The present invention relates to containers, and more particularly to beverage containers having a vent for releasing internal pressure and/or for enhancing pouring.
Modern beverage can ends include a rivet formed on a center panel, a tab coupled to the end by a rivet, and a score that is ruptured to form a pour opening. The ends are required to have very low failure rates even while being produced in vast quantities and rated to contain 85 psi or greater. Several vented beverage ends have been disclosed. A vented beverage end may be used on a container that is not required to be pressurized, such as container for non-carbonated beverages.
U.S. Pat. Nos. 6,079,583 and 6,354,453 disclose an end having venting capabilities that does not require a second opening. United States Patent Publication Number 2001/0266281 discloses an end having a vent score that is spaced apart from the main score. The vent score defines a vent tear panel that is raised. The vent score is ruptured by first positioning a concave region of the tab on the raised vent tear panel and pushing downward on the tab to rupture the vent score.
There is a need for improved reliability and functionality of vent openings in commercial quantities.
A can end has vent features that provide improved function. This summary provides an overview of the features of the end, and it is understood that several features can work together to enhance performance of the end and its vent. Accordingly, the present invention is not limited to the particular features in the combinations provided below. Further, no particular feature or dimension is required unless expressly set out in the claims.
According to a first combination of features, a beverage can end has a particular structure and dimensional relationship between a vent score and a button on the vent panel defined or encompassed by the vent score. The end includes a peripheral curl capable of being joined to a can body by seaming; a wall structure radially inward from the curl; a center panel; a main score defining a main hinge and a main tear panel that is capable of opening upon rupture of the score to form a pour opening; a tab coupled to the center panel by a rivet, the tab having a nose capable of contacting a portion of the main tear panel for rupturing the main score, a body, and a heel formed opposite the nose, the heel being configured for grasping by a user; a vent score defining: a vent tear panel; an upwardly protruding button located on the vent tear panel, the button including a sidewall that yields to a radius that merges with a portion of the center panel; and a vent hinge located approximately between opposing ends of the vent score; the vent score having a distance D3 or D13 from the button sidewall, measured at a point at which the vent score is closest to the button sidewall, of no more than 0.020 inches, and preferably between −0.010 inches and 0.020 inches such that downward force transmitted from the tab heel to the button ruptures the score. Actuation of the tab by lifting the heel is capable of rupturing the main score and actuation of the tab by pressing down on the tab is capable of rupturing the vent score. The vent hinge preferably is oriented such that the score rupture propagates about the vent tear panel in two directions to the vent hinge.
In the preferred embodiment, the distance D3 is between −0.010 inches (that is, negative 0.010 inches) and 0.020 inches. More preferably, dimension D3 is between −0.006 inches and 0.015 inches, more preferably −0.003 inches and 0.013 inches, and most preferably between −0.001 or 0.000 inches and 0.006 inches. Measured through the same line as D3, the distance from the centerline of the button to the inboard edge of score 42 preferably is between −0.005 and 0.040 inches (that is, the ranges of R2 plus D3) plus one-half D1. For a button diameter of 0.130 inches, the dimension from the centerline of the button to the inboard edge of score 42 is thus between 0.060 and 0.105 inches.
Preferably, the radius R2 between the button and the center panel or a vent score panel is between approximately 0.005 inches and approximately 0.020 inches, preferably between approximately 0.0075 inches and 0.0115 inches, and more preferably is approximately 0.0095 inches.
The button preferably has a diameter of between approximately 0.10 inches and approximately 0.18 inches, more preferably between of approximately 0.115 inches and approximately 0.15, and preferably approximately 0.130 inches. Preferably, the vent score is not spaced apart from the button sidewall by a uniform distance. The vent in this regard can be configured such that the vent score is closest to the button sidewall at a point that is opposite the hinge. Alternatively the closest location of the vent score to the button sidewall is not opposite the hinge. The vent hinge can be opposite the rivet. Alternatively, the vent hinge is on a side of the button proximate the rivet.
The tab has a contact element that is configured to contact the button. The tab contact element may be a downwardly protruding bead that is elongate and sized to enable the tab bead to enter into the vent aperture formed by depressing the vent tear panel. The tab bead may be curved at a radius that is approximately equal to the distance between a center of the rivet and the vent button to promote contact between the tab bead and the button and enable good contact at a wide range of angular positions of the tab.
The structure of the tab bead and the vent button and the relative locations and dimensions of the parts of the end may be configured such that during the process of opening the vent, in response to downward pressure applied on the tab by a user, the vent score ruptures initially at a point at which the vent score is closest to the button sidewall. In this regard, the tab is configured such that initial contact by a tab bead against the button is at a location on the button that is proximate where the vent score is closest to the button sidewall. Further, the tab and button may be configured such that after initial contact, subsequent contact by the tab bead against the button moves from the initial contact point rearward on the button as the vent tear panel pivots about the hinge.
A vent button and score preferably has a layout that promotes reliable opening. The vent preferably defines: a dimension X from a button center to lateral ends of the vent score along a vent centerline CL, a dimension Y from the button center to the vent hinge, and a dimension Z from the button center to a proximal point of the vent score, which is the point on the score that is closest to the button. Dimension X is greater than Z and less than 5Z and dimension Y is greater than 0.5Z and less than 3Z. Preferably, dimension X is greater than 1.2Z and less than 3Z, and dimension Y is greater than 0.75Z and less than 2Z, and more preferably dimension Y is greater than 0.9Z and less than 1.5Z. For conventional beverage can ends, the Z dimension preferably is between 0.0625 and 0.090 inches, and more preferably between 0.065 and 0.085 inches, and more preferably between 0.068 and 0.078 inches. In one embodiment (for example as shown in
In another embodiment, dimensions for score 142 preferably are X of approximately 0.143 inches, Y of approximately 0.101 inches, and Z of approximately 0.083 inches. Dimension Z preferably is between 0.2X and 1X, and most preferably between 0.33X and 0.83X. Dimension Z preferably is between 0.5Y and 1.33Y, and most preferably between 0.67Y and 1.1Y.
Dimension Z may also be defined as a ratio of button diameter D1. In this regard, dimension Z may be approximately between 0.5D1 and 0.81D1, preferably approximately between 0.55D1 and 0.7D1, and in the preferred embodiment approximately 0.6D1. As Y encompasses a dimension less than D1, the hinge may intersect with the button structure such that upon actuation of the vent panel, the hinge forms not in a straight line but forms around the button. The vent score may be formed in a local recess for any of the above structure.
According to a second combination of end features, the vent score, which at least partially defines the vent tear panel, may be located in a local recess or deboss portion. In this regard, the beverage can end may include: a peripheral curl capable of being joined to a can body by seaming; a wall structure radially inward from the curl; a center panel; a main score defining a main hinge and a main tear panel that is capable of opening upon rupture of the score to form a pour opening; a tab coupled to the center panel by a rivet, the tab having a nose capable of contacting a portion of the main tear panel for rupturing the main score, a body, and a heel formed opposite the nose, the heel being configured for grasping by a user, and a vent. The vent score defines a vent tear panel and there is an upwardly protruding button located on the vent tear panel. A vent hinge is located approximately between opposing ends of the vent score; and a vent recess is formed in the center panel, and the vent tear panel is located in the vent panel recess. Actuation of the tab by lifting the heel is capable of rupturing the main score and actuation of the tab by pressing down on the tab is capable of rupturing the vent score after the tab is pivoted over the vent panel button. The inventors believe that the local vent recess can counter the effects of slack metal formed by the vent score and anti-fracture score. The depth and diameter of the vent recess may be chosen according to industry practice according to variables of aluminum thickness, vent size and score configuration, and other parameters.
Preferably, the center panel further includes a main recess of the general type that are known in the art and associated with a “Stolle-style” center panel, but such recess is not required. If present, each one of main score, rivet, and vent panel recess may be formed in the main recess. In order to locate the vent button at a location at which is it not inadvertently opened by unintentional downward force on the bead, the vent button may be located on the center panel at a place that is not underneath the tab or its vertical projection while the tab is in its as-manufactured state. Preferably, the as-manufactured state places the tab in a position for opening the main pour opening by rupture of the main score. Further, the location of the vent preferably is high on the center panel (that is, when the can is oriented for pouring or drinking or when the center panel is nearly vertical), as the vent panel recess preferably is tangential to a periphery of the main recess and near the tab. In this regard, choosing the location of the vent so that it is at a point relatively high on the center panel enhances the venting function during pouring, and choosing the location of the vent outside of the projection of the tab and even spaced apart from the tab makes inadvertent tab rupture unlikely. Also, the vent is configured such that the main recess is not symmetrical about its centerline.
Another combination of features of the vent promotes a large venting area formed between the periphery of the vent tear panel and the stationary remainder of the end, especially when viewed as a function of vent tear panel angular deflection. In this regard, the beverage can end includes: a peripheral curl capable of being joined to a can body by seaming; a wall structure radially inward from the curl; a center panel; a main score defining a main hinge and a main tear panel that is capable of opening upon rupture of the score to form a pour opening; a tab coupled to the center panel by a rivet, the tab having a nose capable of contacting a portion of the main tear panel for rupturing the main score, a body, and a heel formed opposite the nose, the heel being configured for grasping by a user; and an elongated vent score.
The elongated vent score defines or encompasses a vent tear panel. An upwardly protruding button is located on the vent tear panel, the button including a sidewall that yields to a radius that merges with a portion of the center panel. A vent hinge is located approximately between opposing ends of the vent score. The elongated vent score provides enhanced venting capacity upon deflection of the vent tear panel after rupture.
Preferably, the tab includes an elongated bead on an underside of the tab proximate the heel. The tab and vent score are configured such that after actuation of the tab bead against the vent button, the tab bead is configured to enter into opening created upon rupture of the vent score to enhance deflection of the vent tear panel. The vent hinge may be oriented such that it is parallel to the long axis of the elongated vent score or perpendicular to the long axis of the elongated vent score.
According to a fourth combination of end features, a configuration of the vent button, vent score, and vent hinge are chosen to provide reliable opening and adequate strength in commercial quantities. Thus, the beverage can end includes a peripheral curl capable of being joined to a can body by seaming; a wall structure radially inward from the curl; a center panel; a main score defining a main hinge and a main tear panel that is capable of opening upon rupture of the score to form a pour opening; a tab coupled to the center panel by a rivet, the tab having a nose capable of contacting a portion of the main tear panel for rupturing the main score, a body, and a heel formed opposite the nose, the heel being configured for grasping by a user; and a vent.
The vent has a vent score that defines or encompasses a vent tear panel. An upwardly protruding button is located on the vent tear panel, the button including a sidewall that yields to a radius that merges with a portion of the center panel. A vent hinge is located approximately between opposing ends of the vent score. The vent tear panel defines a dimension X from a button center to lateral ends of the vent score along a vent centerline CL, a dimension Y from the button center to the vent hinge, and a dimension Z from the button center to a proximal point of the vent score , which is the point on the score that is closest to the button.
Regarding preferred relationships, dimension X is greater than Z and less than 5Z and dimension Y is greater than 0.5Z and less than 3Z. Preferably, dimension X is greater than 1.2Z and less than 3Z, and dimension Y is greater than 0.75Z and less than 2Z, and more preferably dimension Y is greater than 0.9Z and less than 1.5Z. For conventional beverage can ends, the Z dimension preferably is between 0.0625 and 0.090 inches, and more preferably between 0.065 and 0.085 inches, and more preferably between 0.068 and 0.078 inches. The X and Y dimensions and ranges can be calculated from the preferred Z dimensions.
In another embodiment, dimensions for score 142 preferably are X of approximately 0.143 inches, Y of approximately 0.101 inches, and Z of approximately 0.083 inches. Dimension Z preferably is between 0.2X and 1X, and most preferably between 0.33X and 0.83X. Dimension Z preferably is between 0.5Y and 1.33Y, and most preferably between 0.67Y and 1.1Y.
Dimension Z may also be defined as a ratio of button diameter D1. In this regard, dimension Z may be approximately between 0.5D1 and 0.81D1, preferably approximately between 0.55D1 and 0.7D1, and in the preferred embodiment approximately 0.6D1. As Y encompasses a dimension less than D1, the hinge may intersect with the button structure such that the upon actuation of the vent panel, the hinge forms not in a straight line but forms around the button. The vent score may be formed in a local recess for any of the above structure.
The vent score preferably has a distance D3 or D13 from the button sidewall, measured at a point at which the vent score is closest to the button sidewall, between −0.010 inches (that is, negative 0.010 inches) and 0.020 inches such that downward force transmitted from the tab heel to the button ruptures the score. Preferably the distance D3 or D13 is between −0.006 inches and 0.015 inches, more preferably −0.003 inches and 0.013 inches, and most preferably between −0.001 or 0.000 inches and 0.006 inches.
The tab has a contact element that is configured to contact the button, which preferably is a downwardly protruding bead that is elongate and sized to enable the tab bead to enter into the vent aperture formed by depressing the vent tear panel. In response to downward pressure applied on the tab, the vent score ruptures initially at a point at which the vent score is closest to the button sidewall.
Preferably, the tab is configured such that initial contact by a tab bead against the button is at a location on the button that is proximate where the vent score is closest to the button sidewall. Further, the tab and button can be configured such that after initial contact, subsequent contact by the tab bead against the button moves from the initial contact point rearward on the button as the vent tear panel pivots about the hinge. Preferably, the center panel includes a vent recess formed in a main recess and the vent tear panel is located in the vent panel recess.
According to a fifth combination of end features, a beverage tab may be configured to enhance venting. In this regard, the contact between the tab and the vent structures occurs at a point or a line that moves rearward toward the hinge as the vent opens to promote deflection of the vent panel. The beverage can end configured in this way may include a peripheral curl capable of being joined to a can body by seaming; a wall structure radially inward from the curl; a center panel; a main score defining a main hinge and a main tear panel that is capable of opening upon rupture of the score to form a pour opening; and a tab coupled to the center panel by a rivet. The tab has a nose capable of contacting a portion of the main tear panel for rupturing the score, a body, a heel formed opposite the nose, the heel being configured for grasping by a user, and a downwardly extending bead on an underside of the tab proximate the heel.
The fifth end also includes a vent. A vent score defines or encompasses a vent tear panel. An upwardly protruding button is located on the vent tear panel, the button including a sidewall that yields to a radius that merges with a portion of the center panel. A vent hinge is located approximately between opposing ends of the vent score. The tab is configured such that a first contact by a tab bead against the button is at a location on the button that is referred to as an initial contact point. After the initial contact, subsequent contact by the tab bead against the button moves from the initial contact point rearward on the button as the vent tear panel pivots about the hinge (that is, the point of contact moves relative to the rivet and on the button). Preferably, the vent hinge is opposite the rivet.
Preferably the button and tab are configured such that the vent score has a distance D3 or D13 from the button sidewall, measured at a point at which the vent score is closest to the button sidewall, of between −0.010 inches (that is, negative 0.010 inches) and 0.020 inches such that downward force transmitted from the tab heel to the button ruptures the score. Preferably the distance D3 or D13 is between −0.006 inches and 0.015 inches, more preferably −0.003 inches and 0.013 inches, and most preferably between −0.001 or 0.000 inches and 0.006 inches. And the button preferably the button has a diameter of approximately 0.130 inches. The tab bead may be curved at a radius that is approximately equal to the distance between a center of the rivet and the vent button.
Preferably, the closest location of the vent score to the button sidewall is opposite the vent hinge. Alternatively, the closest location of the vent score to the button sidewall is not opposite the vent hinge. The tab may configured such that initial contact by a tab bead against the button is at a location on the button that is proximate where the vent score is closest to the button sidewall.
The tab has a contact element that is configured to contact the button , which preferably is a downwardly protruding bead that is elongate and sized to enable the tab bead to enter into the vent aperture formed by depressing the vent tear panel. In response to downward pressure applied on the tab, the vent score preferably ruptures initially at a point at which the vent score is closest to the button sidewall. The tab bead may curved at a radius that is approximately equal to the distance between a center of the rivet and the vent button.
Further, the vent configuration may define X, Y, and Z dimensions and relationships as described above. And the vent may be formed in a vent recess formed in the center panel and in the main recess.
Other embodiments may employ raised and/or recessed beads. In this regard, a beverage can end may include a peripheral curl capable of being joined to a can body by seaming; a wall structure radially inward from the curl; a center panel; a main score defining a main hinge and a main tear panel that is capable of opening upon rupture of the score to form a pour opening; a tab coupled to the center panel by a rivet, the tab having a nose capable of contacting a portion of the main tear panel for rupturing the main score, a body, and a heel formed opposite the nose, the heel being configured for grasping by a user; a raised main bead having a first end located on the heel side of the tab and extending around the main tear panel to a second end; and a vent. The vent includes: a vent score defining a vent tear panel and a vent hinge located approximately between opposing ends of the vent score; and an upwardly protruding button located on the vent tear panel. A raised or recessed vent bead is located about the vent score; whereby actuation of the tab by lifting the heel is capable of rupturing the main score and actuation of the tab by pressing down on the tab is capable of rupturing the vent score.
The main bead and the vent bead may continuous or the vent bead may be spaced apart from the main bead. The vent bead may be a raised bead, or the vent bead may be a recessed bead, such that the raised main bead and the recessed vent bead are joined at a transition at which the raised bead yields to the recessed bead. Preferably the vent bead is tangential to a periphery of the center panel. The main bead has a longitudinal axis and the main bead is asymmetrical about the main bead longitudinal axis. The vent score and button for the beaded ends encompasses all embodiments of the vent score and button orientation and configuration as described for the recessed panel embodiments.
A method of opening and venting a beverage can begins with the end structure described in any of the above paragraphs. The method includes (i) actuating the tab to press against the main tear panel and to rupture the main score, thereby forming a pour opening; (ii) pivoting the tab such that the tab is capable of contacting the vent button; and (iii) after the pivoting step, applying a downward force on the tab to provide a force on the button via an underside of the tab at an initial contact point and then applying a downward force to rupture the vent score and open the vent such that the contact by the tab on the button moves rearward on the button from the initial contact as the vent tear panel pivots about the vent hinge. The vent may be opened before or after the pour opening is formed in step (i).
A beverage can and end combination holding a carbonated beverage, otherwise pressurized can, or an unpressurized can is also provided. The inventive vented can end may use any can end described herein. The present invention encompasses the corresponding method of actuating the beverage can end for each of the embodiments and for any combination of the features provided.
Referring to
Curl 12 is configured to be seamed to a flange of an aluminum can body 8, preferably by a conventional double seam. The can body and can end combination, joined by a double seam, is shown in
Center panel 18 is flat, which encompasses variations from a theoretical plane because of manufacturing tolerances and some inherent deviations from a perfect plane, and also structural features, such as deboss panels and beads described herein and the like. The term flat is used to encompass both the unseamed end and the curvature under normal pressurized conditions from holding a carbonated beverage. A rivet 22 is formed in center panel 18 preferably in the center of center panel 18. A main score 26 is formed in center panel 18 in an oblong shape and preferably defines a main tear panel 28, which forms a pour opening upon rupture of the score. Opposing ends of score 26 form a main hinge 30 about which the tear panel pivots during actuation of tab 70. Main score 26 and tear panel 28 preferably are conventional. For example, the tear panel may have an aspect ratio of between 1.3 and 1.7. As shown in the figures, center panel 18 includes a main deboss panel 34—that is, a recess in panel 18. The present invention is not limited to ends having a main deboss panel unless specifically required by the claims. Rather, the present invention encompasses ends that do not have a main deboss panel, which ends may have beads formed on the center panel, as is known in the field.
In a first embodiment, vent 40 includes a vent score 42, a vent hinge 46, a vent anti-fracture score 48, and an upwardly protruding button 50. Preferably, vent 40 is located within a vent recess or deboss panel 62, which is formed in main deboss panel 34. Deboss panel 62 has a diameter that preferably is at least 0.5 inches, preferably less than 0.7 inches, and in the embodiment shown approximately 0.63 inches. Deboss panel 62 may stiffen the region around vent 40 to enhance openability. The depth of vent deboss panel 62 may be chosen with the end goal of panel stiffness and minimum slack metal without putting undue stress on vent score 42. In this regard, the size of the vent panel may be chosen according to parameters that will be understood by persons familiar with end forming technology upon consideration of the present disclosure, taking into account the parameters of vent score dimensions and configuration, button size and configuration, relationship to other recesses or beads, depth of recesses, and the like.
Vent deboss panel 62 preferably is located such that button 50 is not beneath tab 70 or is not beneath a downwardly protruding bead, described below, while the tab is in its as-manufactured or shipping configuration or in the position in which is configured to actuate main score 26. In this regard, button 50, especially the center or a contact portion of button 50, may be outboard of the side of tab 70 such that a downward force on tab 70 does not apply a force on button 50 until a user pivots or rotates tab 70 for the purpose of aligning the tab contact surface with button 50. Further, deboss panel 62 preferably is located distally from main score 26 while still being formed in main recess panel 34 (although it is not required that the deboss panel be located in the main recess panel) such that vent 40 can be located at or near the highest feasible point on the end when the can is tilted into a pouring position or when the can is horizontal and the end is vertical. Accordingly and as shown in
As best shown in
Button 50 is formed within score 42. For convenience and according to industry custom, dimensions are provided here for the tooling and it is understood that dimensions in the finished end will follow from the tooling dimensions, with some variation for manufacturing deviations, such as spring back or tool wear. For precision in claiming, the dimensions are applied to the end structure and may be measured on the end.
Button 50, as shown schematically in
The inventors have found that choosing the distance between the score and the button sidewall 54 is helpful in some embodiments in enabling the vent opening to controllably and repeatably open. The distance can be measured from the outboard point 53b of radius R2 to the inside wall of score 42, as best shown in
Preferably, dimension D3 is between −0.010 inches (that is, negative 0.010 inches) and 0.020 inches. The negative range means that the inner wall of vent score 42 can be located on or in button curved transition 52 or button sidewall—that is, on the inboard side (that is, to the right as oriented in
Button 50 preferably has a diameter of between 0.100 inches and 0.180 inches, more preferably, between approximately 0.115 inches and 0.15 inches, and most preferably approximately 0.130 inches. The diameter of button 50 is represented as D1 on
A proximal point 57 is defined as the point on score 42 that is closest to button sidewall 54—specifically, closest to outboard radius point 53b of the button. To enhance the effectiveness of the transfer of force through button 50 to score 42, in the embodiment shown in
Dimension X is the distance from the button center to the lateral ends of score 42′ along longitudinal centerline CL. Dimension Y is the distance from the button center to the vent hinge 46. Dimension Z is the distance from the button center to the proximal point of score 42 opposite hinge 46 (that is, to proximal point 57). Alternatively, dimension Z can be defined as parallel and opposite to dimension Y (as for example in the embodiment shown in
The present invention encompasses a vent score having other dimensions. For example, the vent score and button 50 may be configured such that X dimension is approximately 0.150 inches, Y dimension is approximately 0.082 inches, Z dimension is approximately 0.067 inches, and button diameter D1 is approximately 0.130 inches, which configuration is illustrated in
Tab 70 is an elongate, stay-on-tab that includes a nose 72, an elongate body 74, and a heel 76. A rivet island 78 extends below the main portion of body 74 and is flat against center panel. Preferably, opposing sides of body 74 are parallel or approximately parallel. Rivet 22 extends through a hole in rivet island 78 to affix the tab and shell together. As is conventional, tab 70 includes a hinge 80 about which the tab pivots during conventional actuation to form the main opening.
A bead 82 is formed in tab body 74 near heel 76, as directly shown in
Vent score 142 includes a longitudinal centerline CL that is perpendicular to hinge 146. Vent score 142 includes an end 145a, which is distal to hinge 146. On each side, score 142 extends from end 145a via straight sides 145b toward hinge 146. Dimensions for score 142 preferably are X of approximately 0.143 inches, Y of approximately 0.101 inches, and Z of approximately 0.083 inches. Dimension Z preferably is between 0.2X and 1X, and most preferably between 0.33X and 0.83X. Dimension Z preferably is between 0.5Y and 1.33Y, and most preferably between 0.67Y and 1.1Y
Button 150 preferably has the same structure as that described for button 50 of the first embodiment vent, including a diameter of approximately 0.130 inches. Preferably button 150 is located closer to hinge 146 than to score end 145a and in this regard is off center. A proximal point 157 is defined as the point on the score 142 that is closest to button 150 and defines a distance therebetween as D13. Because of the configuration of score 142, the second embodiment vent has a pair of proximal points 157 on opposing sides of button 150.
Preferably, dimension D13 is between −0.010 inches (that is, negative 0.010 inches) and 0.020 inches. More preferably, dimension D13 is between −0.006 inches and 0.015 inches, more preferably −0.003 inches and 0.013 inches, and most preferably between −0.001 or 0.000 inches and 0.006 inches. As shown in
In its rest, as-manufactured state, button 50 (and 150) lie outside of the tab 70—that is, a vertical projection of the sides of tab body 74 does not significantly encompass any part of button 50, 150. Accordingly, if tab 70 is depressed while tab 70 is in its rest state, the tab does not depress button 50, thereby preventing inadvertent rupture of vent score 42 during handing and shipping of the unseamed ends and of the filled and seamed can.
A main score 226 is the same as described with respect to first embodiment main score 26. A centerline CL is defined through the rivet 222 and through a centerline of tab 270 or, if tab 270 is not in a conventional position ready to actuate to open the tear panel, centerline CL bisects the pour opening area formed by main score 226. A transverse centerline TL is normal to the main centerline CL and through rivet 222.
A main raised bead 288a includes a first, outwardly flared end 289 that is located to the rear of the transverse centerline TL, and preferably on the hinge side of the main centerline CL and on opposite side of line CL from vent 240b. From end 289b, bead 288a curves inwardly toward main centerline CL and then outwardly relative to line CL, after which bead 288 follows the contours of main score 226 (that is, for most of main score 226, bead 288a is equidistantly spaced apart from score 226).
Bead 288a continues to curve around main score 226 to terminate in second end 290, which is forward (below in the orientation of
A vent bead 299, which may either be a raised bead or a recessed bead, and preferably is circular, encircles a vent score 242. The shape, orientation, and location of the vent score and the layout of the corresponding button may be as described in any of the embodiments described for the other embodiments disclosed herein.
A second embodiment beaded end 210b includes a curl 212, wall structure 214, and annular bead 216 that are as described with respect to first embodiment end 10. Center panel 218b of end 210b includes a vent 240b. A tab 270 affixed to the shell by a rivet 222.
A main score 226 is the same as described with respect to first embodiment main score 26. A centerline CL is defined through the rivet and through a centerline of tab 270 or, if tab 270 is not in a conventional position ready to actuate to open the tear panel, centerline CL bisects the pour opening area formed by main score 226. A transverse centerline TL is normal to the main centerline CL and through rivet 222.
A main raised bead 288b includes a first, outwardly flared end 289 that is located to the rear of the transverse centerline TL, and preferably on the hinge side of the main centerline CL and on opposite side of line CL from vent 240b. From end 289, bead 288b curves inwardly toward main centerline CL and then outwardly relative to line CL, after which bead 288b follows the contours of main score 226 (that is, for most of main score 226, bead 288b is equidistantly spaced apart from main score 226).
Bead 288b curves around main score 226 and continues to curve inwardly to form a waist 291, which is forward (below in the orientation of
Bead 288b may be a raised bead throughout its extent from first end 289 through second end 293. Alternatively, bead 288b can transition from a raised bead that extends around main score 226 to a recessed bead roughly at a transition, indicated in
Beads 288a and 288b preferably are symmetrical or approximately symmetrical in transverse cross section and may be formed in a conventional configuration by conventional methods, as will be understood by persons familiar with end technology. The specific dimensions and layouts of beads 288a and 288b and vent score 242 may be chosen according to achieve desired tension across vent score 242 to enhance pressure performance and opening performance.
To open the beverage container, a user grasps and lifts up heel 76 with a finger. In response to lifting heel 76, tab 70 deforms about hinge 80 (best shown in
A user then pushes heel 76 down such that tab 70 is near its original position. Tab 70 may then be pivoted about rivet 22 until tab bead 82 is aligned with vent button 50, as shown in
As illustrated in
After rupture of vent score 42 near proximal point 57, the rupture propagates in two directions about button 50 until reaching the opposing ends of vent score 42 as vent tear panel 44 is downwardly deflected.
In second embodiment vent 140, contact point A is not in line with the proximal point 157, but rather is at 90 degrees from it about the button circumference. After initial rupture, contact points A through C (not shown in the figures) more, by rolling or sliding, rearward (away from the rivet) or toward the vent hinge as generally described above. Vent score 142 likely first ruptures near one of the proximal points 157. The rupture propagates in two directions until reaching the opposing ends of vent score 142 as vent tear panel 144 is downwardly deflected. Alternatively, if enough energy builds up in vent tear panel 144 before initial rupture, score 142 may rupture initially at points that are 90 degrees from proximal points 157 or at several places simultaneously or virtually simultaneously.
The term “between” in the claims includes limits of the range. For example, if the claim recites between dimensions A and B, the claim encompasses the dimension being exactly A and exactly B, as well as equivalents and approximations.
Several features of a beverage can end and combination of can end and can body have been described. The present invention is not limited to any combination of the features described herein. Rather, the claims should be interpreted according to their full appropriate scope. The explanation of features relies on a person familiar with aluminum beverage can technology for understanding, such as technology for forming and seaming ends, forming recess, beads, and scores in ends, and the like.
The application is a National Stage Application filed under 35 U.S.C. 371 of International Application No. PCT/US2015/019642 filed Mar. 10, 2014, which claims the benefit of U.S. Patent Application Ser. No. 61/950,397 filed Mar. 10, 2014, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein. This application is a continuation in part of U.S. patent application Ser. No. 14/075,622 filed Nov. 8, 2013, now U.S. Pat. No. 9,403,628, which claims the benefit of U.S. Provisional Application Ser. No. 61/782,316, filed Mar. 14, 2013.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/019642 | 3/10/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/138413 | 9/17/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3441169 | Dunn et al. | Apr 1969 | A |
3741432 | Werth et al. | Jun 1973 | A |
3782586 | Brown | Jan 1974 | A |
3795340 | Hougen et al. | Mar 1974 | A |
3838788 | Stargell | Oct 1974 | A |
3869063 | Himstedt | Mar 1975 | A |
3964632 | Bozek | Jun 1976 | A |
3967754 | Ostrem | Jul 1976 | A |
4014455 | LaCroce | Mar 1977 | A |
4134517 | Rhoades | Jan 1979 | A |
4136797 | Potts | Jan 1979 | A |
4367996 | Saunders | Jan 1983 | A |
5011037 | Moen et al. | Apr 1991 | A |
D322222 | Coy | Dec 1991 | S |
5131555 | DeMars et al. | Jul 1992 | A |
5224618 | Garbiso | Jul 1993 | A |
5285919 | Recchia | Feb 1994 | A |
5307947 | Moen et al. | May 1994 | A |
5375729 | Schubert | Dec 1994 | A |
5397014 | Aydt | Mar 1995 | A |
5494184 | Noguchi et al. | Feb 1996 | A |
5555992 | Sedgeley | Sep 1996 | A |
5653355 | Tominaga et al. | Aug 1997 | A |
5692636 | Schubert | Dec 1997 | A |
5695085 | Hadener | Dec 1997 | A |
5860553 | Schubert | Jan 1999 | A |
6015060 | Rightenour et al. | Jan 2000 | A |
6079583 | Chasteen | Jun 2000 | A |
D437223 | Coy et al. | Feb 2001 | S |
6234338 | Searle | May 2001 | B1 |
6354453 | Chasteen | Mar 2002 | B1 |
6494332 | Haughton et al. | Dec 2002 | B1 |
6715629 | Hartman et al. | Apr 2004 | B2 |
6763964 | Hurlbut et al. | Jul 2004 | B1 |
6951293 | Thibaut | Oct 2005 | B2 |
7000797 | Forrest et al. | Feb 2006 | B2 |
7513383 | Hwang | Apr 2009 | B2 |
7748563 | Turner et al. | Jul 2010 | B2 |
7942285 | Hasegawa et al. | May 2011 | B2 |
7975884 | Mathabel et al. | Jul 2011 | B2 |
8011527 | Forrest et al. | Sep 2011 | B2 |
8186532 | Shinguryo et al. | May 2012 | B2 |
8196767 | Fields | Jun 2012 | B2 |
8678221 | Thiemann et al. | Mar 2014 | B2 |
20030038134 | Chasteen et al. | Feb 2003 | A1 |
20030075544 | Turner et al. | Apr 2003 | A1 |
20040056032 | Vaughan | Mar 2004 | A1 |
20040140314 | Li | Jul 2004 | A1 |
20040144787 | Heck | Jul 2004 | A1 |
20040159665 | Morrissey et al. | Aug 2004 | A1 |
20040211786 | Turner et al. | Oct 2004 | A1 |
20060016815 | Rieck et al. | Jan 2006 | A1 |
20070029334 | Bagley | Feb 2007 | A1 |
20070045318 | Gibson et al. | Mar 2007 | A1 |
20070051727 | Holley | Mar 2007 | A1 |
20070215621 | Shinguryo et al. | Sep 2007 | A1 |
20090001081 | Schlattl et al. | Jan 2009 | A1 |
20090039090 | Forrest et al. | Feb 2009 | A1 |
20090039091 | Forrest et al. | Feb 2009 | A1 |
20090065518 | Carnevali | Mar 2009 | A1 |
20090090716 | Stengel, Jr. | Apr 2009 | A1 |
20090206083 | Heigl | Aug 2009 | A1 |
20100018976 | Christian et al. | Jan 2010 | A1 |
20100219187 | Na | Sep 2010 | A1 |
20100294771 | Holder et al. | Nov 2010 | A1 |
20110056946 | Emanuele, III et al. | Mar 2011 | A1 |
20110108552 | Tamarit Rios | May 2011 | A1 |
20110266281 | Thiemann et al. | Nov 2011 | A1 |
20120199587 | Norris | Aug 2012 | A1 |
20120202378 | Forrest | Aug 2012 | A1 |
20130037543 | McClung et al. | Feb 2013 | A1 |
20130075401 | Forrest | Mar 2013 | A1 |
20130118133 | Jacober et al. | May 2013 | A1 |
20130270269 | Forrest | Oct 2013 | A1 |
20140054290 | McClung et al. | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
2280461 | Feb 2001 | CA |
302188734 | Nov 2012 | CN |
2113293 | Nov 2009 | EP |
2320008 | Jun 1998 | GB |
60150922 | Oct 1985 | JP |
05-178345 | Jul 1993 | JP |
5504318 | Jul 1993 | JP |
05-310248 | Nov 1993 | JP |
3011347 | May 1995 | JP |
H07-132936 | May 1995 | JP |
H1035662 | Feb 1998 | JP |
11348979 | Dec 1999 | JP |
2000-185757 | Jul 2000 | JP |
2001-018960 | Jan 2001 | JP |
2003-285837 | Oct 2003 | JP |
2004-042982 | Feb 2004 | JP |
2005-343557 | Dec 2005 | JP |
2006-160303 | Jun 2006 | JP |
2006-347580 | Dec 2006 | JP |
2007-320617 | Dec 2007 | JP |
WO 9325445 | Dec 1993 | WO |
WO 2008023983 | Feb 2008 | WO |
WO 2013067398 | May 2013 | WO |
WO 2014159208 | Oct 2014 | WO |
Entry |
---|
International Patent Application No. PCT/US2015/019642: International Search Report and Written Opinion dated May 20, 2015, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20170107010 A1 | Apr 2017 | US |
Number | Date | Country | |
---|---|---|---|
61950397 | Mar 2014 | US | |
61782316 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14075622 | Nov 2013 | US |
Child | 15124408 | US |