1. Field of the Invention
The present invention is generally directed toward pyrotechnic devices in which the primary pyrotechnic charge is hermetically sealed within the device for storage under ambient temperature conditions, but is configured to be vented when exposed to elevated-temperature conditions, such as might be encountered in extreme downhole environments. The devices comprise a passage between an internal chamber containing the pyrotechnic charge and the exterior of the device that is normally sealed with a temperature-sensitive material. Upon exposure to elevated-temperature conditions, the temperature-sensitive material releases thereby opening the passage so that off gases generated by the pyrotechnic material upon exposure to high temperatures may be vented away, thereby slowing the thermal deactivation of the pyrotechnic material.
2. Description of the Prior Art
Explosive materials are often utilized in oil well completion operations, such as in perforating the well casing to permit communication of the underground formation with the well bore. Often, pyrotechnic devices are used to initiate detonation of these explosive materials. These pyrotechnic devices can include fuses comprising time delays that are ignited with an igniter device. Actuation of the igniter device results in ignition of an output charge that in turn ignites a further pyrotechnic device, such as the aforementioned fuse. The output charge comprises a pyrotechnic material, such as lead azide, lead styphnate, and 2,2′,4,4′,6,6′-hexanitrostilbene (HNS-II).
Downhole environments can be quite extreme as compared to conditions at the surface. It is not uncommon for temperatures downhole to exceed 200° F., particularly at extreme depths of 5000 ft. or more. Prolonged exposure to prolonged elevated temperatures can result in the thermal decomposition of the pyrotechnic material used in the initiator. This thermal decomposition generally results in the generation of gaseous products, such as nitrogen, oxygen, and ammonia, depending upon the composition of the pyrotechnic material present in the initiator. Typically, the thermal decomposition of the pyrotechnic material at elevated temperatures as might be encountered downhole progresses slowly. However, the presence of these off gases further accelerates deactivation of the pyrotechnic material at the elevated temperature conditions. If a significant period of time passes between downhole insertion and use of the igniter device, the pyrotechnic material may have degraded to the extent that it no longer is capable of ignition or providing a sufficient explosive output leading to operational downtime.
Thus, there exists a need in the art for an igniter device capable of prolonged exposure to downhole elevated-temperature conditions without the pyrotechnic material contained therein becoming deactivated.
Embodiments of the present invention overcome the aforementioned problems of pyrotechnic material thermal deactivation by providing devices capable of venting off gases released as a result of exposure of the pyrotechnic material to elevated temperature conditions as might be encountered in downhole operations.
According to one embodiment of the present invention there is provided a pyrotechnic device comprising a device body having an outer sidewall and an interior chamber that contains an explosive output charge that is sealed within the body. The chamber comprises opposed input and output ends, and there is a frangible member disposed in covering relationship to the output end. The device further comprises a vent passage extending between the chamber and the exterior of the body. The vent passage is sealed with a temperature-sensitive material that, upon heating of the device to a predetermined temperature, unseals the vent passage and permits communication between the chamber and the exterior of the device body.
According to another embodiment of the present invention there is provided a pyrotechnic igniter comprising an igniter body having an outer sidewall and an interior chamber containing an explosive output charge that is hermetically sealed within the body. The chamber comprises opposed input and output ends, and there is a rupture disc disposed in covering relationship to the output end. The rupture comprises an orifice formed therethrough that defines a passage extending between the chamber and the exterior of the igniter body. The orifice is hermetically sealed with a solid solder material that, upon heating of the igniter to a predetermined temperature, melts thereby unsealing the passage and permitting communication between the chamber and the exterior of the igniter body. The device further comprises a percussion igniter that is operable to initiate ignition of the explosive output charge.
According to yet another embodiment of the present invention there is provided a method of venting a pyrotechnic device containing a pyrotechnic material. The method comprises providing a pyrotechnic device comprising a device body having an interior chamber that contains an explosive output charge sealed therein. The device includes a passage extending between the chamber and the exterior of the body. The passage includes a temperature-sensitive material disposed therein blocking communication between the chamber and the exterior of the body. The device is then introduced into an elevated-temperature environment sufficient to cause the temperature-sensitive material to unseal the passage thereby opening communication between the chamber and the exterior of the body through the passage.
Turning now to
Output section 14 further comprises a frangible member 24, such as a rupture disc, installed over an output end 26 of interior chamber 20. As shown in
It is undesirable for output charge 22 to be exposed to the outside environment during storage of device 10. Therefore, output charge 22 must be sealed within chamber 20, and preferably hermetically sealed, thereby preventing infiltration of external contaminants, such as moisture, into chamber 20 and the pyrotechnic material contained therein. Passage 28 is sealed with a temperature sensitive material 32 that, upon exposure to a predetermined temperature condition, unseals passage 28, preferably by changing phases, and permits communication between chamber 20 and the exterior of the device body 12.
In certain embodiments, material 32 is a low-melting point alloy or eutectic, such as a solder, that creates a mechanically strong hermetic seal to protect the pyrotechnic material contained within device 10 during storage and installation within a downhole tool. In certain embodiments, the material 32 comprises a tin or lead-based solder such as TIX® 54.808 Soft Solder, which comprises approximately 93% tin/4.6% indium/2.3% lead. The solder may be installed within passage 28 using a flux material such as All-State® Duzall® flux. It is within the scope of the present invention for other temperature-sensitive materials to be used to hermetically seal passage 28, such as adhesives or synthetic resin materials. Regardless of the temperature-sensitive material selected, in particular embodiments, the material undergoes a phase change thereby unsealing passage 28 at a temperature that is lower than the outgassing temperature of the pyrotechnic material comprising output charge 22. Most commonly, the phase change that material 32 undergoes to unseal passage 28 is a change from solid to liquid (i.e., melting); however, it is within the scope of the present invention for material 32 to sublime, or change directly from solid to a gas, upon exposure to conditions at or below those that might result in thermal decomposition of the pyrotechnic contained within chamber 20. In particular embodiments, the temperature-sensitive material 32 unseals passage 28 at a temperature of at least 150° F., 175° F., 200° F. or 250° F., but less than 500° F., 450° F., 400° F., or 350° F.
It is noted that frangible member 24 and temperature-sensitive material 32 are distinguishable from laminate composite rupture disc structures, such as those disclosed in U.S. Pat. No. 4,905,722 in which a rupture member having openings formed therein is provided with a plastic sealing member overlying and sealing the openings. In certain embodiments, the temperature-sensitive material not only overlays vent passage 28, but may reside within the passage thereby providing a strong, hermetic seal. Thus, in certain embodiments of the present invention, the use of polymeric or plastic membranes and coatings are avoided as these coverings do not offer a rugged, reliable seal under extreme conditions such as might be encountered in a subterranean wellbore. Moreover, the plastics from which these coverings are made can outgas under the same or even lower temperature conditions as might also result in the outgassing of the pyrotechnic material contained within chamber 20. These off gases, which may be similar in composition to the off gases produced by the thermal decomposition of the pyrotechnic material, would further accelerate the deactivation of the pyrotechnic material.
It is also an important for material 32 to not affect the bursting characteristics of frangible member 24, or at least not affect the bursting characteristics in an unknown or uncontrollable manner. Thus, in certain embodiments, irrespective of whether material 32 has been removed from passage 28 or not, ignition of output charge 22 will cause frangible member 24 to rupture thereby permitting the escape of energy and hot gases through output end 26 in order to ignite a pyrotechnic material disposed downstream from device 10.
Also contained within output section 14 is a transfer sleeve 34 that contains a transfer charge 36. In certain embodiments, transfer charge 36 may comprise silver azide or other appropriate pyrotechnic material. Transfer sleeve 34 includes rupturable components 38, 40 that seal, and preferably hermetically seal, sleeve 34. Transfer sleeve 34 also seals the input end 42 of chamber 20, thereby completing the hermetic sealing of output charge 22 therein.
Percussion igniter 16 comprises a striking surface 44 configured to be contacted with a firing pin, for example, of a firing initiator. Located immediately beneath striking surface 44 is a primer charge 46 that is configured to be ignited by the kinetic energy transferred to it by a firing pin. Primer charge 46 may comprise black powder or any other suitable pyrotechnic material. A transfer member 48 is located adjacent to primer charge 46 and comprises passageways 50 formed therein, which are operable to direct the output of primer charge 46 toward transfer sleeve 34, through a thin separator material 52. The output of primer charge 46 is operable to ignite transfer charge 36, whose output is operable to ignite output charge 22.
In certain embodiments, output section 14 and percussion igniter 16 are fastened or secured together, such as through press fitting, crimping, or other frictional means of engagement.
Turning to the embodiment of
In other embodiments, the vent passages may simply be defined by a gap disposed between member 74 and body 12. A path for communication of the passage with the exterior of body 12 may be accomplished, for example, by an interruption in the weld seam that secures member 74 to body 12. The temperature-sensitive material 88 may be applied so as to fill in the interrupted segments of the weld seam and provide a hermetic seal for chamber 20.
As noted previously, devices according to the present invention are particularly suited for use in downhole operations where temperatures that exceed the outgassing temperature for the pyrotechnic material contained within the device might be encountered. In particular, the devices according to the present invention permit venting of off gases emitted by the pyrotechnic material under such environmental conditions, but still permit the pyrotechnic material to be hermetically sealed within the device during storage, transportation, and initial downhole deployment.
Accordingly, methods of venting a pyrotechnic device containing a pyrotechnic material according to the present invention comprise providing a pyrotechnic device constructed according to the principles discussed above. In particular, and with exemplary reference to
As device 10 is lowered deeper into the well bore, warmer temperature conditions may be encountered which causes the pyrotechnic material contained within chamber 20 to outgas. Because chamber 20 is no longer hermetically sealed, the off-gases produced by the pyrotechnic material can escape through passage 28 and into the exterior environment surrounding the device 10, rather than remain entrapped within chamber 20 and accelerate further deactivation of the pyrotechnic material.
In certain embodiments, the elevated-temperature conditions encountered in the wellbore can be between about 150° F. to about 500° F., between about 200° F. to about 450° F., or between about 250° F. to about 400° F. The pyrotechnic device 10 may be exposed to these elevated-temperature conditions for a prolonged period of time before the device is actuated and the pyrotechnic material contained therein ignited. In certain embodiments, the device 10 may be exposed to the elevated-temperature conditions for a period of at least 2 hours, at least 10 hours, at least 25 hours, or at least 50 hours before actuation thereof. The venting of the off gases produced by the pyrotechnic material sufficiently slows thermal degradation of the pyrotechnic material so that it will reliably ignite and provide a useable output, even after such prolonged exposure periods.
The foregoing description of devices and methods according to the present invention are understood to be illustrative, and nothing therein should be taken as a limitation upon the overall scope of the invention.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/993,002, filed May 14, 2014, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61993002 | May 2014 | US |