This invention relates, in one embodiment, to a iris control for a luminaire. The iris control is comprised of an inner ring and an outer ringer with vented spaces between such rings. The vented spaces promote cooling of the iris control.
Head-mounted lights are widely used in many fields, including surgery and dentistry. Such a headlight, also known as an luminaire, is used to illuminate the surgical work area, but leaves the hands of the surgeon free to perform the surgery. Examples of surgical luminaire include U.S. Pat. Nos. 4,104,709 to Kloots (Surgeons Headlight with Continuously Variable Spot Size); 4,234,910 to Price (Head-Supported Illumination Device); 4,616,257 to Kloots et al. (Headlight); 5,355,285 to Hicks (Surgeon's Headlight System); 5,430,620 to Li et al. (Compact Surgical Illumination System Capable of Dynamically Adjusting the Resulting Field of Illumination); 5,667,291 and RE39,162 to Caplan et al. (Illumination Assembly for Dental and Medical Applications); 5,709,459 to Gourgouliatos et al. (Surgical Luminaire); 5,769,523 to Feinbloom (Surgical Headlamp with Dual Aperture Control); 6,908,208 to Hyde et al. (Light to be Worn on Head); and 7,134,763 to Klootz (Illumination for Coaxial Variable Spot Headlight). While the medical industry has greatly benefited from the introduction of such headlamps, current lighting systems suffer from a number of deficiencies.
One such deficiency is the heat generated within the luminaire. Since the luminaire is disposed near the surgeon's forehead, the heat generated by the lamp is a cause for concern. Moreover, many luminaire contain an iris that permits the surgeon to adjust the size of the illuminated spot by controlling the degree of dilation or constriction of the iris. The degree of dilation or constriction of the iris is controlled by an iris controller which is mounted on the external surface of the luminaire housing. Unfortunately this controller, which must often be touched by the surgeon to control the iris, is often extremely hot—so much so that the beat may cause the surgeon to experience discomfort during adjustment of the iris. While several solutions to this problem have been attempted in the prior art, none has proven entirely satisfactory.
One complicating factor that must be considered when addressing this problem is the desirability of producing a small, lightweight luminaire. Since medical luminaire are typically attached to a surgeon's head, the size of the device is preferably small, such that the vision of the surgeon is not negatively impacted. Additionally, the luminaire must be lightweight, such that the surgeon will not find the weight of the device distracting. A compact luminaire with a cooled iris controller is desired.
The invention comprises, in one form thereof, a luminaire with a vented iris controller disposed on the external surface of the housing of the luminaire. The controller is for dilating and constricting the iris, wherein the iris controller is comprised of a hollow cylinder, rotatable relative to the housing. The cylinder has an inner ring and an outer ring, wherein the inner ring and outer ring are connected by a plurality of braces and vented spaces are present between each of the braces.
An advantage of the present invention is that the vented spaces keep the outer ring cool, which facilitates operation of the iris control by a user.
The present invention is disclosed with reference to the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The examples set out herein illustrate several embodiments of the invention but should not be construed as limiting the scope of the invention in any manner.
Referring to
Referring again to
As shown in
As heat is transferred from the inner ring 308 to the air, the hot air rises and is carried away from iris controller 106. Advantageously, the axis of rotation 306 is substantially coaxial with respect to the longitudinal axis 202 of housing 102 (see
The advantageous features described above were subjected to testing by obtaining temperature measurements along the external surface of the iris controller 106. The temperature was taken at point 500, as shown in
Referring to
As shown, the temperature rapidly rose within the first fifteen minutes of activating the light. The non-vented control test achieved a temperature of approximately 82° C. (point 500) after sixty minutes. The vented embodiment achieved a temperature of approximately 69° C. (point 500). Inclusion of the vented spaces 108 thus afforded a temperature advantage of approximately 13° C.
Referring to
As shown, the temperature rapidly rose within the first fifteen minutes of activating the light. The non-vented control test achieved a temperature of approximately 66° C. (point 500) after sixty minutes. The vented embodiment achieved a temperature of approximately 63° C. (point 500). Inclusion of the vented spaces 108 thus afforded a temperature advantage of approximately 5° C. It is noteworthy that the temperature of the iris controller 106 decreases as the iris 200 is dilated. As more light energy is allowed to pass through the housing 102, less of such light energy is converted into heat. As the iris 200 is further dilated, the temperature advantage provided by the vented spaces 108 continues to diminish (see
Referring to
As shown, the temperature rapidly rose within the first fifteen minutes of activating the light. The non-vented control test achieved a temperature of approximately 61° C. (point 500) after sixty minutes. The vented embodiment achieved a temperature of approximately 55° C. (point 500). Inclusion of the vented spaces 108 thus afforded a temperature advantage of approximately 5° C.
Referring to
As shown, the temperature rapidly rose within the first fifteen minutes of activating the light. The non-vented control test achieved a temperature of approximately 44° C. (point 500) after sixty minutes. The vented embodiment achieved a temperature of approximately 47° C. (point 500). The temperature advantage provided by the vented spaces is modest when the iris is extremely dilated and the temperature of the iris controller 106 is relatively low.
Referring to
As shown, the temperature rapidly rose within the first fifteen minutes of activating the light. The non-vented control test achieved a temperature of approximately 40° C. (point 500) after sixty minutes. The vented embodiment achieved a temperature of approximately 44° C. (point 500). Again, the temperature advantage provided by the vented spaces is modest when the iris is extremely dilated and the temperature of the iris controller 106 is relatively low.
While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof to adapt to particular situations without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope and spirit of the appended claims.