The invention generally relates to vented containers, such as bottles, for the storage of viscous liquids, wherein the inner surface of a bottle improves the amount of material dispensed from the bottle.
Squeeze containers are widely known and used for containing and dispensing a wide variety of viscous liquid products, such as body lotions. Squeeze containers typically have a flat base adapted for resting the container in an “upright” orientation that is substantially opposite of the dispensing orientation, in which the squeeze container is actually used. In the upright orientation the viscous product rests on the base within the container and air is trapped in the head space between the viscous product and the cap. To dispense the viscous product, the squeeze container is first inverted from its upright position wherein the viscous product and the air exchange places, such that the viscous product flows toward the opening of the container under the force of gravity, thereby displacing the air to a position between the viscous product and the base of the container. A user opens the cap and squeezes the container to reduce the interior volume of the package, thereby forcing the viscous product out of the cap. When finished dispensing, the user releases pressure and reorients the package in the upright position, such that the remaining viscous product flows back toward the base of the container and “replacement” air is permitted to vent through the discharge opening and into the container, thereby normalizing the atmospheric pressure in the container to permit the sidewall to recover its original shape. Thereafter, the cap is sealed until the next use. The fresh air is termed “replacement” air because it replaces or compensates for the displacement and lost volume of the viscous product. One disadvantage with such a dispensing container is that it is not continuously ready for immediate dispensing of the viscous product.
Squeeze containers, such as squeeze bottles, are becoming increasingly popular for dispensing viscous products, like liquid soap and shampoo. Squeeze bottles can be sleekly styled dispensing packages, which in certain styles do not include a flat base capable of supporting the bottle in an upright position; rather the bottle's cap provides a flat surface for support. A cap includes a flat end adapted for resting the bottle in an orientation that is substantially the same as its intended dispensing orientation. In its normal dispensing orientation, and with the cap in a sealed position, the viscous product rests next to the dispensing cap, and a head of air is trapped between the viscous product and the end wall of the bottle. One advantage of such a dispensing package is that the viscous product contained therein is generally immediately adjacent the dispensing opening, and is thus continuously ready for quick dispensing without having to invert the bottle. To dispense the viscous product, a user opens the cap and squeezes the bottle to reduce the interior volume, thereby forcing the viscous product out of the dispensing opening. When finished, the user releases the pressure, seals the cap, and rests the squeeze bottle on the flat base of the cap until the next use.
Unfortunately, however, the typical squeeze bottle does not readily permit venting of a fresh supply of replacement air in between uses or replacement air becomes trapped between the viscous product and the dispensing opening. This trapped air becomes a bubble making it more difficult for a user to dispense the product, as a user must first squeeze the bottle to expel the trapped air then squeeze again to actually dispense the product.
Further, due to the viscous nature of certain products, such as toothpastes, shampoos, comestibles, paints, lotions, cosmetics, or cleaning products, a residual amount may be left in the ends, along the sides, or edges of a bottle during normal use. In many cases, due to the particular shape of the bottle, a consumer is unable to dispense such residual product. This unused, residual product is often disposed of along with the bottle.
The bottle can be redesigned to improve product evacuation, but such redesigns can be costly and may not result in a significant decrease in the amount of residual product left in the bottle after normal use. For example, product release from a bottle can, in some cases, be improved by modifying the bottle shape or geometry to have shoulder portions that minimize the amount of residual product that remains in such areas. However, redesigning a bottle shape is costly, as new molds are typically required.
Other attempts to improve product release involve modifying the inner surface of the bottles. The entire bottle inner surface may be corona or plasma treated to modify the surface energy/wetting tension ability of the bottle material or a release coating may be applied to the inner surface of the bottle to provide a surface that the product may more easily release from.
Accordingly, there is a desire for a bottle that allows for improved product application while reducing the amount of unused residual product.
A container having a body having an end wall, side wall, and finished portion forming an inner cavity having an inner surface; a dispensing cap having a cap lid, a dispensing outlet and a vent opening; an outlet valve arrangement; and wherein the inner surface is modified to reduce adhesion between the inner surface and a viscous liquid.
A container having a body having an end wall, side wall, and finished portion forming an inner cavity having an inner surface; a dispensing cap having a cap lid, a dispensing outlet and air channel opening; an outlet valve having an outlet valve flap and a flexible outlet valve retainer ring having an outlet valve retainer ring opening; wherein the inner surface is modified to reduce adhesion between the inner surface and a viscous liquid.
A method of dispensing a viscous liquid comprising providing a container having a body having an end wall, side wall, and finished portion forming an inner cavity having an inner surface; a dispensing cap having a cap lid, a dispensing outlet and a vent opening; an outlet valve having an outlet valve flap and an outlet valve retainer ring having an outlet valve retainer ring opening; viscous liquid; wherein the inner surface is modified to reduce adhesion between the inner surface and a viscous liquid; applying pressure to the bottle to open the valve flap and dispense the viscous liquid; releasing the pressure and closing the valve flap; and drawing replacement air through the vent opening.
The present invention is directed to a bottle having a viscous liquid disposed therein. The bottle has a modified inner surface that reduces the amount of residual viscous liquid attached to the inner surface of the bottle. Such modifications may take the form of anti-adherence compositions that reduce the adherence of viscous liquids to the inner surface allowing for most of the viscous liquid to be expelled from the bottle. The anti-adherence compositions may be coated on the inner surface or incorporated in the bottle or both. Further in place of a normal flat surface the inner surface of the bottle may have three-dimensional structure, reducing the surface contact area between the viscous liquid and the inner surface. A bottle also includes a valve and one or more vents that allow for air intake to equalize pressure within the bottle after dispensing a viscous liquid. A vent is positioned below the fluid level, such as in the cap, and in proximity to the bottle wall. This positioning allows the air introduced by the vent to travel along the bottle inner surface to the head space. Such travel along the inner surface is possible due to the inner surface modifications.
For purposes herein, a “viscous” liquid, substance, or product generally refers to a material, in certain embodiments, having a viscosity greater than about 5,000 cp, greater than about 100,000 cp, or greater than about 200,000 cp. Viscosity is measured using a Brookfield viscometer with a spindle appropriate for the material at room temperatures; however, other methods and equipment may also be used to determine viscosity as needed. Examples of viscous products suitable for use in the bottles described herein, include but are not limited to, toothpaste, shampoo, comestibles, paints, coatings, dyes, cosmetics, lotions, pastes, ointments, pharmaceuticals, adhesives, and the like. As also used herein, “normal use” of a bottle means evacuation of the viscous product through the bottle opening without using a supplementary utensil, such as a knife or spoon, to scrape interior surfaces of the bottle to remove residual product. Normal use generally involves dispensing the viscous product from the bottle by pouring, squeezing, shaking, hitting, pounding, or any combination of such actions.
It should be appreciated that the figures only schematically illustrate the body 11, and the body 11 may be formed from a variety of different shapes, sizes, configurations, and materials. In one example, a suitable body has a height of about 18 cm, a width of about 3 cm to about 5 cm, and a depth of about 3 cm to about 5 cm.
In addition, while this embodiment is shown in a vertical position the invention also works when a bottle is in a horizontal position. Further, in certain embodiments bottles do not include a flat end wall capable of supporting the bottle in an upright position, which is known as a bottle.
As shown in
In certain embodiments, as shown in
The outlet valve 92 is positioned between the annular skirt 41 and the outlet valve retainer ring 94. The outlet valve retainer ring 94 rests on the face of the outlet valve 92 opposite the annular skirt 41. The outlet valve 92 may be integral with or directly attached to the annular skirt 41, for example, by the use of adhesive and/or the outlet valve 92 may be held in position by the outlet valve retainer ring 94. The outlet valve retainer ring 94 may be interference fitted or snap-fit with the annular skirt seal 41 extending from the base wall 30, the interior skirt 34, or both and/or the outlet valve retainer ring 94 may be directly attached to the annular skirt 41 and/or interior skirt 34, for example, by the use of adhesive. In certain embodiments, as shown in
As illustrated in
Referring again to
With reference to
In certain embodiments, as shown in
Referring to
An anti-adherence composition can be a liquid, solid or both, in certain embodiments as shown in
Examples of natural oils that are suitable in the present invention include, but are not limited to, a vegetable oil, such as olive oil, soybean oil, sunflower oil, canola oil and the like. In yet another form, the coating may include mixtures of soybean or canola oil combined with small amounts of lecithin (i.e., about 20 percent or less) and food grade alcohols (i.e., about 20 percent or less). Such alternative coatings are expected to provide similar results when applied to the bottle inner surface.
In the practice of the present invention, any relative amounts of bottle material and anti-adherence composition may be utilized that will provide the desired release property to the inner surface. In certain embodiments, the anti-adherence composition is provided to the bottle material in an effective amount to reduce residual viscous liquid remaining on an inner surface. The effective amount of anti-adherence composition will be selected upon consideration of the bottle material, the viscous liquid to be used therewith, economic factors, and engineering considerations.
In certain embodiments when an anti-adherence composition is incorporated into the body material, the body weight percent of anti-adherence composition, may generally comprise in the range of about 0.5 to about 20 weight percent anti-adherence composition, may comprise in the range of about 2 to about 20 weight percent anti-adherence composition, may comprise in the range of about 3 to about 15 weight percent anti-adherence composition, or may comprise in the range of about 3 to about 10 weight percent anti-adherence composition. The composition of the present invention may be formed by blending the anti-adherence composition with the plastic in molten form, or the anti-adherence composition may be compounded with the plastic. Examples of anti-adherence compositions that can be incorporated into the body material include ultra high molecular weight siloxane polymer, glycerol monostearate, erucamide.
In certain embodiments the bottles herein evacuate greater than 90 percent, greater than 95 percent, greater than 98 percent of the viscous liquid independent of bottle geometry.
In certain embodiments the coating composition may be uniformly applied to the predetermined coverage area in a thickness of about 0.003 inches or less.
As described previously the inner surface of a bottle may have three dimensional structure, for example
Referring to
Referring to
Referring to
The textures within the liquid-impregnated inner surface 220 and 229 are physical textures or surface roughness. The textures may be random, including fractal, or patterned. In certain embodiments, the textures are micro-scale or nano-scale features. For example, the textures may have a length scale L (e.g., an average pore diameter, or an average protrusion height) that is less than about 100 microns, less than about 10 microns, less than about 1 micron, less than about 0.1 microns, or less than about 0.01 microns. In certain embodiments, the texture includes posts 224 or other protrusions, such as spherical or hemispherical protrusions. Rounded protrusions may be used in certain embodiments to avoid sharp solid edges and minimize pinning of liquid edges. The texture may be introduced to the surface using any conventional method, including mechanical and/or chemical methods such as lithography, self-assembly, imprinting, and deposition, for example.
The impregnating liquid 226 may be any type of liquid that is capable of providing the desired non-wetting properties. For example, the impregnating liquid 226 may be oil-based or water-based (i.e., aqueous). In certain embodiments, the impregnating liquid 226 is an ionic liquid (e.g., BMI-IM). Other examples of possible impregnating liquids include hexadecane, vacuum pump oils (e.g., FOMBLIN (Registered trademark) 06/6, KRYTOX (Registered trademark) 1506) silicone oils (e.g., 10 cSt or 1000 cSt), fluorocarbons (e.g., perfluoro-tripentylamine, FC-70), shear-thinning fluids, shear-thickening fluids, liquid polymers, dissolved polymers, viscoelastic fluids, and/or liquid fluoroPOSS. In certain embodiments, the impregnating liquid is (or comprises) a liquid metal, a dielectric fluid, a ferro fluid, a magneto-rheological (MR) fluid, an electro-rheological (ER) fluid, an ionic fluid, a hydrocarbon liquid, and/or a fluorocarbon liquid. In one embodiment, the impregnating liquid 226 is made shear thickening with the introduction of nano particles. A shear-thickening impregnating liquid 226 may be desirable for preventing impalement and resisting impact from impinging liquids, for example.
The impregnating liquid 226 may be introduced to the inner surface 220 or 229 using any conventional technique for applying a liquid to a solid. In certain embodiments, a coating process, such as a dip coating, blade coating, or roller coating, is used to apply the impregnating liquid 226. Alternatively, the impregnating liquid 226 may be introduced and/or replenished by liquid materials flowing past the inner surface 220 or 229 (e.g., in a pipeline). After the impregnating liquid 226 has been applied, capillary forces hold the liquid in place. Capillary forces scale roughly with the inverse of feature-to-feature distance or pore radius, and the features may be designed such that the liquid is held in place despite movement of the surface and despite movement of air or other fluids over the surface. Small features may also be useful to provide robustness and resistance to impact.
Compared to gas-impregnated surfaces, the liquid-impregnated surfaces described herein offer several advantages. For example, because liquids are incompressible over a large range of pressures, liquid-impregnated surfaces are generally more resistant to impalement. In certain embodiments, while nano-scale (e.g., less than one micron) textures may be necessary to avoid impalement with gas-impregnated surfaces, micro-scale (e.g., from 1 micron to about 100 microns) textures are sufficient for avoiding impalement with liquid-impregnated surface. As mentioned, micro-scale textures are much easier to manufacture and more practical than nano-scale textures.
Liquid-impregnated surfaces are also useful for reducing viscous drag between a solid surface and a flowing liquid. In general, the viscous drag or shear stress exerted by a liquid flowing over a solid surface is proportional to the viscosity of the liquid and the shear rate adjacent to the surface. A traditional assumption is that liquid molecules in contact with the solid surface stick to the surface, in a so-called “no-slip” boundary condition. While some slippage may occur between the liquid and the surface, the no-slip boundary condition is a useful assumption for most applications.
In certain embodiments, non-wetting surfaces, such as liquid-impregnated surfaces, are desirable as they induce a large amount of slip at the solid surface. For example, referring again to
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application and any patent application or patent to which this application claims priority or benefit thereof, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | |
---|---|---|---|
61881647 | Sep 2013 | US |