The present invention relates to a vented cap assembly. More particularly, the invention relates to a vented cap for allowing overflow and accumulation of liquid from a reservoir while allowing gas to escape to the atmosphere.
Peroxides have been proven effective for oral cosmetic purposes, such as tooth whitening, as well as for the treatment gingivitis, sensitivity, cavities and periodontitis. Hydrogen peroxide is widely known and used for its tooth whitening effects in strips. However, problems of poor compatibility with other components and low stability for long-term storage make hydrogen peroxide difficult to use in other oral care compositions, in particular toothpastes and gels.
It is well known that hydrogen peroxide readily decomposes to form water and oxygen over time and increases in temperature accelerate this decomposition. After production, oral care products often sit in hot warehouses or on store shelves allowing time for gas evolution. Gas produced during decomposition can cause swelling and bursting of tubes containing hydrogen peroxide, even if the composition contains a relatively low level of hydrogen peroxide. Despite the need to release gas produced within the tube, current caps for oral care products are not vented.
The buildup of undesirably high internal pressures during storage can cause leakage, leaving product on the outside of both the tube and the cap. Furthermore, even if tubes do not burst during storage, the internal pressure can cause self-dispensing when consumers open the tube for the first time. When products self-dispense, they often overflow uncontrollably and create a mess for consumers and cause a loss of product. While many consumers like the oral care benefits that hydrogen peroxide provides, they do not enjoy opening a new box of an oral care composition to find that the tube has leaked or exploded. Consumers complain that leaking tubes create a mess on their hands and on their countertops.
As such, there is a need for an improved cap that allows gas to vent from the tube while capturing overflowing product.
Described herein is a vented cap having a longitudinal axis, the vented cap comprising: (1) an insert, wherein the insert comprises: (a) a floor pan; (b) a projection extending from a projection proximal end joined to the floor pan to a projection distal end longitudinally remote therefrom; wherein the projection defines a projection aperture extending therethrough; (2) a shell, wherein the shell comprises: (a) an outer skirt joined to and extending longitudinally outwardly from the floor pan; (b) a top joined to the outer skirt; wherein the top and the outer skirt define a headspace between the floor pan and the top; wherein the projection extends into a portion of the headspace; and (3) a vent in fluid communication between the headspace and atmosphere.
Also described herein is a vented cap having a longitudinal axis, the vented cap comprising: (1) an insert, wherein the insert comprises: (a) a floor pan; (b) an inner retainer wall extending from a wall proximal end joined to the floor pan to a wall distal end longitudinally remote therefrom; (c) a projection extending from a projection proximal end joined to the floor pan to a projection distal end longitudinally remote therefrom; wherein the projection defines a projection aperture extending therethrough; (2) a shell, wherein the shell comprises: (a) an outer skirt joined to and extending longitudinally outwardly from the floor pan; (b) a top joined to the outer skirt; wherein the top and the outer skirt define a headspace between the floor pan and the top; wherein the projection extends into a portion of the headspace; wherein the outer skirt and the inner retainer wall define a channel therebetween; (3) an attachment member for joining the vented cap to an external reservoir; (4) a vent in fluid communication between the headspace and the channel; and (5) a notch in fluid communication between the channel and atmosphere. Also described herein is a vented cap assembly comprising: (1) a reservoir comprising a nozzle with a reservoir aperture extending therethrough; (2) a vented cap configured to be positioned on the nozzle, the vented cap comprising: (a) an insert, wherein the insert comprises:
(i) a floor pan; (ii) an inner retainer wall extending from a wall proximal end joined to the floor pan to a wall distal end longitudinally remote therefrom; (iii) a projection extending from a projection proximal end joined to the floor pan to a projection distal end longitudinally remote therefrom;
wherein the projection distal end defines a projection aperture extending therethrough; wherein the projection aperture is in fluid communication with the reservoir aperture when the projection is positioned on the nozzle; (b) a shell, wherein the shell comprises: (i) an outer skirt joined to and extending longitudinally outwardly from the floor pan; (ii) a top joined to the outer skirt;
wherein the top and the outer skirt define a headspace between the floor pan and the top; wherein the inner retainer wall and the outer skirt define a channel therebetween; (c) a vent in fluid communication between the headspace and the channel; and (d) a notch in fluid communication between the channel and atmosphere.
While the specification concludes with the claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description taken in conjunction with the accompanying drawings in which:
Hydrogen peroxide is an effective tooth whitener for use in oral care compositions. However, it is well known that hydrogen peroxide readily decomposes to form water and oxygen. Gas produced during hydrogen peroxide decomposition has caused tubes of oral care products containing low levels of hydrogen peroxide to swell and burst. Gas evolution in tubes with non-vented caps can result in product leakage and self-dispensing, creating a mess and a loss of product that is unacceptable to consumers.
However, it has been found that a vented cap can be used to vent gas from a reservoir and prevent leakage and self-dispensing. The present invention is directed to a vented cap assembly that can have a headspace to allow for the overflow and accumulation of liquid from a reservoir and the venting of gas to the atmosphere without being visible to consumers. During testing disclosed herein, leakage was not visually perceptible from a vented cap assembly containing an oral care composition with hydrogen peroxide after a period of 90 days at 40° C. and 75% relative humidity (RH). Conversely, leakage was visually perceptible from a non-vented control cap assembly containing an oral care composition with hydrogen peroxide after a period of 90 days at 40° C. and 75% RH.
The vented cap of the present invention can be adapted such that liquid which overflows from the reservoir remains trapped in the headspace of the cap and does not flow back into the reservoir. The liquid in the headspace may accumulate in a manner such that the flow path from the reservoir to atmosphere is not obstructed. When the insert and shell are joined, a flow path for the generated gas can be created which extends from the reservoir to the headspace, through the channel, and out to the atmosphere. While the flow path for the gas can be created when the insert and shell are joined, it may not be necessary for the insert and shell to be aligned in a particular manner to create the flow path.
A longitudinal projection can extend from a floor pan and can be disposed in a portion of the headspace. Further, the projection can be adapted to be positioned onto and enclose the nozzle. In such a configuration, when pressure forces liquid to overflow from the reservoir, the liquid can travel through the reservoir aperture and continue directly through the projection aperture into the headspace of the cap.
As used herein, “joined” means “permanently joined” or “releasably joined.” The term “permanently joined” is understood to refer to configurations in which a first element is secured to a second element such that the elements generally cannot be separated from one another without at least partially destroying one or both of the elements. The term “releasably joined” is understood to refer to configurations in which a first element is secured to a second element, such that the first element and the second element can be separated with no or minimal damage to the first and second elements.
As used herein, “oral care composition” is understood to refer to a product, which in the ordinary course of usage, is not intentionally swallowed for purposes of systemic administration of particular therapeutic agents, but is rather retained in the oral cavity for a time sufficient to contact dental surfaces or oral tissues. Examples of oral care compositions include dentifrice, mouth rinse, mousse, foam, mouth spray, lozenge, chewable tablet, chewing gum, tooth whitening strips, floss and floss coatings, breath freshening dissolvable strips, or denture care or adhesive product. The oral care composition may also be incorporated onto strips or films for direct application or attachment to oral surfaces.
As used herein, “visually perceptible” means that a human viewer can visually discern the leakage of liquid outside of the reservoir or cap with the unaided eye (excepting standard corrective lenses adapted to compensate for near-sightedness, farsightedness, or stigmatism, or other corrected vision) in lighting at least equal to the illumination of a standard 100 watt incandescent white light bulb at a distance of 1 meter.
As used herein, the terms “include,” “includes,” and “including,” are meant to be non-limiting and are understood to mean “comprise,” “comprises,” and “comprising,” respectively.
Still referring to
In one example, the volume of headspace 90 can be greater than the volume of nozzle 15. In one example, the volume of headspace 90 can be about 3,000 to about 11,000 cubic mm, in another example about 5,000 to about 10,000 cubic mm, and in another example about 7,000 to about 9,600 cubic mm. In one example, the volume of headspace 90 can be about 9,400 cubic mm. In one example, the volume of nozzle 15 can be about 1,000 to about 2,500 cubic mm, in another example about 1,100 to about 2,000 cubic mm, and in another example about 1,200 to about 1,500 cubic mm. In one example, the volume of nozzle 15 can be about 1,280 cubic mm. In one example, the ratio of the volume of headspace 90 to the volume of nozzle 15 can be about 2:1 to about 10:1, in another example from about 3:1 to about 9:1, and in another example from about 5:1 to about 8:1. In one example, the ratio of the volume of headspace 90 to the volume of nozzle 15 can be about 7.3:1.
As best shown in
As shown in
Insert 35 may also include attachment member 118, which as shown in
Vent 100 may be disposed at a position longitudinally offset from notch 110 to allow gas to travel from headspace 90 to channel 80 and from channel 80 to atmosphere. In addition, vent 100 and notch 110 can be also circumferentially offset. Without being limited by theory, it is believed that circumferentially offsetting the position of vent 100 and notch 110 can prevent the leakage of liquid 120 from vented cap 30. One advantage of such a configuration is that liquid 120 accumulated in vented cap 30 must fill headspace 90, enter channel 80 through vent 100, and travel circumferentially around channel 80 to exit through notch 110, which makes leakage more difficult. In certain examples, multiple vents 100 give more opportunities for gas to exit headspace 90. As shown in
In one example, the vented cap can include an insert having a floor pan and a projection. The projection can extend from a projection proximal end joined to the floor pan to a projection distal end longitudinally remote therefrom. The vented cap can also include a shell having an outer skirt joined to and extending longitudinally outwardly from the floor pan and a top joined to the outer skirt. The top and the outer skirt can define a headspace between the floor pan and the top. In one example, the projection can extend into a portion of the headspace and the projection can define a projection aperture. The vented cap can also include a vent in fluid communication between the headspace and atmosphere.
In addition, the vented cap can include an inner retainer wall extending longitudinally from a wall proximal end joined to the floor pan to a wall distal end longitudinally remote therefrom. The inner retainer wall and the outer skirt can define a channel therebetween. In one example, the inner retainer wall can define the vent, allowing gas to flow from the headspace to the channel. In some examples, the vented cap can include one vent, in some examples two vents, and in some examples three vents. The vented cap can further include a notch defined by the wall proximal end. In one example, the notch can be configured to allow a gas to flow from the channel to atmosphere. In some examples, the vented cap can prevent visually perceptible leakage of liquid during storage at about 40° C. and about 75% RH for about 90 days.
In one example, the vented cap can include an insert having a floor pan, an inner retainer wall and a projection. The inner retainer wall can extend from a wall proximal end joined to the floor pan to a wall distal end longitudinally remote therefrom. The wall proximal end can be surrounded by a flange. The projection can extend from a projection proximal end joined to the floor pan to a projection distal end longitudinally remote therefrom. In one example, the projection can define a projection aperture. The vented cap can also include a shell having an outer skirt joined to and extending longitudinally outwardly from the floor pan. In some examples, the inner retainer wall and the outer skirt can define a channel therebetween. A top can be joined to the outer skirt and define a headspace between the floor pan and the top. In some examples, the projection can extend into a portion of the headspace.
The vented cap can also include a vent in fluid communication between the headspace and the channel and a notch in fluid communication between the channel and atmosphere. In some examples, the vented cap can include one vent, in some examples two vents, and in some examples three vents. In some examples, the wall distal end can define the vent and the flange can define the notch. In some examples, the inner surface of the outer skirt can define the vent and the notch. In one example, the vent and notch can be longitudinally offset. The vent and notch can also be circumferentially offset.
In another example, the vented cap assembly can include a reservoir having a nozzle with a reservoir aperture extending therethrough and a vented cap configured to be positioned on the nozzle. The vented cap can include an insert, a shell, a vent and a notch. The insert can include a floor pan, an inner retainer wall and a projection. The inner retainer wall can extend from a wall proximal end joined to the floor pan to a wall distal end longitudinally remote therefrom. The wall proximal end can be surrounded by a flange. The projection can extend from a projection proximal end joined to the floor pan to a projection distal end longitudinally remote therefrom. In one example, the projection distal end can define the projection aperture, and when the projection is positioned on the nozzle, the projection aperture can be in fluid communication with the reservoir aperture. The shell can include an outer skirt joined to and extending longitudinally outwardly from the floor pan and a top joined to the outer skirt. The inner retainer wall and the outer skirt can define a channel therebetween. The top and the outer skirt can define a headspace between the floor pan and the top. In some examples, the volume of the headspace can be greater than the volume of the nozzle.
In one example, the vent can be in fluid communication between the headspace and the channel, and the notch can be in fluid communication between the channel and atmosphere. In some examples, the vented cap can include one vent, in some examples two vents, and in some examples three vents. In some examples, the inner retainer wall can define the vent and the flange can define the notch. In some examples, the inner surface of the outer skirt can define both the vent and the notch. In one example, the vent and notch can be longitudinally offset. In another example, the vent and notch can also be circumferentially offset by about 170 to about 190 degrees.
The reservoir can contain a liquid with a viscosity of about 5 to about 60 Brookfield units, in another example about 10 to about 35 Brookfield units, in another example about 15 to about 18 Brookfield units. The viscosity is measured with a Brookfield Synchrolectric Viscometer Model RVT/2 using a T-E spindle at 2.5 revolutions per minute. In some examples, the reservoir may contain a liquid including from about 0.1% to about 7% hydrogen peroxide, in another example from about 0.2% to about 5%, and in another example from about 1% to about 4%. In one example, the liquid can contain from about 0.3% to about 3% hydrogen peroxide. In one example, the insert and the shell can be opaque and prevent liquid in the headspace from being visible to the consumer.
In one example, the vented cap may not include moving parts, such as springs or valves. One advantage of such a structure is that the vented cap may allow two-way gas movement between the reservoir and atmosphere.
In one example, the reservoir is fluidly connected to the headspace, the headspace is fluidly connected to the vent, the vent is fluidly connected to the channel and the channel is fluidly connected to the notch.
It should be appreciated that the figures only schematically illustrate the vented cap assembly, and the reservoir and vented cap may be formed from a variety of different shapes, sizes, configurations and materials.
In one example, the vented cap can have an oval shape. In one example, the vented cap can have a circular shape. In one example, the outer skirt can have a height of about 18 mm to about 29 mm. In one example, the outer skirt can have a height of about 28.9 mm. In one example, the top can have a major axis of about 20 mm to about 40 mm and a minor axis of about 15 mm to about 30 mm. In one example, the top can have a major axis of about 39 mm and a minor axis of about 26.5 mm. In one example, the insert can have a major axis of about 20 mm to about 40 mm and a minor axis of about 15 mm to about 30 mm. In one example, the insert can have a major axis of about 36.2 mm and a minor axis of about 18 mm. In one example, the retainer wall can have a height of about 5 mm to about 15 mm. In another example, the retainer wall can have a height of about 8 mm to about 11 mm. In one example, the projection can have a height of about 15 mm to about 21 mm and a diameter of about 12 mm to about 18 mm. In one example, the projection can have a height of about 19 mm and a diameter of about 17 mm. In one example, the channel can have a width of about 0.04 mm to about 1.2 mm, in another example from about 0.05 to about 0.09 mm. In one example, the channel can have a width of about 0.07 mm.
The vent may be of any shape or size suitable to allow gas to flow between the headspace and channel. The notch may be of any shape or size suitable to allow gas to flow between the channel and atmosphere. In one example, the notch can be greater in size than the vent. In one example, the notch may have a concave shape. In one example, the notch can have a convex shape. In one example, the notch may have a depth of about 0.2 mm to about 1 mm, in another example from about 0.25 mm to about 0.8 mm, and in another example from about 0.35 mm to about 0.45 mm. In one example, the notch may have a depth of about 0.4 mm. In one example, the notch may have a width from about 0.5 mm to about 2.5 mm, in another example from about 1 mm to about 1.5 mm, and in another example from about 1.25 mm to about 2.3 mm. In one example, the notch may have a width of about 2 mm. In one example, the vent may have a concave shape. In one example, the vent may have a convex shape. In one example, the vent may have a depth of from about 0.2 mm to about 0.5 mm and in another example from about 0.25 mm to about 0.4 mm. In one example, the vent may have a depth of about 0.3 mm. In one example, the vent may have a width of about 0.5 mm to about 1.5 mm, in another example from about 0.8 mm to about 1.4 mm, and in another example from about 0.9 mm to about 1.3 mm. In one example, the vent may have a width of about 1.21 mm.
In one example, the vented cap may be composed of any desired polymer or copolymer including polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), polyethylene (PE) and the like, and may be produced by any desired process including injection molding or the like.
In one example, the reservoir may contain a liquid with a specific gravity of about 0.7 to about 2, in another example about 0.9 to about 1.6, and in another example about 1 to about 1.4.
In one example, the reservoir may contain a liquid with a specific gravity of greater than 1. In another example, the reservoir may contain a liquid with a specific gravity of about 1.45 to about 1.55.
In one example, the vented cap assembly can be packaged in a secondary container in the upright orientation. In one example, the front surface of the secondary container can be clear and can allow consumers to view a portion of the vented cap assembly. In one example, the vented cap assembly can contain an oral care gel and can be packaged in a secondary container with a toothpaste product.
In order to test the ability of the vented cap to properly prevent visually perceptible leakage, the Cap Performance Test was performed. This Example shows the results from the Cap Performance Test when the presence of vents in a cap were tested. Performance and robustness against visually perceptible leakage of the vented cap was compared to a non-vented control cap. Each test used a reservoir containing an oral care composition with 3% hydrogen peroxide. The tests were performed at increased temperature conditions to accelerate the decomposition and gas evolution within the reservoir. In addition, tests were performed on cap and reservoir assemblies placed in different orientations to further accelerate the chance of leakage. Leakage was measured using visual observation of the outside of the reservoir and cap and by CT-Scanning to assess the leakage within the cap. Leakage was defined as visually perceptible liquid outside of the reservoir or cap by the user.
The Cap Performance Test was performed as follows:
The Cap Performance Test assessed a vented cap assembly, including an insert and a shell, positioned on a reservoir. An 85 ml reservoir was filled with 2.3 ounces of the oral care composition shown in table 1. In this example, the composition had a specific gravity of approximately 1.08 and a viscosity of approximately 15 Brookfield Units. The reservoir was a multi-layer tube made of the following plastics and barriers: PE, adhesive, ethylene-vinyl-alcohol, adhesive, and PE. The cap was made of PP. Each reservoir had a nozzle with a volume of 1,280 cubic mm. Each cap had a headspace volume of 9,400 cubic mm
1Available from the Goodrich Corporation (Akron, Ohio, USA)
The reservoir was capped with either a vented cap or a non-vented control cap. The vented caps of Test 1 included insert 35 found in
Cap and reservoir assemblies were placed in a temperature controlled room at 40° C. and 75% RH in desired orientations. Fifteen assemblies were placed in the cap-up, cap-down, and cap sideways orientation for 90 days. The assemblies were observed for signs of visually perceptible leakage on the outside of either the reservoir or the cap. CT-Scanning was then performed to assess the behavior of the liquid within the cap.
The table below summarizes the results from this test.
The vented cap of Test 1 captured overflow liquid within the cap and allowed gas to vent to the atmosphere through a venting path. As shown in Table 2, the vented cap of Test 1 had no visually perceptible leakage on the outside of the reservoir or the cap in any orientation after 90 days of the Cap Performance Test.
The non-vented control cap of Test 2 did not capture overflow liquid within the cap and did not allow gas to vent from the reservoir. As shown in Table 2, the non-vented control cap of Test 2 had visually perceptible leakage on the outside of the reservoir in all orientations tested after 90 days of performance testing.
The Cap Performance Test demonstrates that the vented cap properly prevents visually perceptible leakage of an oral care composition from a reservoir by venting gas and capturing overflow liquid from the reservoir.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular examples of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | |
---|---|---|---|
Parent | 14461343 | Aug 2014 | US |
Child | 15890400 | US |