The object of the present invention is a disc brake for vehicles, particularly motor vehicles.
Brakes in general, and disc brakes in particular, are able to slow down and/or stop the vehicle by converting the kinetic energy thereof into thermal energy by means of friction phenomena between disc and pads. For this reason, in order to maintain the efficacy of the same brakes, it is important that disc and pads are not overheated. Therefore, it is important to achieve an efficient dispersion of heat in the environment.
In this regard, brake discs are known to comprise a pair of plates being put in a side-by-side relationship which, in turn, comprise outer friction surfaces and inner ventilation ducts.
The plates are typically mutually coupled by connecting members, which can be pillars or tongues. The shape of such connecting members dictates the shape of the disc ventilation ducts.
Such discs are not free from drawbacks, while being widely appreciated.
In fact, it has been noted that the venting of the disc which is obtained with the duct of the known type is not optimized, and that the resulting dispersion of heat is not entirely efficient.
The object of the present invention is to devise and provide a brake disc which allows at least partially obviating the drawbacks cited herein-above with reference to the prior art.
Particularly, the task of the present invention is to provide a brake disc comprising ventilation ducts which allow an optimized venting and a maximally efficient dispersion of heat.
Such object, and such tasks, are achieved by the brake discs in accordance with the annexed independent claims.
Further characteristics and the advantages of the brake disc according to the invention will be understood from the description set forth below of preferred exemplary embodiments, given by way of non-limiting example, with reference to the annexed Figures, in which:
With reference to the above-mentioned Figures, a brake disc according to the invention has been generally designated with 1.
The brake disc 1 according to the invention comprises two parts which share a rotation axis X. A first part, the support cap 2, is intended to be connected to the wheel hub of a vehicle, while the remaining peripheral part, braking band 3, is intended to cooperate with the disc brake calipers in order to exert a braking action on the vehicle.
The braking band 3 is, in a manner known per se, of the ventilated type. The ventilated band comprises two plates 31 and 32 that are connected by a plurality of connecting members 33. The connecting members 33 define ventilation ducts 34 for the cooling air.
In the disc brake according to the present invention, a plurality of connecting members 33 having different shapes and/or dimensions is arranged according to a module M which repeats itself an integral number of times along the braking band 3.
With reference to the brake disc 1, and to the rotation axis X thereof:
“Axial” means any directions parallel to said axis X;
“Radial” means any directions perpendicular to the axis X and incident therewith; and
“Circumferential” or “tangential” means the direction of any circumferences centred on said axis X and lying on a plane normal thereto, or the direction of a tangent thereof.
The braking band 3, as schematically indicated in
In accordance with the embodiments of
Herein and after, by the term “tongue” is meant a structure having a thin and enlarged cross-section.
Relatively to the section of a tongue 40 that is provided in the brake disc 1 median plane, for example the one seen in
In accordance with some embodiments, the tongue median line L is curved. The curved median line L can have (see, for example,
Relatively to the section of a tongue 40, it is possible to define also a chord Co. Such chord Co can for example be defined as the straight line segment which joins the centres of the circumferences inscribed in the profile of the two tongue ends. Such circumferences are represented in
The tongues 40 can have different lengths according to specific requirements; in any case, they extend along the median line L by a considerably greater length than they extend transversally thereto. In other terms, there is a big difference between the median line L length and the average diameter of the circumferences inscribed in the tongue profile.
The median line L extends preferably in the radial direction and, often by a lesser extent, in the tangential direction. In other terms, the chord Co of a tongue preferably forms an angle relative to any radial directions passing through the tongue.
The tongue 40 is connected in a continuous manner to each of the two plates 31 and 32. Preferably, the connection between tongue 40 and plates 31 and 32 is carried out by a radius, well seen in
The tongues 40 are preferably arranged in arrays along the braking band 3 circular crown.
How it will be appreciated by those skilled in the art, the tongues are configured and arranged in a manner essentially comparable to that of the vanes of a centrifugal turbo machine, in which the fluid flow has a direction which is locally essentially parallel to the vanes median line L.
In accordance with the embodiment of
Herein and below, a module M is arbitrarily defined, and reference is made to such module in order to facilitate the description of the tongues and the arrangement thereof. It will be appreciated by those skilled in the art that each module M can be defined in a different manner as much arbitrarily, but this does not involve any changes in the characteristics of the tongues and the arrangement thereof.
The long tongue 401 extends from the proximity of the outer circumference Ce to the proximity of the inner circumference Ci, while the short tongue 402 extends from the proximity of the outer circumference Ce to an intermediate circumference C1.
It shall be noted from
The tongues 401 and 402 of the module M1 are curved and have a mutually co-directional concavity, oriented towards the direction R of the disc preferred rotation.
The module M1 of the embodiment in
In accordance with the embodiment of
The long tongue 411 essentially extends from the outer circumference Ce to the inner circumference Ci, while the short tongue 412 essentially extends from the outer circumference Ce to an intermediate circumference C2.
It shall be noted from
The long tongue 411 comprises a window 511. By the term “window” is meant, herein and below, an opening, provided in the tongue 40, which has lower dimensions than those of the same tongue, particularly axial extension. Therefore, in such embodiment, as it can be clearly seen in
The window 511 is located along the long tongue 411, so as to fully face the short tongue 412.
The module M2 tongues 411 and 412 are curved and have a mutually co-directional concavity, oriented towards the direction R of the disc preferred rotation.
The module M2 of the embodiment of
In accordance with the embodiment of
The long tongue 421 essentially extends from the outer circumference Ce to the inner circumference Ci. The successive lesser tongues essentially extend from the outer circumference Ce to other intermediate circumferences. Particularly, the medium-long tongue 424 extends up to a circumference C3 slightly larger than the inner circumference Ci; the medium-short tongues 422 and 426 extend up to a circumference C4 slightly larger than C3; and the short tongues 423, 425 and 427 extend up to the circumference C5 slightly larger than C4.
It shall be noted from
In accordance with the embodiment represented in
The medium-long tongue 424 window 524 is the radially innermost one; it is located in the proximity of the circumference C3; therefore, it is located in the proximity of the radially innermost end of the same tongue. For this reason, the tongue 424 window 524 is surrounded by a frame 420 only on three sides, while the fourth side is open.
As regards the successive tongues, as stated above, the short tongue 425 does not comprise any windows. The medium-short tongue 426 comprises a window 526 located in a position similar to that of the short tongue 423 window 523. Finally, the short tongue 427 comprises a window 527 located in a position similar to that of the medium-short tongue 422 window 522.
All the tongues of the module M3 are curved and have a co-directional concavity, oriented towards the direction R of the disc preferred rotation.
The module M3 of the embodiment of
In accordance with the embodiment of
Again, in accordance with the represented embodiment, in the radially inner array of the module M4: long tongue 441, and four medium-long tongues 442, 443, 444, and 445 are placed one after the other in strict order.
The tongues of the radially outer array extend from the outer circumference Ce to the proximity of an intermediate circumference C6. The tongues of the radially inner array extend from the proximity of the intermediate circumference C6 in a radially inner direction. Particularly, the long tongue 441 extends from the proximity of the intermediate circumference C6 to the inner circumference Ci.
It shall be noted from
In accordance with the embodiment illustrated in
All the module M4 tongues are curved and have a co-directional concavity, oriented against the direction R of the disc preferred rotation.
The module M4 of the embodiment of
In accordance with the embodiment of
Furthermore, in accordance with the represented embodiment, the median line L of each pillar is rectilinear. Therefore, in the case of the pillars represented in
In accordance with the represented embodiment, the pillars 60 are arranged on three arrays, and repeat themselves according to a module M5.
In accordance with the represented embodiment, in the radially inner array of the module M5 there is only one short lozenge pillar 631.
In the radially intermediate array of the module M5, four lozenge pillars 620 follow one another. The lozenge pillars 620 of
Again, in the radially outer array of the module M5 four teardrop pillars 610 follow one another. The teardrop pillars 610 of
The short lozenge pillar 631 of the radially inner array extends from the inner circumference Ci outwardly up to the proximity of a circumference C8. The radially outer array pillars extend from the outer circumference Ce inwardly up to the proximity of a circumference C9. The medium lozenge pillars 621 and 624 of the intermediate array extend from the proximity of the circumference C9 inwardly up to the proximity of the circumference C8. The long lozenge pillars 622 and 623 of the intermediate array extend from the proximity of the circumference C9 inwardly up to beyond the circumference C8.
It shall be noted from
In accordance with the embodiment represented in
Furthermore, the short lozenge pillar of the radially inner array is offset relative to the lozenge pillars of the intermediate array, and it is aligned relative to a teardrop pillar of the radially outer array. In other terms, the outward extension of the short lozenge pillar 631 median line L perfectly overlaps the median line of a teardrop pillar 610 belonging to the radially outer array.
The module M5 of the embodiment of
The particular arrangements of the connecting members 33 described above allow achieving, in the brake disc 1 according to the invention, ventilation ducts 34 which allow an optimized venting and a maximally efficient dispersion of heat.
With reference to the
Particularly,
It shall be noted in
Instead, the roots 71 serve to anchor dragging member to braking band and to convey the braking forces exerted by friction on the two plates 31 and 32, so as to bring them to the projections 72, in order to subsequently transmit them to the cap 2.
The dragging members roots 71 according to the invention are of a particular shape which can be defined as “Y” or “T” shape, which is described in more detail below.
As it shall be noted in
In accordance with an embodiment, the dragging members 70 comprise a widening in the axial direction of the section in the proximity of the roots 71, where they fit onto the braking band 3. Such widening allows fitting the dragging members on both the plates 31 and 32.
That the dragging members 70 fit on both the plates 31 and 32 affords a considerable structural advantage relative to other known solutions, in which the dragging members fit on only one plate. In fact, fitting on both the plates allows to the dragging members combining the stresses generated on the individual plate by the braking action, without the need to transmit such stresses from a plate to the other through the connecting members 33. In this manner, the connecting members 33, for example, tongues 40 or pillars 60, can be dimensioned, from a structural point of view, in order to resist only to the compressive force exerted by the caliper during the braking action. From a structural point of view, in the brake disc 1 according to the invention, no other transmission of forces is required to the connecting members 33.
Another criterion underlying the design of the connecting members 33, whether they are tongues 40 or pillars 60, is the definition of the brake disc 1 ventilation ducts 34.
From the fluid-dynamic point of view, it shall be appreciated how the particular configuration of the dragging members 70 allows letting free access to the circulation of air inside all the ventilation ducts 34. Particularly, the Y- or T-shaped trend of the roots 71, in the axial direction as well as the tangential direction, allows anchoring the dragging members 70 to the braking band in a structurally firm and efficient manner, while letting free access to the ventilation ducts 34 for the cooling air.
Such solution is preferred to other known solutions, in which the individual dragging member 70 extends until the same root thereof becomes a connecting member (pillar or tongue). In such type of known solution, in fact, the structural need and the fluid-dynamic needs come into conflict.
Particularly, in such known solution, the widening of the dragging member 70 root compromises the access of air to the ventilation duct, which is radially aligned to the same dragging member 70. On the contrary, in the same known solution, a dragging member 70 which does not provide any widening to the root compromises the efficient transmission of forces between braking band and dragging member 70.
Instead, the solution according to the invention allows, as regards the dragging members 70, advantageously separating the structural functions from the fluid-dynamic ones.
To the embodiments of the brake disc described above, those skilled in the art, in order to meet contingent needs, will be able to make modifications, adaptations, and replacements of members with others which are functionally equivalent, without departing from the scope of the following claims. Each of the characteristics described as belonging to a possible embodiment can be implemented independently from the other embodiments described.
Number | Date | Country | Kind |
---|---|---|---|
MI2007A000881 | May 2007 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IT08/00296 | 4/30/2008 | WO | 00 | 4/29/2010 |