1. Field of the Invention
The present invention relates to an aerodynamic ventilated protective garment which may take the form of a jacket or coat. The garment is especially configured and structured for wear by individuals who are riding on or operating open-air sport motor vehicles, such as motorcycles, dune buggies, ATV'S, ATC's, and perhaps even open-air aircraft, such as ultra-light aircraft. These operators and passengers are subjected to the elements, need physical protection for their person, desire to not be buffeted or to have their garments “balloon” or to flap in the high speed air flow caused by movement of their vehicle, and also desire an adequate ventilation air flow during warm-weather and hot-weather conditions. Also, these operators and passengers of open-air sport motor vehicles generally desire to obtain the best possible performance from their sport vehicles, and reducing aerodynamic drag is an important consideration in realizing this desire. Further, such operators and passengers in many cases will be wearing a protective crash helmet, and the airflow caused by the movement of the vehicle will flow about this helmet. In many cases, the airflow about a passenger's or operator's helmet and outer garment causes turbulence, which undesirably buffets the person and increases aerodynamic drag.
2. Related Technology
Operators of motorcycles and other sports motor vehicles have long sought to protect themselves from injury in the event of a mishap, such as a fall from a moving motorcycle and subsequent slide on gravel or pavement. Thus, it is seen that protection from impact and abrasion are both important to operators of such sport motor vehicles. Competition motorcycle riders have commonly worn full “leathers”, which are a full cover-all type of leather suit, many having built in panels of cushioning or protective body armor, or abrasion resistant panels. Such a full leather suit can provide good protection from both impact and abrasion.
However, in cool weather, a leather motorcycle riding suit can be chilly to wear. Leather by itself does not provide very good insulation. On the other hand, in warm weather, the full leather motorcycle riding suit can be very warm to wear as leather does not allow much ventilation by itself. Consequently, for warm-weather wear, such “leathers” made to include perforated leather panels have been available. But, leathers made to include perforated leather are not at all suitable for wear during cold riding conditions. Consequently, these “racing style leathers”, are generally made for the particular conditions under which they are to be used, and are not practical for wear by the street motorcycle rider and for other operators and passengers on open-air sport motor vehicles who encounter widely varying environmental conditions.
Further, operators of high performance competition motorcycles have long used aerodynamic aids on their motorcycles and on their racing apparel to reduce buffeting and to improve air flow over the rider's helmet and leathers. These aerodynamic aids have included such things as various configurations of fairings on the motorcycles (even extending to the full “dust bin” type of motorcycle fairings), fins, scoops, and winglets on the motorcycle fairings, and also fins and air scoops on the rider's helmet.
In particular, one aerodynamic expedient or aid that has been used on the apparel of competition motorcycle riders is an aerodynamic “hump structure” disposed on the back of the rider's leathers and immediately behind the rider's helmet when the rider is in the position occupied when at speed on the motorcycle. This aerodynamic “hump structure” helps reduce aerodynamic drag, and reduces buffeting of the rider by smoothing airflow over the helmet, and by smoothing airflow rearwardly from the helmet along the back of the leathers at speed. Such an aerodynamic “hump structure” has not heretofore been used on apparel for street motorcycle riders.
Particularly, the competition type of aerodynamic hump structure, while advantageous aerodynamically, is very hot for the rider in warm weather. That is, there is no ventilation provided, and the smooth airflow over the rider's helmet and leathers may actually make it more difficult for the rider to achieve adequate ventilation, and to remain cool, dry, and mentally fresh during warm riding conditions. Consequently, competition riders have complained of being sweaty, over heated, and fatigued because of such lack of ventilation of their racing apparel. But, competition riders still continue to use this apparel because of its advantages in competition.
For the street motorcycle rider, such considerations would rule out the use of the aerodynamic hump structure on the rider's apparel. Nevertheless, street motorcycle riders have favored various leather jackets and coats because of the abrasion resistance provided by the leather in the event of a spill from the moving motorcycle. Many of these jackets traditionally do not have any form of body armor for the rider. Some have no particular provision for ventilation to the rider in warm and hot weather. Particularly in hot weather, leather apparel can be uncomfortably warm to wear. However, even in hot weather some motorcycle riders endure the discomfort of a leather jacket, not because it is needed for protection from the elements, but because of concerns for personal safety and survival in the event of a spill from the street motorcycle at any speed.
On the other hand, in hot weather some cavalier motorcycle riders partially or fully open the front zipper or snaps of their jacket in order to allow the moving air stream to rush in. Such an expedients decreases the effective protection level afforded by the leather jacket of coat. That is, this expedient is very unsafe because it allows the jacket to billow or whip in the air stream, possibly compromising the rider's ability to control the vehicle, and certainly contributing to rider fatigue after a period of being subjected the whipping leather jacket. Fatigue and the resulting decrease in the rider's situational awareness may be a contributing factor in many motorcycle accidents. Importantly, in the event of a spill, an open jacket or coat is more likely to slide up the wearer's torso, and provide little or no protection against abrasion. And, an open front zipper can allow stones to enter the jacket during a fall and slide.
Some motorcycle jackets even include cuff openings on the sleeves, and some riders leave these openings unsecured during warm weather in order to obtain some ventilation. Open cuffs are also very dangerous because the sleeves of the jacket of coat may slide up the forearms during a fall and slide, allowing the forearms to be badly abraded by the gravel or pavement along which the individual may be sliding after a fall from the moving vehicle.
So to, street motorcycle riders generally wish to enjoy the maximum possible performance from their motorcycle, while still being able to ride in a widely varying environment encountered by the street rider, and not having to purchase a wide variety of different garments for wear under varying conditions. Thus, the designer of apparel for the street rider is faced with a daunting set of requirements.
Over some time in the past, leather and fabric jackets and coats with provisions for ventilation while closed and still providing adequate protection to the wearer have been developed. Examples of leather coats and jackets which are conventional are seen in U.S. Pat. No. 4,608,715, issued Sep. 2, 1986 to Richard Miller and John Wyckoff; in U.S. Pat. No. 5,105,715, issued Apr. 21, 1992 to Paul Golde, and in U.S. Pat. No. 5,507,042, issued Apr. 16, 1996 to Michael van der Slessen. German patent publication No. DE 3818-566-A1 published Dec. 7, 1989, provides another example of this conventional approach to providing protection and ventilation to riders of motorcycles. U.S. Pat. No. 5,845,336 provides an example of a fabric jacket or coat that well suits the wide range of requirements for a street motorcycle rider.
In view of the deficiencies of the related technology, a primary object of this invention is to avoid one or more of these deficiencies.
More particularly, it is an object of this invention to provide a protective garment for wear by operators and occupants of sport vehicle, which will provide physical protection to the wearer, provides adequate and adjustable ventilation for fair and hot days.
Still another object for this invention is to provide a garment for motorcycle riding in which sleeves of the garment are provided with a circumferentially continuous cuff, so that the sleeves cannot slide up the wearer's arms during a fall and slide, but which sleeves also provide for the introduction of cooling ventilating air into the garment at the sleeves.
Accordingly, the present invention according to one aspect provides a ventilated garment, the garment comprising: a garment shell having a front panel and a back panel cooperatively providing a neck opening, and a pair of sleeves, one sleeve for each of the wearer's arms, a generally vertically extending opening dividing the front panel into two parts and allowing ingress and egress from the garment; the pair of sleeves each having a forearm portion extending between an elbow portion of the respective sleeve and a respective cuff structure at a terminal end of each sleeve; at least one of the pair of sleeves defining a ventilation structure in the forearm portion thereof, which ventilation structure includes an elongate ventilation slit extending lengthwise of the forearm portion, a flexible air-permeable panel spanning the slit and limiting the extent to which the slit may gap open, and a fastener structure moving between a first position and a second position to respectively close and open the ventilation slit.
Accordingly, the present invention according to another aspect provides a ventilated and protective garment, the garment comprising: a garment shell having a front panel and a back panel cooperatively providing a neck opening, and a pair of sleeves, one sleeve for each of the wearer's arms, a generally vertically extending opening dividing the front panel into two parts and allowing ingress and egress from the garment; the pair of sleeves each having a forearm portion extending between an elbow portion of the respective sleeve and a respective cuff structure at a terminal end of each sleeve; each of the pair of sleeves defining a respective ventilation structure in the forearm portion thereof; the ventilation structure including an elongate ventilation slit extending lengthwise of the forearm portion across the cuff structure and to the termination end of the sleeve; the ventilation structure further including a flexible air-permeable panel spanning the ventilation slit and limiting the extent to which the slit may gap open; a fastener structure for selectively opening and closing the ventilation slit, the fastening structure including a closure member moving between a first position and a second position to respectively close and open the ventilation slit; the fastener structure including a slide fastener having a pair of elongate track portions each secured to a respective side of the ventilation slit and a slide member moving along the slide fastener between the first position in which the elongate track portions are joined along their length to close the ventilation slit, and a second position in which the elongate track portions are at least partially disconnected from one another to thereby at least partially open the ventilation slit and outwardly expose the air-permeable panel.
A better understanding of the present invention will be obtained from reading the following description of a several preferred exemplary embodiments of the present invention when taken in conjunction with the appended drawing Figures, in which the same features (or features analogous in structure or function) are indicated with the same reference numeral throughout the several views. It will be understood that the appended drawing Figures and description here following relate only to one or more exemplary preferred embodiments of the invention, and as such, are not to be taken as implying a limitation on the invention. No such limitation on the invention is implied, and none is to be inferred.
a is a fragmentary side elevation view partially in cross section of a portion of the garment seen on the rider in
Viewing first
In the particular case illustrated in
As is seen in
In
Further to the above,
Further, as can best be appreciated viewing
a illustrates that the hump structure 28 is formed principally by a flexible but rather stiff and shape-retaining foam core 30, which is secured to the back panel 20r of the jacket 20. This foam core is covered with a similarly shaped portion of material 32, which material may be the same as or different from the material of the back panel 20r of the jacket 20. The material 32 is preferably secured to the back panel of the jacket 20 by stitching, not seen in the drawing Figures, and thus holds the core 30 in place as well. In order to provide for ventilation through the hump structure 28, this structure carries at least one forwardly opening scoop 34. The scoop 34 defines an opening 34a, which may be spanned by a fine screen 36 in order to prevent insects and small gravel from entering the scoop. The scoop 34 receives a portion of the air flow 16, as is indicated by arrow 16b. This scoop 34 also defines a passage 34b leading from the opening 34a toward the foam core 30. Aligning with the passage 34b of the scoop 34, the foam core 30 defines a through passage 30a, which is preferably divergent to provide diffusion of the air flow 16b to a lower speed and higher pressure as it moves along this passage. The passage 30a leads to a ventilation opening 20v defined by the rear panel 20r of the jacket 20. This opening 20v leads through the rear panel 20r, and into the space between the rear panel 20r and an air permeable liner 38 of the jacket 20. Thus, when the motorcycle is moving at speed and the rider 10 is in a position allowing the scoop 34 exposure to the air flow 16, a portion of this air flow is brought into the jacket 20 via the hump structure 28 and via the scoop 34, passage 34b, passage 30a, and ventilation opening 20v.
Returning now to a consideration of
On the left sleeve 22l as seen in
It will thus be understood that the forearm sleeve ventilation structure 26 can also be opened by partially or full sliding the lower zipper pull 40a upwardly along the sleeve 22 toward the upper pull 40b. This results in an opening being created along slit 26a from the lower end thereof. Thus, it will be understood that dependent on the wishes of the rider 10, the zipper pulls 40a and 40b can be slid partially or full toward one another along the slit 26a to open a lower extent, an upper extent, or both a lower extent and an upper extent of the slit 26a, with the zipper pulls either spaced slightly apart or being fully together somewhere intermediate of the ends of the slit 26a. In this way, the rider 10 has a great deal of flexibility and adjustability in the area and location of ventilation opening or openings created at the slit 26a on each sleeve of the jacket dependent upon the selected locations chosen for the zipper pulls 40a and 40b.
Turning now to
Viewing now
Again, in order to provide for ventilation through the aerodynamic hump structure 128, this structure carries at least one forwardly opening scoop 134. The scoop 134 defines an opening 134a receiving a portion of the air flow 116, as is indicated by arrow 116b. This scoop 134 also defines a passage 134b leading from the opening 134a toward a through passage 130a defined by the foam core 130. The passage 130a leads to a ventilation opening 120v defined by the rear panel 120r of the jacket 120. In this embodiment, the ventilation opening 120v may be quite large, so that ventilating air is presented to the liner 138 of the jacket over a considerable area. This wide area coverage of the ventilating air favorably contributes to keeping the rider cool without creating an uncomfortable “cold” spot.
However, as will be appreciated in view of the explanation above, the aerodynamic hump structure 128 is removable from the rear panel 120r of the jacket 20 by moving the zipper pulls of zippers 50 and 52 to the locations indicated by arrows 50b and 52b, and then disengaging the zipper tracks or zipper teeth portions from one another. This results in the aerodynamic hump structure 128 being removed from the jacket 120. The hump structure 128 is, of course, capable of being reinstalled on the jacket 120 by actions in the reverse of the removal actions just explained. However, it is also clear that once the hump structure 128 is removed from the jacket 120, this jacket is left with a rather large opening 120v through the rear panel 120r, and opening to the liner 138 of the jacket. In order to provide a closure for this opening 120v when the wearer of the jacket wishes to use the jacket without the aerodynamic hump structure 128, this embodiment provides for a closure member 54 to be zipped onto the jacket in the same way as the hump structure 128 would be. That is, the closure member 54 is shaped like the hump structure 128 in plan view (i.e., in rear elevation view of the jacket), but does not include a hump or ventilation openings. Again, in elevation view, as is seen in
Finally, turning now to
The slits 126a and 126b are each selectably opened and closed according to the wished of the rider 110. That is, the slit 126a is closed by a respective cuff closure 124a including a strap or tab 142 and a fastening member 144, along with a slide fastener 58 (i.e., a zipper in this embodiment, although the invention is not so limited). This zipper 58 has only a single zipper pull (or slide member) 58a, which closes the slit 126a when it is adjacent to the cuff, and which opens this slit as it is moved fully upwardly along the slit 126a away from the cuff. As is seen in
At the other slit 126b, the sleeve vent structure 126 is opened or closed dependent upon the wishes of the rider 110. That is, the sleeve vent structure 126 is partially or fully opened by having the zipper pull 140a slid partially or fully along the zipper 140 toward the opposite end of the zipper 140, The zipper 140 may have the zipper pull 140 disposed either in the upper position when this zipper is closed, or the zipper pull 140 may be disposed at the lower end of this zipper when the zipper is closed. In either case, the rider 110 can partially or fully open the forearm sleeve ventilation structure 126 by moving the zipper pull 140a partially or fully to the opposite end of its travel. As is seen in
In view of the above, it is to be noted that the forearm sleeve ventilation structures disclosed above provide ventilation and air flow along essentially the full length of the arm of the wearer of the jacket. That is, if desired, the wearer can achieve ventilating air flow from just above the cuff of the jacket upwardly along the arm and into the body of the jacket. On the other hand, the wearer can shut off this ventilating air flow when desired by closing the vent structure. Similarly, the ventilated aerodynamic hump structure provides for ventilation of the jacket and both improves air flow along the back of the jacket to reduce buffeting, and also offers improved protection to the wearer in the event of a fall by offering support to the helmet so that the rider's head is less likely to be flexed backwardly to an excessive extent.
While the present invention has been depicted, described, and is defined by reference to a single particularly preferred embodiment of the invention, such reference does not imply a limitation on the invention, and no such limitation is to be inferred. The invention is capable of considerable modification, alteration, and equivalents in form and function, as will occur to those ordinarily skilled in the pertinent arts. The depicted and described preferred embodiment of the invention is exemplary only, and is not exhaustive of the scope of the invention. Consequently, the invention is intended to be limited only by the spirit and scope of the appended claims, giving full cognizance to equivalents in all respects.
Number | Name | Date | Kind |
---|---|---|---|
2151211 | Babiner | Mar 1939 | A |
2715226 | Weiner | Aug 1955 | A |
3761962 | Myers | Oct 1973 | A |
4242769 | Rayfield et al. | Jan 1981 | A |
4608715 | Miller et al. | Sep 1986 | A |
5105477 | Golde | Apr 1992 | A |
5704064 | van der Sleesen | Jan 1998 | A |
6085353 | van der Sleesen | Jul 2000 | A |
6263510 | Bay et al. | Jul 2001 | B1 |
6427242 | Bush et al. | Aug 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20030140404 A1 | Jul 2003 | US |