Embodiments of the present disclosure relate generally to the field of fuses, and more particularly to a ventilated fuse housing.
Fuses are commonly used as circuit protection devices. A fuse can provide electrical connections between sources of electrical power and circuit components to be protected. One type of fuse, commonly referred to as a “bolt down” or “strip” fuse, includes a fusible element disposed within a hollow fuse body. Planar conductive terminals may extend from opposite ends of the fusible element and may protrude from the fuse body to provide a means of connecting the fuse between a source of power and a circuit component that is to be protected.
Bolt down fuses are commonly used in automotive applications where higher voltage ratings are necessary. Upon an occurrence of a specified fault condition in a circuit, such as an overcurrent condition, the fusible element of a bolt down fuse may melt or otherwise separate to interrupt current flow in the circuit path. Portions of the circuit are thereby electrically isolated and damage to such portions may be prevented or at least mitigated.
When a fuse element melts, the fuse element material quickly vaporizes during the arcing portion of the fuse opening, and a high amount of energy is quickly released, building high pressure inside the fuse body. This amount of energy release, and the pressure generated, increases as the circuit voltage is increased. If the pressure is not sufficiently relieved, the fuse body may rupture which is an unacceptable condition in most industry standards for fuse performance. A fuse housing design must be strong enough to withstand high pressure during element arcing, but still allow the pressure to safely dissipate without rupturing. The manufacturing technique of ultrasonic welding housing pieces together is efficient, low cost, and enables a very strong finished housing that is capable of withstanding relatively high internal pressures. However, this technique may effectively seal the interior of a fuse body and prevent gas from escaping therefrom, increasing the likelihood of rupture in the event of a fault condition.
It is with respect to these and other considerations that the present improvements may be useful.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended as an aid in determining the scope of the claimed subject matter.
An exemplary embodiment of the present invention is a fuse comprising a housing including a first housing part and a second housing part that are joined together to define a cavity. A fuse element is disposed within the cavity. A first terminal extending from a first end of the fuse element and out of the housing, and a second terminal extending from a second end of the fuse element and out of the housing. The housing has a vent channel extending from an outer surface of the housing to the cavity for allowing vapor to escape from the cavity.
An exemplary embodiment of the present invention is a fuse housing comprising a first housing part and a second housing part that are joined together to define a cavity. A vent channel extending from an outer surface of the housing to the cavity for allowing vapor to escape from the cavity.
An exemplary method for forming a fuse according to the present invention comprises joining a first housing part to a second housing part to form a housing that defines a cavity, and providing the housing with a vent channel extending from an outer surface of the housing to the cavity for allowing vapor to escape from the cavity.
By way of example, specific embodiments of the disclosed device will now be described, with reference to the accompanying drawings, in which:
A fuse in accordance with the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings, in which certain exemplary embodiments of the fuse are presented. The fuse may be embodied in many different forms and is not to be construed as being limited to the embodiments set forth herein. These embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the fuse to those skilled in the art. In the drawings, like numbers refer to like elements throughout unless otherwise noted.
In some embodiments, the terminals 110, 115 may have respective connection holes 125, 135. For example, the connection hole 125 is disposed at the first end 120, and the connection hole 135 is disposed at the second end 130. The connection holes 125, 135 may be configured to physically and electrically connect the fuse 100 to a source of power and a circuit component. For example, the holes 125, 135 may be configured to receive a bolt or post. The holes 125, 135 may be circular, for example, to receive a standard bolt or post. However, the holes 125, 135 may be configured in any shape to receive any shape bolt, post, or other retaining/connecting structure.
The terminals 110, 115 are configured to electrically connect the fuse to a source of power (not shown) and a circuit component to be protected (not shown). The fuse element 160, described in detail below, bridges and electrically connects the terminals 110, 115. In some embodiments, the fuse element 160 may be made from the same conductive material as the terminals 110, 115 as described above, including for example, copper, tin, silver, zinc, aluminum. In other embodiments, the terminals 110, 115 may be made from a different material than fuse element 160. The fuse element 160 may be any known configuration for providing a circuit interrupt, including but not limited to a wire, a metal link, and an element shaped into multiple bends and/or curves. Various techniques are known for forming the terminals 110, 115 and the fuse element 160 together, including, but not limited to, stamping, cutting, and printing, and can include forming the fuse element 160 and the terminals 110, 115 separately or as one piece. If the fuse element 160 and the terminals 110, 115 are formed separately (i.e., in separate pieces), the pieces may subsequently be joined together using various techniques, including, for example, soldering, welding, and other known joining processes.
The housing 140 may be made from a variety of materials, including plastic, composite, epoxy, or the like. In some examples, the housing 140 may be formed around the fuse element 160. In some embodiments, the housing 140 may be a multi-part structure, and the fuse 100 can be assembled by connecting separate upper and lower housing parts 140a, 140b together around the fuse element 160, thereby positioning the fuse element 160 in a cavity 180 of the assembled housing 140. The cavity 180 may be a hollow space in the housing 140, such that cavity portions 180a, 180b are included in the upper and lower housing parts 140a, 140b, respectively. The housing 140 may be configured to support the fuse element 160 within the cavity 180 as described in detail below.
In some embodiments, the housing 140 may include a plurality of segments or parts that are joined together to define the cavity 180. For example, the housing 140 may include upper and lower housing parts 140a, 140b that may be joined together via an ultrasonic weld seam 102 to form a contiguous, substantially sealed body as further described below. It is envisioned that other welding or joining techniques may be used to join the housing parts upper and lower 140a, 140b together to create sealed juncture therebetween. Joining the upper and lower housing parts 140a, 140b together via ultrasonic welding facilitates expedient manufacturing of the housing 140 and provides a stronger juncture between the upper and lower housing parts 140a, 140b relative to other known assembly techniques (e.g., heat staking, riveting, etc.), and is more cost effective than such techniques.
During normal operation of the fuse 100, current flows from terminal 110 to terminal 115 through the fuse element 160 (or vice versa). During an abnormal condition (i.e., an overcurrent condition), the fuse element 160 may melt and separate, and an electrical arc may propagate between the separated ends of the fuse element 160. The electrical arc may vaporize portions of the fuse element 160, thus producing vapor that may significantly increase pressure within the housing 140. As described above, this increase in pressure may be particularly significant in high-voltage, automotive fuses in which a fuse element is rapidly vaporized. If the pressure within the housing 140 is not alleviated, it may cause the fuse 100 to rupture, which may result in damage to surrounding circuit elements. Thus, the housing 140 may be provided with vent channels 150a-d extending from the cavity 180 to one or more outer surfaces of the housing 140. Vaporized material and gas may escape the housing 140 by way of the vent channels 150a-d, thereby mitigating pressure buildup within the housing and reducing the likelihood of rupture during a fault condition. Specifically, vaporized material and gas may vent out of the housing 140 in the direction of arrows 155a-d shown in
While the fuse 100 is depicted as having four vent channels 150a-d disposed on adjacent sides of the housing 140, it is contemplated that the number, configuration, orientation, and sizes of the vent channels 150a-d may be varied without departing from the present disclosure. For example, the fuse 100 may alternatively be implemented with only two vent channels disposed on opposing sides of the housing 140 (e.g., with only vent channels 150a, 150c or with only vent channels 150b, 150d). The number, configuration, orientation, and sizes of the vent channels 150a-d may depend on various factors, including the voltage rating of the fuse 100, the size of the cavity 180, the environment in which the fuse 100 will be implemented, and manufacturing costs and processing times. The vents may be specifically oriented to minimize the impact of venting on adjacent or nearby components. For example, the vents may be designed to disperse the element vapor away from the fuse connection points, preventing the vapor from contaminating any reusable electrical terminals or wires.
One or more of the vent channels 150a-d may be defined by cavities or apertures formed in adjacent, abutting portions of the upper and lower housing parts 140a, 140b. For example, the vent channel 150a may be defined by an upper vent channel portion 150a′ formed in the upper housing part 140a and a lower vent channel portion 150a″ formed in the lower housing part 140b. When the housing 140 is assembled as shown in
The upper vent channel portions 150a′-d′ may be formed in a mating surface 190a of the upper housing part 140a, and the lower vent channel portions 150a″-d″ may be formed in a mating surface 190b of the lower housing part 140b. The upper and lower vent channel portions 150a′-d′, 150a″-d″ may extend from a respective surfaces 185a′-d′, 185a″-d″ to the cavity 180, thereby providing pathways for vapor to escape from the cavity 180. The upper vent channel portions 150a′-d′ and lower vent channel portions 150a″-d″ may be equal in length, width, and depth, so that the fuse 100 is generally symmetrical when the housing 140 is assembled, though this is not critical.
In some embodiments, the vent channel portions 150a′-d′, 150a″-d″ may include angled, curved, or otherwise tortuous and/or non-linear portions for allowing gaseous vapor to escape from the housing 140 while preventing debris and external contaminants from entering the housing 140. In other embodiments, one or more barriers may be formed in the vent channels 150a-d. For example,
In another embodiment, shown in
In embodiments, the vent channels 150a-d may be formed in portions of the housing 140 that are unlikely to be exposed to debris and environmental contaminants during use. Particularly, since fuses of the type disclosed herein are utilized in automotive and otherwise industrial environments, oil, lubricants, and dirt are typically present. The vent channels 150a-d may be formed in portions of the housing 140 such that when the fuse 100 is connected to a power source and a circuit component, it is unlikely that oil and/or dirt will migrate through the vent channels 150a-d into the cavity 180 so that the fuse element 160 remains free of contaminants.
As described above, the housing 140 may include upper and lower housing parts 140a, 140b which are assembled to form the fuse 100. As depicted, the upper and lower housing parts 140a, 140b may each include a cavity 180a, 180b. The cavities 180a, 180b may define a space to receive the fuse element 160. The cavities 180a, 180b may be hollow spaces in the upper and lower housing parts 140a, 140b.
In embodiments, as shown in
The clearances 145a, 145b may be configured to allow the terminals 110, 115 to pass through the housing 140 when the housing 140 is assembled. That is, when the upper housing part 140a is assembled with the lower housing part 140b, the clearances 145a, 145b may allow the terminals 110, 115 to extend outside of the housing 140 to facilitate electrical connection of the fuse 100 to a power source and circuit component.
The terminals 110, 115 may additionally have alignment holes 165a-d. The alignment holes 165a-d may be configured to align with alignment portions 170a″-d″ of the housing 140b when the fuse 100 is assembled. For example, the alignment portions 170a″-d″ on lower housing part 140b are configured to align with respective receiving alignment portions 170a′-d′ on housing 140a. The complementary alignment portions 170a′-d′ and 170a″-d″ may be configured to snap together, and/or provide space for an adhesive (e.g., epoxy or the like) to secure the housing 140 once assembled. In embodiments, the alignment portions 170a′-d′ and 170a″-d″ may be posts and holes, respectively, so that the posts fit into the holes to secure the upper and lower housing 140a, 140b. Although
The housing 140 may further include alignment blocks 175a″-d″ and receiving portions 175a′-d′. The alignment blocks 175a″-d″ provide precise alignment between the upper and lower housing parts 140a, 140b, so that when the housing 140 is assembled, for example, by ultrasonic welding, the housing 140 is tightly connected to provide a sealed fuse. The alignment of the terminals 110, 115 and fuse element 160 within the housing 140 by alignment portions 170a′-d′ and 170a″-d″ ensures that the fuse element 160 is properly positioned within the cavity 180 so that arcing can occur in response to an overcurrent event. Precise alignment of the fuse components provides for a better seal of the housing 140 when assembled around the fuse element 160. A properly assembled fuse provides higher reliability for users in that the fuse will protect circuit components in the event of an overcurrent condition. Attaching the housing components together over the relatively large area provided by the alignment blocks also gives greater mechanical strength than a design which relies on pins alone.
As described above, the fuse element 160 may include at least one curvature. The fuse element 160 may be formed in any shape that can be housed within the cavity 180 of the housing 140.
When an overcurrent and/or overvoltage condition occurs, the fuse element 160 melts and vaporizes as described above. The vaporized material 410 is expelled from the housing 140 via vent channels 150a-d in the direction of arrows 155a-d to relieve internal pressure of the cavity 180.
Referring to
At step 505 one or more vent channels are formed in a fuse housing. A portion of the vent channel may be formed in each of the upper housing part and a lower housing part, so that when the housing is assembled, the vent channel portions are aligned. The vent channels are formed from an outer surface of the fuse housing to the internal cavity of the fuse housing, such that vaporized material and air can escape the cavity to reduce internal pressures during arcing in an overcurrent event. Vent channels may be formed on all sides of the fuse housing, so that the vaporized material may escape out in each direction. Vent channels may be formed only opposite sides of the housing, so that vaporized material is vented in specified directions.
At step 510 a fuse element is disposed between terminals and positioned in the cavity of the fuse housing. At step 515, the upper housing part and the lower housing part are aligned enclosing the fuse element. As described above, the housing parts can include alignment protrusions such as posts and blocks, and corresponding receiving apertures. Step 515 may include aligning these features so that the housing parts are precisely aligned together and relative to the alignment holes in the terminals. Proper alignment ensures the fuse element is properly positioned in the cavity of the housing, as well as the vent channel portions, so that vaporized material from the fuse element may escape from the cavity via the vent channels.
At step 520, the housing parts are sealed together to form the housing. In embodiments, the housing is sealed around all the edges. In embodiments, the housing is sealed via ultrasonic welding. This ensures the housing parts are securely joined together and providing a tight seal. As described above in step 505, a vent channel portion may be disposed on an upper housing part, and a vent channel portion may be disposed on a lower housing part. When the upper and lower housing parts are joined together, the vent channel portions are aligned. During operation, arcing of the fuse element occurs in an overcurrent condition, such that a high amount of energy and material is released. The ultrasonic welding of the fuse housing provides for a strong seal, such that internal pressures build in the cavity of the housing. The vent channels allow the vaporized material to escape the fuse housing, so that internal pressures are relieved.
As used herein, references to “an embodiment,” “an implementation,” “an example,” and/or equivalents is not intended to be interpreted as excluding the existence of additional embodiments also incorporating the recited features.
The present disclosure is not to be limited in scope by the specific embodiments described herein. Indeed, other various embodiments of and modifications to the present disclosure, in addition to those described herein, will be apparent to those of ordinary skill in the art from the foregoing description and accompanying drawings. Thus, such other embodiments and modifications are intended to fall within the scope of the present disclosure. Furthermore, although the present disclosure has been described herein in the context of a particular implementation in a particular environment for a particular purpose, those of ordinary skill in the art will recognize its usefulness is not limited thereto and the present disclosure can be beneficially implemented in any number of environments for any number of purposes. Thus, the claims set forth below are to be construed in view of the full breadth and spirit of the present disclosure as described herein.
Number | Name | Date | Kind |
---|---|---|---|
2592399 | Edsall et al. | Apr 1952 | A |
4344060 | Ciesemier | Aug 1982 | A |
4563666 | Borzoni | Jan 1986 | A |
4661793 | Borzoni | Apr 1987 | A |
5179436 | Asdollahi | Jan 1993 | A |
5287079 | Bernardi | Feb 1994 | A |
5426411 | Pimpis et al. | Jun 1995 | A |
5793275 | Iversen | Aug 1998 | A |
6542063 | Kawashima | Apr 2003 | B2 |
6762670 | Yen | Jul 2004 | B1 |
7539001 | Takeyoshi | May 2009 | B2 |
9184011 | Jung | Nov 2015 | B2 |
9607799 | Schmidt | Mar 2017 | B2 |
Number | Date | Country |
---|---|---|
203165839 | Aug 2013 | CN |
204537973 | Aug 2015 | CN |
5675859 | Feb 2015 | JP |
Entry |
---|
International Search Report and Written Opinion, dated Dec. 28, 2017, for International Application No. PCT/US2017/056965 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20180138004 A1 | May 2018 | US |