Vented ink container with internal ink absorber, and ink cartridge having such an ink container

Information

  • Patent Grant
  • 6290344
  • Patent Number
    6,290,344
  • Date Filed
    Monday, May 15, 1995
    29 years ago
  • Date Issued
    Tuesday, September 18, 2001
    23 years ago
Abstract
An ink container includes a casing, an air vent which is located in the casing, an ink supply opening for supplying ink out of the casing, and an ink absorbing material that is contained in the casing. The ink absorbing material retains ink therein, and has a generally rectangular parallelopipedal shape defined by sides of the ink absorbing material, and also has an ink supply portion for supplying ink to the ink supply opening. The ink absorbing material includes corner portions which are located between adjacent sides of the ink absorbing material. A preventing means prevents complete surface contact between the casing and said ink absorbing material by providing spaces between the casing and ink absorbing material which are in fluid communication with each other with a given space that is adjacent to a particular one of the corner portions that is most remote from the ink supply portion. The air vent is in fluid communication with the spaces.
Description




FIELD OF THE INVENTION AND RELATED ART




The present invention relates to an ink jet recording head and an ink jet recording apparatus provided with an ink container having therein an ink absorbing porous material.




An ink jet head is known which comprises an integral energy generating portion for producing recording droplets and an ink container for supplying the ink thereto. The ink container of the ink jet head of this type generally includes therein a compressed porous material which is impregnated with the ink. The ink retained in the porous material is discharged to an ink ejecting portion through a common chamber by a capillary action in accordance with consumption of the ink by the ejecting portion. In addition, in order to prevent production of vacuum pressure in the ink container, a small area of the ink container (approximately 3% of the inside area of the ink container) is opened to the atmosphere (air vent).




In this conventional structure, the porous material occupies an increasing percentage of the volume of the ink container, since the demand is for the larger quantity of the ink contained in the recording head to reduce the frequency of exchanging it. However, on the contrary to the increase of the quantity of the ink therein, the quantity of the ink not usable and remaining in the container is increasing.




It is important that the ink is retained in the porous material in the manner that the ejection properties are not influenced.




An ink supply pipe pressed to the porous material in the ink container and supplies to an ink chamber communicating with the ink ejection passage. The pressure is effective to stabilize the contact with the porous material by deforming the porous material contacted by the pipe. The degree of pressure is small from the standpoint of not largely deforming the porous material. However, with the performance of the recording operation, the ink supply sometimes becomes not enough despite a large quantity of the ink remaining in the container with the result of forced exchange of the ink jet recording head or cartridge.




This tendency has been more remarkable in the case wherein a rib or ribs are formed in the container adjacent the air vent opening.




SUMMARY OF THE INVENTION




Accordingly, it is a principal object of the present invention to provide an ink jet recording head or cartridge and a recording apparatus having the same wherein the quantity of the ink non-consumably remaining in the container is reduced.




It is another object of the present invention to provide an ink jet recording head or cartridge and an ink jet recording apparatus having the same wherein the exchange frequency of the ink jet recording head or cartridge is reduced.




It is a further object of the present invention to provide an ink jet head or cartridge and an ink jet recording apparatus using the same wherein the recording operation can be performed in a stabilized manner.




It is a further object of the present invention to provide an ink jet head or a cartridge and an ink jet recording apparatus having the same wherein the consumption of the ink in the ink container is improved.




It is a further object of the present invention to provide an ink jet head or cartridge and an ink jet recording apparatus having the same wherein the quantity of the non-consumably remaining ink in the ink container is significantly reduced.




It is a further object of the present invention to provide an ink jet head or cartridge and an ink jet recording apparatus wherein the ink in the ink container can be efficiently consumed.




It is a further object of the present invention to provide an ink jet head or cartridge and an ink jet recording apparatus wherein the ink can be supplied without adverse influence to the ink ejection property.




A particular object of this invention is to provide an ink container having a casing, an air vent located in the casing, an ink supply opening for supplying ink out of the casing, and an ink absorbing material, contained in the casing, for retaining ink therein, this ink absorbing material having a generally rectangular parallelopipedal shape defined by a plurality of sides of the ink absorbing material, the ink absorbing material having an ink supply portion for supplying ink to the ink supply opening and having corner portions, each corner portion being located between adjacent two sides of the ink absorbing material. The ink absorbing material has a side closest to the ink supply portion, and a side opposite to the side closest to the ink supply portion. A preventing means prevents complete surface contact between the casing and ink absorbing material by provision of a cavity between the casing and ink absorbing material, the cavity extending adjacent to a particular one of the corner portions that is most remote from the ink supply portion, the air vent being in fluid communication with the cavity. Moreover, the air vent is disposed at a position separated from the ink supply portion by a distance larger than a minimum distance between the ink supply portion and the side of ink absorbing material that is opposite to the side closest to the ink supply portion.




These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates an embodiment of the present invention.





FIG. 2

is an exploded perspective view of an ink jet cartridge according to an embodiment of the present invention.





FIG. 3

is an assembled perspective view of the cartridge of FIG.


2


.





FIG. 4

is a perspective view of a mounting portion for mounting the ink jet unit IJU.





FIG. 5

illustrates the mounting of the cartridge IJC to an ink jet recording apparatus.





FIG. 6

is a perspective view of a printing apparatus according to the present invention.





FIGS. 7



a


,


7




b


and


7




c


illustrates flow of the ink.





FIGS. 8

,


9


,


10




a


,


10




b


and


10




c


are perspective views of the device according to further embodiments of the present invention.





FIGS. 11A and 11B

show ejection properties.





FIGS. 12A

,


12


B,


12


C,


12


D,


12


E and


12


F illustrate further embodiments.





FIG. 13

shows a further embodiment.





FIG. 14

illustrates a further embodiment.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIGS. 2

,


3


,


4


,


5


and


6


illustrate an ink jet unit IJU, an ink jet heat IJH, an ink container IT, an ink jet cartridge IJC, a head carriage HC and a main assembly IJRA of an ink jet recording apparatus, according to an embodiment of the present invention, and relations among them. The structures of the respective elements will be described in the following.




As will be understood from the perspective view of

FIG. 3

, the ink jet cartridge IJC in this embodiment has a relatively large ink accommodation space, and an end portion of the ink jet unit IJU is slightly projected from the front side surface of the ink container IT. The ink jet cartridge IJC is mountable at correct position on the carriage HC (

FIG. 5

) of the ink jet recording apparatus main assembly IJRA by proper positioning means and with electric contacts, which will be described in detail hereinafter. It is, in this embodiment, a disposable type head detachably mountable on the carriage AC. The structures disclosed in

FIGS. 2-6

contain various novel features, which will first be described generally.




(i) Ink Jet Unit IJU




The ink jet unit IJU is of a bubble jet recording type using electrothermal transducers which generate thermal energy, in response to electric signals, to produce film boiling of the ink.




Referring to

FIG. 2

, the unit comprises a heater board


100


having electrothermal transducers (ejection heaters) arranged in a line on an Si substrate and electric lead lines made of aluminum or the like to supply electric power thereto. The electrothermal transducer and the electric leads are formed by a film forming process. A wiring board


200


is associated with the heater board


100


and includes wiring corresponding to the wiring of the heater board


100


(connected by the wire bonding technique, for example) and pads


201


disposed at an end of the wiring to receive electric signals from the main assembly of the recording apparatus.




A top plate


1300


is provided with grooves which define partition walls for separating adjacent ink passages and a common liquid chamber for accommodating the ink to be supplied to the respective ink passages. The top plate


1300


is formed integrally with an ink jet opening


1500


for receiving the ink supplied from the ink container IT and directing the ink to the common chamber, and also with an orifice plate


400


having the plurality of ejection outlets corresponding to the ink passages. The material of the integral mold is preferably polysulfone, but may be another molding resin material.




A supporting member


300


is made of metal, for example, and functions to support a backside of the wiring board


200


in a plane, and constitutes a bottom plate of the ink jet unit IJU. A confining spring


500


is in the form of “M” having a central portion urging to the common chamber with a light pressure, and a clamp


501


urges concentratedly with a line pressure to a part of the liquid passage, preferably the part in the neighborhood of the ejection outlets. The confining spring


500


has legs for clamping the heater board


100


and the top plate


1300


by penetrating through the openings


3121


of the supporting plate


300


and engaging the back surface of the supporting plate


300


. Thus, the heater board


100


and the top plate


1300


are clamped by the concentrated urging force by the legs and the clamp


501


of the spring


500


. The supporting plate


300


has positioning openings


312


,


1900


and


2000


engageable with two positioning projections


1012


and positioning and fuse-fixing projections


1800


and


1801


of the ink container IT. It further includes projections


2500


and


2600


at its backside for the positioning relative to the carriage HC of the main assembly IJRA.




In addition, the supporting member


300


has a hole


320


through which an ink supply pipe


2200


, which will be described hereinafter, is penetrated for supplying ink from the ink container. The wiring board


200


is mounted on the supporting member


300


by bonding agent or the like. The supporting member


300


is provided with recesses


2400


and


2400


adjacent the positioning projections


2500


and


2600


.




As shown in

FIG. 3

, the assembled ink jet cartridge IJC has a head projected portion having three sides provided with plural parallel grooves


3000


and


3001


. The recesses


2400


and


2400


are located at extensions of the parallel grooves at the top and bottom sides to prevent the ink or foreign matter moving along the groove from reaching the projections


2500


and


2600


. The covering member


800


having the parallel grooves


3000


, as shown in

FIG. 5

, constitutes an outer casing of the ink jet cartridge IJC and cooperates with the ink container to define a space for accommodating the ink jet unit IJU. The ink supply member


600


having the parallel groove


3001


has an ink conduit pipe


1600


communicating with the above-described ink supply pipe


2200


and cantilevered at the supply pipe


2200


side. In order to assure the capillary action at the fixed side of the ink conduit pipe


1600


and the ink supply pipe


2200


, a sealing pin


602


is inserted.




A gasket


601


seals the connecting portion between the ink container IT and the supply pipe


2200


. A filter


700


is disposed at the container side end of the supply pipe. The ink supply member


600


is molded, and therefore, it is produced at low cost with high positional accuracy. In addition, the cantilevered structure of the conduit


1600


assures the press-contact between the conduit


1600


and the ink inlet


1500


even if the ink supply member


600


is mass-produced.




In this embodiment, the complete communicating state can be assuredly obtained simply by flowing sealing bonding agent from the ink supply member side under the press-contact state. The ink supply member


600


may be fixed to the supporting member


300


by inserting and penetrating backside pins (not shown) of the ink supply member


600


through the openings


1901


and


1902


of the supporting member


300


and by heat-fusing the portion where the pins are projected through the backside of the supporting member


300


. The slight projected portions thus heat-fused are accommodated in recesses (not shown) in the ink jet unit (IJU) mounting side surface of the ink container IT, and therefore, the unit IJU can be correctly positioned.




(ii) Ink Container IT




The ink container comprises a main body


1000


, an ink absorbing material and a cover member


1100


. The ink absorbing material


900


is inserted into the main body


1000


from the side opposite from the unit (IJU) mounting side, and thereafter, the cover member


1100


seals the main body.




The ink absorbing material


900


is thus disposed in the main body


1000


. The ink supply port


1200


functions to supply the ink to the ink jet unit IJU comprising the above-described parts


100


-


600


, and also functions as an ink injection inlet to permit initial ink supply to the absorbing material


900


before the unit IJU is mounted to the portion


1010


of the main body.




In this embodiment, the ink may be supplied through an air vent port and this supply opening. In order to ensure good supply of ink, ribs


2300


are formed on the inside surface of the main body


1000


, and ribs


2301


and


2302


are formed on the inside of the cover member


1100


, which are effective to provide within the ink container an ink existing region extending continuously from the air vent port side to that corner portion of the main body which is most remote from the ink supply opening


1200


. Therefore, in order to uniformly distribute the ink in good order, it is preferable that the ink is supplied through the supply opening


1200


. This ink supply method is practically effective. The number of the ribs


2300


in this embodiment is four, and the ribs


2300


extend parallel to a movement direction of the carriage adjacent the rear side of the main body of the ink container, by which the absorbing material


900


is prevented from closely contacting to the inner surface of the rear side of the main body. The ribs


2301


and


2302


are formed on the inside surface of the cover member


1100


at a position which is substantially an extension of the ribs


2300


, however, as contrasted to the large rib


2300


, the size of the ribs


2301


and


2302


are small as if it is divided ribs, so that the air existing space is larger with the ribs


2301


and


2302


than with the rib


2300


. The ribs


2302


and


2301


are distributed on the entire area of the cover member


1100


, and the area thereof is not more than one half of the total area. Because of the provisions of the ribs, the ink in the corner region of the ink absorbing material which is most remote from the supply opening


1200


can be stably and assuredly supplied to the inlet opening by capillary action. The cartridge is provided with an air vent port for communication between the inside of the cartridge with the outside air. Inside the vent port


1400


, there is a water repellent material


1400


to prevent the inside ink from leaking outside through the vent port


1400


.




The ink accommodating space in the ink container IT is substantially rectangular parallelepiped, and the long side faces in the direction of carriage movement, and therefore, the above-described rib arrangements are particularly effective. When the long side extends along the movement direction of the carriage, or when the ink containing space is in the form of a cube, the ribs are preferably formed on the entire surface of the inside of the cover member


1100


to stabilize the ink supply from the ink absorbing material


900


. The cube configuration is preferable from the standpoint of accommodating as much ink as possible in limited space. However, from the standpoint of using the ink with minimum an available part in the ink container, the provisions of the ribs formed on the two surfaces constituting a corner.




In this embodiment, the inside ribs


2301


and


2302


of the ink container IT are substantially uniformly distributed in the direction of the thickness of the ink absorbing material having the rectangular parallelepiped configuration. Such a structure is significant, since the air pressure distribution in the ink container IT is made uniform when the ink in the absorbing material is consumed so that the quantity of the remaining unavailable ink is substantially zero. It is preferable that the ribs are disposed on the surface or surfaces outside a circular arc having the center at the projected position on the ink supply opening


1200


on the top surface of the rectangular ink absorbing material and having a radius which is equal to the long side of the rectangular shape, since then the ambient air pressure is quickly established for the ink absorbing material present outside the circular arc. The position of the air vent of the ink container IT is not limited to the position of this embodiment if it is good for introducing the ambient air into the position where the ribs are disposed.




In this embodiment, the backside of the ink jet cartridge IJC is flat, and therefore, the space required when mounted in the apparatus is minimized, while maintaining the maximum ink accommodating capacity. Therefore, the size of the apparatus can be reduced, and simultaneously, the frequency of the cartridge exchange is minimized. Utilizing the rear space of the space used for unifying the ink jet unit IJU, a projection for the air vent port


1401


is provided. The inside of the projection is substantially vacant, and the vacant space


1402


functions to supply the air into the ink container IT uniformly in the direction of the thickness of the absorbing material. Because of these features described above, the cartridge as a whole is of better performance than the conventional cartridge. The air supply space


1402


is much larger than that in the conventional cartridge. In addition, the air vent port


1401


is at an upper position, and therefore, if the ink departs from the absorbing material for some reason or another, the air supply space


1402


can temporarily retain the ink to permit such ink to be absorbed back into the absorbing material. Therefore, the wasteful consumption of the ink can be saved.




Referring to

FIG. 4

, there is shown a structure of a surface of the ink container IT to which the unit IJU is mounted. Two positioning projections


1012


are on a line L


1


which is a line passing through the substantial center of the array of the ejection outlets in the orifice plate


400


and parallel with the bottom surface of the ink container IT or the parallel to the ink container supporting reference surface of the carriage. The height of the projections


1012


is slightly smaller than the thickness of the supporting member


300


, and the projections


1012


function to correctly position the supporting member


300


. On an extension (right side) in this Figure, there is a pawl


2100


with which a right angle engaging surface


4002


of a carriage positioning hook


4001


is engageable. Therefore, the force for the positioning of the ink jet unit relative to the carriage acts in a plane parallel to a reference plane including the line L


1


. These relationships are significant, since the accuracy of the ink container positioning becomes equivalent to the positioning accuracy of the ejection outlet of the recording head, which will be described hereinafter in conjunction with FIG.


5


.




Projections


1800


and


1801


corresponding to the fixing holes


1900


and


2000


for fixing the supporting member


300


to the side of the ink container IT, are longer than the projections


1012


, so that they penetrate through the supporting member


300


, and the projected portions are fused to fix the supporting member


300


to the side surface. When a line L


3


passing through the projection


1800


and perpendicular to the line L


1


, and a line L


2


passing through the projection


1801


and perpendicular to the line L


1


, are drawn. The center of the supply opening


1200


is substantially on the line L


3


, the connection between the supply opening


1200


and a supply type


2200


is stabilized, and therefore, even if the cartridge falls, or even if a shock is imparted to the cartridge, the force applied to the connecting portion can be minimized. In addition, since the lines L


2


and L


3


are not overlapped, and since the projections


1800


and


1801


are disposed adjacent to that projection


1012


which is nearer to the ink ejection outlets of the ink jet head, the positioning of the ink jet unit relative to the ink container is further improved. In this Figure, a curve L


4


indicates the position of the outer wall of the ink supply member


600


when it is mounted. Since the projections


1800


and


1801


are along the curve L


4


, the projections are effective to provide sufficient mechanical strength and positional accuracy against the weight of the end structure of the head IJH.




An end projection


2700


of the ink container IT is engageable with a hole formed in the front plate


4000


of the carriage to prevent the ink cartridge from being displaced extremely out of the position. A stopper


2101


is engageable with an unshown rod of the carriage HC, and when the cartridge IJC is correctly mounted with rotation, which will be described hereinafter, the stopper


2101


take a position below the rod, so that even if an upward force tending to disengage the cartridge from the correct position is unnecessarily applied, the correct mounted state is maintained. The ink container IT is covered with a cover


800


after the unit IJU is mounted thereto. Then, the unit IJU is enclosed therearound except for the bottom thereof. However, the bottom opening thereof permits the cartridge IJC to be mounted on the carriage HC, and is close to the carriage HC, and therefore, the ink jet unit is substantially enclosed at the six sides. Therefore, the heat generation from the ink jet head IJH which is in the enclosed space is effective to maintain the temperature of the enclosed space.




However, if the cartridge IJC is continuously operated for a long period of time, the temperature slightly increases. Against the temperature increase, the top surface of the cartridge IJC is provided with a slit


1700


having a width smaller than the enclosed space, by which the spontaneous heat radiation is enhanced to prevent the temperature rise, while the uniform temperature distribution of the entire unit IJU is not influenced by the ambient conditions.




After the ink jet cartridge IJC is assembled, the ink is supplied from the inside of the cartridge to the chamber in the ink supply member


600


through a supply opening


1200


, the whole


320


of the supporting member


300


and an inlet formed in the backside of the ink supply member


600


. From the chamber of the ink supply member


600


, the ink is supplied to the common chamber through the outlet, supply pipe and an ink inlet


1500


formed in the top plate


1300


. The connecting portion for the ink communication is sealed by silicone rubber or butyl rubber or the like to assure the hermetical seal.




In this embodiment, the top plate


1300


is made of resin material having resistivity to the ink, such as polysulfone, polyether sulfone, polyphenylene oxide, polypropylene. It is integrally molded in a mold together with an orifice plate portion


400


.




As described in the foregoing, the integral part comprises the ink supply member


600


, the top plate


1300


, the orifice plate


400


and parts integral therewith, and the ink container body


1000


. Therefore, the accuracy in the assembling is improved, and is convenient in the mass-production. The number of parts is smaller than a conventional device, so that the good performance can be assured.




In this embodiment, as shown in

FIGS. 2-4

, the configuration after assembly is such that the top portion


603


of the ink supply member


600


cooperates with an end of the top thereof having the slits


1700


, so as to form a slit S, as shown in FIG.


3


. The bottom portion


604


cooperates with feed side end


4011


of a thin plate to which the bottom cover


800


of the ink container IT is bonded, so as to form a slit (not shown) similar to the slit S. The slits between the ink container IT and the ink supply member


600


are effective to enhance the heat radiation, and is also effective to prevent an expected pressure to the ink container IT from influencing directly the supply member or to the ink jet unit IJT.




The above-described various structures are individually effective to provide the respective advantages, and also they are most effective when they are combined each other.




(iii) Mounting of the Ink Jet Cartridge IJC to the Carriage HC




In

FIG. 5

, a platen roller


5000


guides the recording medium P from the bottom to the top. The carriage HC is movable along the platen roller


5000


. The carriage HC comprises a front plate


4000


, a supporting plate


4003


for electric connection and a positioning hook


4001


. The front plate


400


has a thickness of 2 mm, and is disposed closer to the platen. The front plate


4000


is disposed close to the front side of the ink jet cartridge IJC, when the cartridge IJC is mounted to the carriage. The supporting plate


4003


supports a flexible sheet


4005


having pads


2011


corresponding to the pads


201


of the wiring board


200


of the ink jet cartridge IJC and a rubber pad sheet


4007


for producing elastic force for urging the backside of the flexible sheet


4005


to the pads


2001


. The positioning hook


4001


functions to fix the ink jet cartridge IJC to the recording position. The front plate


4000


is provided with two positioning projection surfaces


4010


corresponding to the positioning projections


2500


and


2600


of the supporting member


300


of the cartridge described hereinbefore. After the cartridge is mounted, the front plate receives the force in the direction perpendicular to the projection surfaces


4010


. Therefore, plural reinforcing ribs (not shown) are extended in the direction of the force at the platen roller side of the front plate. The ribs project toward the platen roller slightly (approximately 0.1 mm) from the front side surface position L


5


when the cartridge IJC is mounted, and therefore, they function as head protecting projections. The supporting plate


4003


is provided with plural reinforcing ribs


4004


extending in a direction perpendicular to the above-described front plate ribs. The reinforcing ribs


4004


have heights which decrease from the plate roller side to the hook


4001


side. By this, the cartridge is inclined as shown in

FIG. 5

, when it is mounted.




The supporting plate


4003


is provided with two additional positioning surfaces


4006


at the lower left portion, that is, at the position closer to the hook. The positioning surfaces


4006


correspond to projection surfaces


4010


by the additional positioning surfaces


4006


, the cartridge receives the force in the direction opposite from the force received by the cartridge by the above-described positioning projection surfaces


4010


, so that the electric contacts are stabilized. Between the upper and lower projection surfaces


4010


, there is disposed a pad contact zone, so that the amount of deformation of the projections of the rubber sheet


4007


corresponding to the pad


2011


is determined. When the cartridge IJC is fixed at the recording position, the positioning surfaces are brought into contact with the surface of the supporting member


300


. In this embodiment, the pads


201


of the supporting member


300


are distributed so that they are symmetrical with respect to the above-described line L


1


, and therefore, the amount of deformation of the respective projections of the rubber sheet


4007


are made uniform to stabilize the contact pressure of the pads


2011


and


201


. In this embodiment, the pads


201


are arranged in two columns and upper and bottom two rows.




The hook


4001


is provided with an elongated hole engageable with a fixed pin


4009


. Using the movable range provided by the elongated hole, the hook


4001


rotates in the counterclockwise direction, and thereafter, it moves leftwardly along the platen roller


5000


, by which the ink jet cartridge IJC is positioned to the carriage HC. Such a movable mechanism of the hook


4001


may be accomplished by another structure, but it is preferable to use a lever or the like. During the rotation of the hook


4001


, the cartridge IJC moves from the position shown in

FIG. 5

to the position toward the platen side, and the positioning projections


2500


and


2600


come to the position where they are engageable to the positioning surfaces


4010


. Then, the hook


4001


is moved leftwardly, so that the hook surface


4002


is contacted to the pawl


2100


of the cartridge IJC, and the ink cartridge IJC rotates about the contact between the positioning surface


2500


and the positioning projection


4010


in a horizontal plane, so that the pads


201


and


2011


are contacted to each other. When the hook


4001


is locked, that is retained at the fixing or locking position, by which the complete contacts are simultaneously established between the pads


201


and


2011


, between the positioning portions


2500


and


4010


, between the standing surface


4002


and the standing surface of the pawl and between the supporting member


300


and the positioning surface


4006


; and therefore, the cartridge IJC is completely mounted on the carriage.




(iv) General Arrangement of the Apparatus





FIG. 6

is a perspective view of an ink jet recording apparatus IJRA in which the present invention is used. A lead screw


5005


rotates by way of a drive transmission gears


5011


and


5009


by the forward and backward rotation of a driving motor


5013


. The lead screw


5005


has a helical groove


5004


with which a pin (not shown) of the carriage HC is engaged, by which the carriage HC is reciprocable in directions a and b. A sheet confining plate


5002


confines the sheet on the platen over the carriage movement range. Home position detecting means


5007


and


5008


are in the form of a photocoupler to detect presence of a lever


5006


of the carriage, in response to which the rotational direction of the motor


5013


is switched. A supporting member


5016


supports the front side surface of the recording head to a capping member


5022


for capping the recording head. Sucking means


5015


functions to suck the recording head through the opening


5023


of the cap so as to recover the recording head.




A cleaning blade


5017


is moved toward front and rear by a moving member


5019


. They are supported on the supporting frame


5018


of the main assembly of the apparatus. The blade may be in another form, more particularly, a known cleaning blade. A lever


5021


is effective to start the sucking recovery operation and is moved with the movement of a cam


5020


engaging the carriage, and the driving force from the driving motor is controlled by known transmitting means such as clutch or the like.




The capping, cleaning and sucking operations can be performed when the carriage is at the home position by the lead screw


5005


, in this embodiment. However, the present invention is usable in another type of system wherein such operations are effected at different timing. The individual structures are advantageous, and in addition, the combination thereof is further preferable.




Referring now to

FIG. 1

, the ribs


270


and


2600


in the ink container function to guide the air from the vent port


5


into the inside of the container to form an air existing space


51


to improve the ink supply property. The ribs


270


extend vertically on the Figure, and the ribs


2600


are divided into plural sections to provide a space therebetween. Therefore, the porous material (urethane sponge)


900


deforms into the spaces as indicated by broken lines in the Figure. The recording head IJH includes an electrode layer


1302


, a heat generating layer


1303


, a top protection layer


1301


, an orifice plate


400


and an ink supply pipe


2200


.




The ink jet cartridge integrally comprises an ink accommodating container


1000


having an ink retaining porous material therein and also having an air vent and an ink dispensing port for supplying the ink outside the container, and an ink jet recording head having ejection energy generating means, an ink chamber for retaining the ink to be supplied to the ejection energy generating means, a supply pipe press-contacted to the porous material in the ink container to feed the ink to the ink chamber and a filter F provided at an end of the supply pipe.




In this embodiment, the supply pipe is pressed to the porous material by the degree which is larger than the maximum length of the cross section of the supply pipe. In this embodiment the supply pipe is in the form of a cylindrical pipe, and therefore, the degree of deformation of the porous material by the press-contact is larger than the inside diameter of the supply pipe. By doing so, the porous material


900


at which the filter F is press-contacted can provide a sufficiently pressed region to the entire surface of the filter. Therefore, it has been prevented that the air is first concentrated on a part of the filter F.




Conventionally, the degree of the deformation depth is determined only on the basis of the deformation of the porous material without regard to the maximum dimension of the cross-sectional area of the supply pipe


2200


(a major axis length in the case of oval cross-section, the length of the diagonal line in the case of polygon cross-section or a diameter in the case of circle). Therefore, the distribution over the entire surface of the filter is not considered. In this embodiment, even if the air in the form of bubbles enter the porous material


900


with the consumption of the ink, the ink is first supplied to the filter. Therefore, the good ink supply can be maintained without the concentration of the bubbles around the filter. This structure is particularly effective when the ribs


270


and


2600


are not formed in the container, and is also effective to the case where the ribs are smaller than the above-described maximum length.




With the structure wherein the air spaces


51


are positively provided, the improper recording occurrence preventing effect is in some case inferior to the conventional structure. This is considered as being because the entering of the air can not be completely predicted or because the ink existing region without the porous material


900


changes. The inventors have investigated the problems and have provided a solution. The porous material is generally rectangular parallelepiped. A cavity is provided inside the air vent. On a top plan view of the ink container a circle is drawn with a center coincident with the end of the supply pipe pushed against the porous material and with a radius between the center and a closest position of said cavity on the top plan view. The ribs are provided on the side (vertical) inner surfaces of the container, outside the circle. The depth Z of the supply pipe immersed satisfies






2×H


2





Z≦


3×H


2








where H


2


is the height of the ribs


2600


in FIG.


1


.




By doing so, even if the ink concentrated area, the boundary N of the central portion M is moved to the position indicated by “m”, the ink can be first supplied to the filter to the central portion M. The preferable numerical range, considering the space forming condition, is such that the maximum length of the ribs H


2


is not more than 3 mm, and the depth of deformation Z is not less than 6 mm and not more than 9 mm.




In this embodiment, the flow resistance of the ink in the region where the porous material is contacted to the inside wall of the ink container is considered. As contrasted to the tendency for increasing the ink content, the inventors have formed that the non-contact area between the absorbing material and the inner surface of the container is preferably not less than 15% of the total inner surface.




By doing so, the ink flow resistance can be reduced, and the ink can be supplied without influence by the ejection frequencies.




The further improvement will be described which has been accomplished by considering the change of the configuration of the porous material between before and after the loading into the ink container.




Further, it has been found preferable that the depth Z of the immersed portion of the supply pipe satisfies:








Z


≧(W


0


−W


1


)+H


2


+


D








wherein (W


0


−W


1


) is a difference of the dimension shown in

FIG. 1

between before and after the porous material is intended into the container, D is a maximum size of the cross-section of the supply pipe described hereinbefore, and H


2


is the height of the ribs. The same as described hereinbefore as regards the height applies to H


2


when the ribs have different sizes.




In this embodiment, the height H


1


of the ribs


270


and the height H


2


of the ribs


2600


are the same. If they are different, the above inequation is discriminated on the basis of the larger one. However, the structure satisfying the inequation on the basis of the smaller one, the results were still better. In this case, the depth of deformation of the porous material is measured in the direction of the supply pipe


220


inserted.




In

FIG. 1

, distance D


1


from a side surface in the detection of the insertion of the supply pipe is not limiting, but is preferably equivalent to the rib or not less than 2 mm, when the rib is provided. The distances D


1


, D


3


and D


4


from the inside walls of the container are preferably approximately 1.5 times the height of the ribs. It is preferable that the end of the supply pipe is within this range. By doing so, the neighborhood of the porous material adjacent to the supply pipe end where the pressure is made uniform, rather than the stabilized region M, assuredly supplies the ink to the recording head.




It is preferable that the porous material in the region adjacent to the end of the supply pipe is connected to the stabilized region M. In the embodiment of

FIG. 12

, similarly to the foregoing embodiment, the ribs


260


and


270


are provided on the internal wall of the ink container


1


to provide a space communicating with the ambience. However, the configuration is different. In this embodiment, the porous material


2


in the ink container


1


is out of contact at the area which is not less than 15% of the total surface area in the ink container, by which the formed non-contact spaces communicate with the ambience. The ribs


2600


and


270


are integrally formed with the ink container. Therefore, the ink can be stably supplied without influence by the frequency of ejection, by the reduction of the flow resistance. By the provision of the ribs as shown in

FIG. 12B

(cross-sections along A—A and B—B), the porous material is kept out of contact with the internal wall of the ink container, so that the space or spaces communicating with the ambience can be assured. As shown in the cross-section B—B, when the ribs are formed as if they would block the flow of the air, due to the convenience of the molding, the ribs are provided with grooves so as to prevent the space from being closed by the absorbing material into an independent space. The width and depth of the grooves is selected in accordance with the mechanical property of the absorbing material. As shown in

FIG. 12E

, in this embodiment, the rear space of the head


4


(approximately 3%) contains the absorbing material


2


, as in the conventional structure, but as a whole, more than 15% of the inside surface area of the ink container is out of contact with the absorbing material


2


, and therefore the above-described effects can be provided.





FIG. 11

shows the ejection properties in this case. If the non-contact area is 3%, the usable frequency decreases. By the reduction of the frequency, the amount of ejection extremely decreases with the result of degraded print quality (FIG.


11


A). Upon high duty required, the ejection does not follow properly with the result of ejection failure in some cases. However, by increasing the area open to the ambience, the flow of the ink in the absorbing material is made easier. As shown in

FIG. 11B

, if it is not less than 15%, the adverse affect to the ejection can be prevented. The position of the non-contact area is not limiting. Therefore, the above-described structure can be provided at the side surfaces, top surface and bottom surface, so as to communicate with the air vent port so as to assure the area open to the ambience. The area not less than 15% communicating with the ambience is preferably employed in the structure described in conjunction with

FIGS. 1-6

.





FIGS. 7-10

show other embodiments.




In

FIG. 8

, radial ribs


30


are formed on the top inside surface of the ink container from the air vent. With this structure, the ratio of the air existing at the central region and the marginal region of a large absorbing material can be adjusted.




In

FIG. 9

embodiment, columnar projections are provided.




In

FIG. 10

, parts having channel-like configuration are bonded to the inside surface of the container. By doing so, the non-contact area can be increased.




In

FIG. 7A

, it will be understood that if the absorbing material provides very limited communication with the ambience, the air passage is constituted immediately after the start of the use, through the minimum distance toward the ink supply pipe


2200


, and therefore, most of the ink retained in the absorbing material is not consumable.

FIGS. 7B and 7C

illustrates the formation of the air passage. As described in the foregoing, utilizing the rear space required for unifying the ink jet head and the ink container, a projection for the air vent is formed. The inside of the projection constitutes a cavity functioning as an atmospheric pressure supplying space or cavity


1402


for the entire thickness of the porous material. As compared with the case of

FIG. 7A

, the cavity


1402


is effective to make uniform the ink supply in the thickness direction. In addition, the atmospheric pressure supply space or cavity


20


at the rear of the head


4


, is effective to disperse the air expansion as far as the corner portions remote from the supply pipe, so that the ink most remote from the supply pipe can be consumed. In addition, when the region


21


outside the region defined by the minimum distance r between the supply region and the region communicating with the ambience is communicating with the ambience, the ink supply (air expanding) route


22


can be formed, and therefore, the ink retained in the porous material


2


can be assuredly supplied to the head


4


.




In

FIG. 7C

, the ink supply region and the air supply region are disposed in the opposed relation, and therefore, the outside region is adjacent the lateral sides


211


and


222


, and therefore, the regions


211


and


222


are made communicating with the ambience.





FIG. 13

shows a sectional view of a liquid jet recording head, wherein the inside pressure of the ink container is reduced, and the ink is filled totally through the supply port


1200


. Then, the ink is completely filled in the porous material


902


. Next, a discharge port


1401


is opened with the supply port closed, and the excessive ink over a predetermined amount of ink is taken out through the discharge port (air vent). By doing so, at the supply port side, the ink remains as long as the porous material can retain it. The discharge port


1401


side ink is first removed. The region is indicated by reference numeral


901


. By doing so, the ink can be distributed more at the supply port side.





FIG. 14

is a side view of a liquid jet recording head, wherein the distance between the supply port


1200


and the discharge port


1401


is as large as possible in the recording head. The inventors' experiments have revealed that








l




1




/l




2


≧0.7






is preferable.




If this is satisfied, the ink adjacent to the supply port


1200


is not removed, so that the ink remains adjacent the supply port. Then, the quantity of ink which can be supplied to the recording head increases. Alternatively, the ink may be supplied through the ejection outlets back into the container with the discharge part


1401


opened. Then, the similar distribution of the ink can be provided.




According to this embodiment, the percentage of the consumable ink is approximately 80% of the injected ink, so that the number of prints provided by the same dimension recording head is increased. If the number of prints is the same, the size of the ink jet recording head can be reduced.




The present invention is particularly suitably usable in a bubble jet recording head and recording apparatus developed by Canon Kabushiki Kaisha, Japan. This is because, the high density of the picture element, and the high resolution of the recording are possible.




The typical structure and the operational principle are preferably those disclosed in U.S. Pat. Nos. 4,723,129 and 4,740,796. The principle is applicable to a so-called on-demand type recording system and a continuous type recording system. Particularly however, it is suitable for the on-demand type because the principle is such that at least one driving signal is applied to an electrothermal transducer disposed on a liquid (ink) retaining sheet or liquid passage, the driving signal being enough to provide such a quick temperature rise beyond a departure from nucleation boiling point, by which the thermal energy is provided by the electrothermal transducer to produce film boiling on the heating portion of the recording head, whereby a bubble can be formed in the liquid (ink) corresponding to each of the driving signals. By the development and collapse of the the bubble, the liquid (ink) is ejected through an ejection outlet to produce at least one droplet. The driving signal is preferably in the form of a pulse, because the development and collapse of the bubble can be effected instantaneously, and therefore, the liquid (ink) is ejected with quick response. The driving signal in the form of the pulse is preferably such as disclosed in U.S. Pat. Nos. 4,463,359 and 4,345,262. In addition, the temperature increasing rate of the heating surface is preferably such as disclosed in U.S. Pat. No. 4,313,124.




The structure of the recording head may be as shown in U.S. Pat. Nos. 4,558,333 and 4,459,600 wherein the heating portion is disposed at a bent portion in addition to the structure of the combination of the ejection outlet, liquid passage and the electrothermal transducer as disclosed in the abovementioned patents. In addition, the present invention is applicable to the structure disclosed in Japanese Laid-Open Patent Application Publication No. 123670/1984 wherein a common slit is used as the ejection outlet for plural electrothermal transducers, and to the structure disclosed in Japanese Laid-Open Patent Application No. 138461/1984 wherein an opening for absorbing pressure waves of the thermal energy is formed corresponding to the ejecting portion. This is because, the present invention is effective to perform the recording operation with certainty and at high efficiency irrespective of the type of the recording head.




The present invention is effectively applicable to a so-called full-line type recording head having a length corresponding to the maximum recording width. Such a recording head may comprise a single recording head and plural recording heads combined to cover the entire width.




In addition, the present invention is applicable to a serial type recording head wherein the recording head is fixed on the main assembly, to a replaceable chip type recording head which is connected electrically with the main apparatus and can be supplied with the ink by being mounted in the main assembly, or to a cartridge type recording head having an integral ink container.




The provision of the recovery means and the auxiliary means for the preliminary operation are preferable, because they can further stabilize the effect of the present invention. As for such means, there are capping means for the recording head, cleaning means therefor, pressing or suction means, preliminary heating means by the ejection electrothermal transducer or by a combination of the ejection electrothermal transducer and additional heating element and means for preliminary ejection not for the recording operation, which can stabilize the recording operation.




As regards the kinds of the recording head mountable, it may be a single head corresponding to a single color ink, or may be plural heads corresponding to the plurality of ink materials having different recording colors or densities. The present invention is effectively applicable to an apparatus having at least one of a monochromatic mode mainly with black and a multi-color mode with different color ink materials and a full-color mode by the mixture of the colors which may be an integrally formed recording unit or a combination of plural recording heads.




Furthermore, in the foregoing embodiment, the ink has been liquid. It may be, however, an ink material solidified at the room temperature or below and liquefied at the room temperature. Since in the ink jet recording system, the ink is controlled within the temperature not less than 30° C. and not more than 70° C. to stabilize the viscosity of the ink to provide the stabilized ejection, in usual recording apparatus of this type, the ink is such that it is liquid within the temperature range when the recording signal is applied. In addition, the temperature rise due to the thermal energy is positively prevented by consuming it for the state change of the ink from the solid state to the liquid state, or the ink material is solidified when it is left is used to prevent the evaporation of the ink. In either of the cases, the application of the recording signal producing thermal energy, the ink may be liquefied, and the liquefied ink may be ejected. The ink may start to be solidified at the time when it reaches the recording material. The present invention is applicable to such an ink material as is liquefied by the application of the thermal energy. Such an ink material may be retained as a liquid or solid material in through holes or recesses formed in a porous sheet as disclosed in Japanese Laid-Open Patent Application No. 56847/1979 and Japanese Laid-Open Patent Application No. 71260/1985. The sheet is faced to the electrothermal transducers. The most effective one for the ink materials described above is the film boiling system.




The ink jet recording apparatus may be used as an output terminal of an information processing apparatus such as computer or the like, a copying apparatus combined with an image reader or the like, or a facsimile machine having information sending and receiving functions.




As described in the foregoing, according to an aspect of the present invention, not less than 15% of the inside surface area of the ink container communicates with the ambience. Then, good ink ejection property can be assured without decrease of the response frequency.




According to another aspect of the present invention, the inner side surfaces of the container remote from the end of the supply pipe by a distance larger than the minimum distance between a cavity adjacent the air vent opening and the end of the supply pipe, is provided with ribs to provide adjacent them non-contact portion between the inner surface of the container and the porous material. The ink can be consumed efficiently.




According to a further aspect of the present invention, the ink in the ink container can be efficiently consumed.




According to a further aspect of the present invention, the improved method of ink filling can be provided.




While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.



Claims
  • 1. An ink container for ink jet printing comprising:a casing; an air vent, said air vent being located in said casing; an ink supply opening provided in said casing for supplying an ink out of said casing; an ink absorbing material contained in said casing, said ink absorbing material producing negative pressure and thereby retaining ink therein, said ink absorbing material having a generally rectangular parallelopipedal shape defined by a plurality of sides of said ink absorbing material, said ink absorbing material having an ink supply portion for supplying the ink to said ink supply opening and having a plurality of corner portions, each said corner portion being located between adjacent two said sides of said ink absorbing material; and preventing means for preventing complete surface contact between said casing and said ink absorbing material by provision of at least one cavity between said casing and said ink absorbing material, said cavity extending adjacent to a particular one of said corner portions that is most remote from said ink supply portion, said air vent being in air communication with said cavity, wherein said cavity is not in air communication with said ink supply opening.
  • 2. An ink container for ink jet printing according to claim 1, wherein said cavity is formed to apply an ambient pressure substantially over an entire thickness of the ink absorbing material.
  • 3. An ink container for ink jet printing according to claim 2, wherein said ink supply opening supplies said ink to a recording head comprising thermal energy generating means for causing film boiling of said ink.
  • 4. An ink container for ink jet printing as in claim 1 andan ink ejection portion for ejecting the ink.
  • 5. An ink container for ink jet printing according to claim 1, wherein said cavity is at least 15% of an entire internal volume of the ink container.
Priority Claims (3)
Number Date Country Kind
1-241043 Sep 1989 JP
1-241044 Sep 1989 JP
2-048177 Feb 1990 JP
Parent Case Info

This application is a continuation of application Ser. No. 08/058,754 filed May 7, 1993, now abandoned, which was a division of application Ser. No. 08/583,136, filed Sep. 17, 1990, now U.S. Pat. No. 5,237,342.

US Referenced Citations (26)
Number Name Date Kind
4306245 Kasugayama et al. Dec 1981
4313124 Hara Jan 1982
4345262 Shirato et al. Aug 1982
4419677 Kasugayama et al. Dec 1983
4459600 Sato et al. Jul 1984
4463359 Ayata et al. Jul 1984
4530611 Borcenk et al. Jul 1985
4558333 Sugitani et al. Dec 1985
4600927 Sugitani Jul 1986
4689642 Sugitani Aug 1987
4723129 Endo et al. Feb 1988
4740796 Endo et al. Apr 1988
4771295 Baker et al. Sep 1988
4931811 Cowger et al. Jun 1990
4968998 Allen Nov 1990
5025271 Baker et al. Jun 1991
5051759 Karita et al. Sep 1991
5119115 Buat et al. Jun 1992
5148192 Izumida et al. Sep 1992
5148203 Hirano Sep 1992
5155502 Kimura et al. Oct 1992
5156472 Suzuki et al. Oct 1992
5162818 Karita et al. Nov 1992
5182581 Kashimura et al. Jan 1993
5187497 Hirano et al. Feb 1993
5189443 Arashima et al. Feb 1993
Foreign Referenced Citations (10)
Number Date Country
3401071 Jul 1985 DE
0139508 May 1985 EP
0178887 Apr 1986 EP
0261764 Mar 1988 EP
0320165 Jun 1989 EP
54-56847 May 1979 JP
55-42874 Mar 1980 JP
59-123670 Jul 1984 JP
59-138461 Aug 1984 JP
60-71260 Apr 1985 JP
Non-Patent Literature Citations (2)
Entry
Official Search Report for Eur. Pat. Appln. No. 93202399.7.
Official Search Report for Eur. Pat. Appln. No. 93202400.3.
Continuations (1)
Number Date Country
Parent 08/058754 May 1993 US
Child 08/441666 US