Claims
- 1. A fuel delivery system for an automotive vehicle which comprises:
- (a) a main fuel tank in said vehicle,
- (b) a closed reservoir in said main fuel tank, a single electric pump drive in said reservoir,
- (c) a first rotary pump in said reservoir having a plurality of first vanes, a first inlet communicating with said first vanes for drawing fuel from immediately adjacent the bottom of said main tank and a first outlet communicating with said first vanes for delivering fuel into said reservoir through said first outlet, when operating the fuel delivered from the first outlet into the reservoir by the first pump being responsive to and reduced by increasing pressure within the reservoir,
- (d) a second rotary pump in said reservoir having a plurality of second vanes, a second inlet independent of said first inlet, open to the interior of said reservoir immediately adjacent the bottom of the reservoir, and communicating with said second vanes for drawing fuel from said reservoir, and a second outlet communicating with said second vanes to deliver fuel to an engine,
- (e) both said plurality of first vanes of said first rotary pump and said plurality of second vanes of said second rotary pump being simultaneously driven by said single electric pump drive, and
- (f) a vent carried by the reservoir for venting air and fuel vapor from adjacent the top of the reservoir as fuel rises in said reservoir, said vent also being responsive to a first fuel level adjacent the top of said reservoir to effectively close said vent to allow pressure to be built up in said reservoir by said pumps when they are running to reduce the delivery of fuel into the reservoir by the first pump, and said vent being responsive to a second fuel level in said reservoir below said first fuel level to open and vent air and vapor from the reservoir to relieve the pressure in the reservoir both when the pumps are running and are not running.
- 2. A fuel delivery system for an automotive vehicle which comprises:
- (a) a main fuel tank in said vehicle,
- (b) a closed reservoir in said main fuel tank, an electric pump drive in said reservoir,
- (c) a first rotary pump in said reservoir having a plurality of first vanes, a first inlet communicating with said first vanes for drawing fuel from said main tank and a first outlet communicating with said first vanes for delivering fuel into said reservoir through said first outlet, when operating the fuel delivered from the first outlet into the reservoir by the first pump being responsive to and reduced by increasing pressure within the reservoir,
- (d) a second rotary pump in said reservoir having a plurality of second vanes, a second inlet independent of said first inlet, open to the interior of said reservoir and communicating with said second vanes for drawing fuel from said reservoir, and a second outlet communicating with said second vanes to deliver fuel to an engine,
- (e) both said first and second rotary pumps being driven by said electric pump drive, and
- (f) a vent carried by the reservoir for venting air and fuel vapor from adjacent the top of the reservoir as the fuel rises in said reservoir, said vent also being responsive to a fuel level adjacent the top of said reservoir to effectively close said vent to allow pressure to build up in said reservoir when said pumps are running to reduce the delivery of fuel into the reservoir by the first pump, and said first and second rotary pumps are formed on a single rotor and are driven simultaneously by said electric pump drive.
- 3. A fuel delivery system as defined in claim 2 in which said first rotary pump is a lateral channel pump in cooperation with a vaned rotor.
- 4. A fuel delivery system for an automotive vehicle which comprises:
- (a) a main fuel tank in said vehicle,
- (b) a closed reservoir in said main fuel tank, an electric pump drive in said reservoir,
- (c) a first rotary pump in said reservoir having a first inlet for drawing fuel from said main tank and a first outlet for delivering fuel to said reservoir through said first outlet,
- (d) a second rotary pump in said reservoir for drawing fuel from a second inlet independent of said first inlet and open to the interior of said reservoir and having a main pump second outlet to deliver fuel to an engine, and
- (e) a vent for venting air and fuel vapors from adjacent the top of the reservoir as fuel rises in said reservoir, said vent also being responsive to a fuel level adjacent the top of said reservoir to effectively close said vent to allow a pressure to build up in said reservoir when said pumps are running, said first and second rotary pumps are formed on a single pump rotor and are driven simultaneously by said electric pump drive, said first rotary pump is a side lateral channel pump in cooperation with a vaned rotor, and said second rotary pump is a turbine type rotary pump.
- 5. A fuel delivery system as defined in claim 4 in which said vent comprises a valve opening, and a float valve positioned to cooperate with said opening to close said opening in response to the fuel level being adjacent the top of said reservoir.
- 6. A fuel delivery system as defined in claim 4 in which said vent comprises a calibrated vent opening adjacent the top of said reservoir which readily vents air and vapor from said reservoir but in response to the presence of liquid fuel effectively causes pressure to build up in said reservoir when said pumps are running.
- 7. A fuel delivery system as defined in claim 4 which also comprises a fuel return passage opening into the interior of said reservoir for returning fuel from the engine to the interior of said reservoir, and a valve associated with said return passage to prevent reverse flow of fluid from the interior of said reservoir through said return passage.
- 8. A fuel delivery system for an automotive vehicle which comprises: a closed reservoir constructed to be received in a main fuel tank for a vehicle, an electric motor received in said reservoir, a single pump rotor driven by the electric motor and having first vanes thereon for a first pump and second vanes thereon for a second pump, said first pump being in said reservoir and having a first inlet communicating with said first vanes and opening to the exterior of said reservoir for communicating with the fuel tank, and a first outlet communicating with said first vanes and opening into the interior of said reservoir for delivering fuel from the main tank to the interior of the reservoir, when operating the fuel delivered from the first outlet into the reservoir by the first pump being responsive to and reduced by increasing pressure within the reservoir, said second pump being in said reservoir and having a second inlet communicating with said second vanes and open to the interior of said reservoir and independent of both said first inlet and said first outlet and a second outlet communicating with said second vanes and opening to the exterior of said reservoir for supplying fuel from the interior of said reservoir to a vehicle engine, a vent carried by said reservoir for venting gas and fuel vapor from the interior of said reservoir as the level of liquid fuel in said reservoir rises and for effectively retarding or stopping the venting of gas and fuel vapor when the fuel level in said reservoir rises to adjacent the top of said reservoir to thereby allow fuel pressure in said reservoir to increase due to the operation of said pumps to reduce the delivery of fuel into the reservoir by the first pump.
- 9. A fuel delivery system as defined in claim 7 in which said first vanes of said first pump cooperate with at least one lateral side channel.
- 10. A fuel delivery system as defined in claim 7 in which said second vanes of said second pump are adjacent the periphery of said single pump rotor and cooperate with a pumping channel to supply fuel to said second outlet.
- 11. A fuel delivery system as defined in claim 7 in which said first vanes cooperate with at least one lateral side channel to deliver fuel from said first inlet to said first outlet and said second vanes are adjacent the periphery of said pump rotor and cooperate with a second pump channel to supply fuel from said reservoir through said second inlet to said second outlet.
- 12. A fuel delivery system as defined in claim 8 wherein said vent comprises a valve movable to an open position to permit gas and fuel vapor to pass to the exterior of said reservoir and to a closed position to seal the vent in response to the level of liquid fuel within said reservoir rising to adjacent the top of said reservoir.
- 13. A fuel delivery system as defined in claim 8 in which said vent comprises a valve seat communicating with the exterior of said container, a valve sealingly engagable with said seat and movable to open and closed positions relative to said seat, and a float connected to said valve and constructed to move said valve to its closed position in response to the level of liquid fuel within said reservoir rising to adjacent the top of said reservoir.
- 14. A fuel delivery system as defined in claim 8 in which said vent comprises a port communicating with both the interior and the exterior of said reservoir and sized to permit gas and fuel vapor to flow from said reservoir as the level of fuel rises until liquid fuel contacts said port whereupon substantially no air and fuel vapor will pass through said port and the quantity of any liquid fuel passing through said port will be sufficiently small so that the pressure of liquid in the reservoir will build up due to operation of said pumps.
- 15. A fuel delivery system as defined in claim 8 which also comprises a fuel return passage opening into the interior of said reservoir for returning fuel from the engine to the interior of said reservoir, and a valve associated with said return passage to prevent reverse flow of fluid from the interior of said reservoir through said return passage.
Parent Case Info
This is a continuation of application Ser. No. 08/245,375 filed on May 18, 1994, now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 08/243,856, filed May 17, 1994, now U.S. Pat. No. 5,427,074.
US Referenced Citations (11)
Foreign Referenced Citations (1)
Number |
Date |
Country |
0160545 |
Sep 1983 |
JPX |
Non-Patent Literature Citations (1)
Entry |
Pierburg Publication, 1989. |
Continuations (1)
|
Number |
Date |
Country |
Parent |
245375 |
May 1994 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
243856 |
May 1994 |
|