween. The jaws prevent the over-mold material from flowing beyond a desired boundary. For example, a position of the jaws 103 can correspond to an outer-most extent of a layer of adhesive 26 and/or an outer-most extent of a vent membrane 25 to prevent the over mold material from obstructing the barometric vent through the diaphragm 11.
The examples described above generally concern vented acoustic transducers and related methods and systems, and more particularly but not exclusively to such transducers incorporating a vented acoustic diaphragm.
Nonetheless, embodiments other than those described above in detail are contemplated based on the principles disclosed herein, together with any attendant changes in configurations of the respective apparatus described herein. For example, the principles described above in connection with any particular example can be combined with the principles described in connection with another example described herein.
Moreover, those of ordinary skill in the art will appreciate that the exemplary embodiments disclosed herein can be adapted to various configurations and/or uses without departing from the disclosed principles. Applying the principles disclosed herein, those of ordinary skill in the art will also appreciate that it is possible to provide a wide variety of barometrically vented acoustic transducers and related systems. For example, although electrodynamic transducers having a magnet and voice coil are described in some detail above for illustrative purposes, presently disclosed principles related to barometrically venting an acoustic diaphragm can be applied to a variety of transducer types and configurations. Several particular, but non-exclusive, examples of such transducers include flat-panel transducers (driven by an electrodynamic actuator, as above, or by way of an electrostatic actuator), multi-cell diaphragm transducers, and piezoelectric transducers. Further, those of ordinary skill in the art will appreciate that aspects of each particular embodiment described or shown in the accompanying drawings can be omitted altogether or implemented as a portion of a different embodiment without departing from related disclosed principles.
Directions and other relative references (e.g., up, down, top, bottom, left, right, rearward, forward, etc.) may be used to facilitate discussion of the drawings and principles herein, but are not intended to be limiting. For example, certain terms may be used such as “up,” “down,”, “upper,” “lower,” “horizontal,” “vertical,” “left,” “right,” and the like. Such terms are used, where applicable, to provide some clarity of description when dealing with relative relationships, particularly with respect to the illustrated embodiments. Such terms are not, however, intended to imply absolute relationships, positions, and/or orientations. For example, with respect to an object, an “upper” surface can become a “lower” surface simply by turning the object over. Nevertheless, it is still the same surface and the object remains the same. As used herein, “and/or” means “and” or “or”, as well as “and” and “or.” Moreover, all patent and non-patent literature cited herein is hereby incorporated by reference in its entirety for all purposes.
Accordingly, this detailed description shall not be construed in a limiting sense, and following a review of this disclosure, those of ordinary skill in the art will appreciate the wide variety of acoustic transducers, and related methods and systems that can be devised using the various concepts described herein.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the disclosed innovations. Various modifications to those embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of this disclosure. Thus, the claimed inventions are not intended to be limited to the embodiments shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular, such as by use of the article “a” or “an” is not intended to mean “one and only one” unless specifically so stated, but rather “one or more”. All structural and functional equivalents to the features and method acts of the various embodiments described throughout the disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the features described and claimed herein. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim recitation is to be construed under the provisions of 35 USC 112(f) unless the recitation expressly recites the phrase “means for” or “step for”.
Thus, in view of the many possible embodiments to which the disclosed principles can be applied, we reserve to the right to claim any and all combinations of features and technologies described herein as understood by a person of ordinary skill in the art, including, for example, all that comes within the scope and spirit of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5701358 | Larsen | Dec 1997 | A |
5812496 | Peck | Sep 1998 | A |
7702124 | Niederdraenk | Apr 2010 | B2 |
20140233767 | Chen et al. | Aug 2014 | A1 |
20150110320 | Liu | Apr 2015 | A1 |
20150163572 | Weiss | Jun 2015 | A1 |
20160205469 | Steijner | Jul 2016 | A1 |
20170325011 | Kuki | Nov 2017 | A1 |
20180035203 | Hirai | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
1922919 | Feb 2007 | CN |
204598311 | Aug 2015 | CN |
205647943 | Oct 2016 | CN |
106385644 | Feb 2017 | CN |
205961413 | Feb 2017 | CN |
Entry |
---|
Office Action in Chinese Utility Model Application No. 201820074006.7, dated Jun. 28, 2019, 20 pages. |
Number | Date | Country | |
---|---|---|---|
20180063634 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
62462758 | Feb 2017 | US | |
62378589 | Aug 2016 | US |