Ventilated vacuum commutation structures

Information

  • Patent Grant
  • 9283683
  • Patent Number
    9,283,683
  • Date Filed
    Thursday, April 24, 2014
    10 years ago
  • Date Issued
    Tuesday, March 15, 2016
    8 years ago
Abstract
Ventilated vacuum structures such as pucks and rings are disclosed for carrying portions of disposable products during manufacturing. Air flow enters vacuum commutation ports on an article carrying structure from vents nearby, the vents receiving air from a side, a top or an underside of the article carrying structure.
Description
BACKGROUND OF THE INVENTION

This invention related to an apparatus for transferring articles such as absorbent pads in the manufacture of disposable absorbent articles such as diapers, incontinence control garments or female sanitary pads as they advance along a production line.


In the production and manufacture of disposable products such as sanitary napkins or pants-type diapers, it frequently becomes necessary to manufacture a component of the product in one orientation, and then to rotate that component part 90° so that it is suitably oriented for use in another step in the production process. Various devices have been developed for this purpose and are known to those experienced in the industry. Examples of such apparatus are those described in U.S. Pat. Nos. 4,726,876, 4,880,102, and 5,025,910, the disclosures of which are incorporated herein by reference.


As discussed above, a typical article to be reoriented by the apparatus of this invention is an absorbent pad. Because absorbent pads are typically comprised of several webs, an absorbent core and several elastic members, there is a tendency of these assemblies to contract and become distorted during transfer operations which greatly complicates handling of the pad during further processing. Control of the pad is important.


Other components of disposable products including ears, or extension panels, require transportation and deposition by a vacuum puck. For instance, in U.S. Pat. No. 8,016,972, assigned to the same assignee as the present invention, ear webs are severed into individual ears, and rotated while held by a vacuum puck, to be applied to a traveling web such as a chassis web.


An ear is a component of a diaper that is grasped and pulled around the waist of a wearer. Typically, ears are secured to the diaper at a first end, and a second free end is typically equipped with securing means, such as a pressure sensitive adhesive, or hook and loop material. As a user grasps an ear and pulls the ear, elasticity provided about the waist region of the diaper allows the free end to be snugly pulled about the waist of a wearer, and coupled to the diaper. Ears can be rectangular or made of irregular shapes.


Typical vacuum pucks used in the prior art have rows of vacuum holes which are fed by cross-drilled ports, each being exposed to the source of vacuum by commutations, as the ports move into a zone of negative pressure in a stationary manifold. Such a configuration serves to apply vacuum sequentially to each successive row of holes. At high speeds, it has been found that air entering the vacuum ports is drawn across an article carrying face of the puck, and the air drawn into the ports can adversely impact control over the discrete components by causing misalignment, folding or other loss of total control.


SUMMARY OF THE INVENTION

The apparatus of the present invention is a ventilated puck for discrete items such as portions of a disposable diaper during the manufacturing process.


The puck picks up an article from a first conveying means, and deposits the article onto another conveying means.


The puck is ventilated in order to provide for minimization of disruptive air flow. Instead of air being drawn from edges and across an article carrying face of the puck, air is able to approach vacuum ports from underneath the carrying face of the puck, proximally to the vacuum ports.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a fragmentary side elevation view, shown in diagrammatic form, of a pad transferring assembly including a puck of the prior art;



FIG. 2 is a perspective fragmentary, diagrammatic view, showing related apparatus by means of phantom lines and illustrating the path of movement of discrete pieces such pads moving in accordance with the invention;



FIG. 3 is a perspective view of a non-ventilated puck of the prior art;



FIG. 4 is a perspective view of a ventilated puck of the present invention;



FIG. 5 is a bottom perspective view of an embodiment of a ventilated puck of the present invention;



FIG. 6 is a top perspective view of ventilated puck of the present invention;



FIG. 7 is a bottom perspective view of a ventilated puck of the present invention;



FIG. 8 is a to view of a ventilated puck of the present invention;



FIG. 9 is a bottom view of a ventilated puck of the present invention;



FIG. 10 is a perspective view of an alternative embodiment of a ventilated puck;



FIG. 11 is a bottom perspective view of the puck shown in FIG. 10;



FIG. 12 is a perspective view of an additional alternative embodiment of a ventilated puck;



FIG. 13 is a bottom perspective view of the puck shown in FIG. 12;



FIG. 14 is a front view of a rotating body carrying rotating ventilated pucks;



FIG. 15 is a ported vacuum drum with ear retaining portions of the prior art;



FIG. 16 is a side view of a vacuum drum of the prior art;



FIG. 17 is a perspective view of a ventilated shell structure of the present invention for mounting to a drum to form a continuous ventilated drum surface;



FIGS. 18
a and 18b are a perspective view, with an exploded portion, of assembled ventilated shell structures of FIG. 17;



FIG. 19 is a front view of assembled ventilated shell structures of FIG. 17, showing vacuum manifolds adjacent both sides of the assembled drum, and ventilation provided through the shell surface (outside of a product contact region(s);



FIG. 20 is a rear perspective view of an alternate embodiment of a ventilated shell structure with a nested ventilation and vacuum commutation construction;



FIG. 21 is a top perspective view of the ventilated shell structure of FIG. 20;



FIGS. 22
a and 22b are a perspective view, with an exploded portion, of assembled ventilated shell structures of FIG. 20;



FIG. 23 is a front view of assembled ventilated shell structures of FIG. 20, showing vacuum manifolds adjacent both sides of the assembled drum, and ventilation provided through the shell surface (outside of a product contact region(s);



FIG. 24 is a top perspective view of a second alternate ventilated shell structure of the present invention;



FIG. 25 is a bottom perspective view of the ventilated shell structure of FIG. 24;



FIG. 26 is a to view of the ventilated shell structure of FIG. 24;



FIG. 27 is a top perspective view of a third alternate ventilated shell structure of the present invention, showing a patterned vacuum commutation port configuration;



FIG. 28 is a bottom perspective view of the ventilated shell structure of FIG. 27;



FIG. 29 is a top view of the ventilated shell structure of FIG. 27.





DESCRIPTION OF THE PREFERRED EMBODIMENT

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention which may be embodied in other specific structures. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.


Referring more particularly to the drawings, there is seen in FIG. 1 an apparatus 10 carrying pucks, or transfer heads 16, of the prior art. The apparatus 10 is adapted to receive a series of articles 14 from an upstream conveyor or vacuum drum (not shown) onto a pad turning device 12 which includes a plurality of radially extending transfer heads 16.


The location where articles 14 are received from the upstream point onto the pucks 16 is known as the pick up point. The location where articles 14 are deposited from the pucks 16 to a downstream drum or conveyor 20 is known as the lay down point.


The pad turning device 12 may be, for example, a rotary pad turner of the type more fully described in U.S. Pat. No. 5,025,910 which is incorporated herein by reference. The articles 14 can be of any type, but are typically absorbent pads, ears, or extension panels. During manufacturing, each of these requires transportation and deposition by a vacuum puck, and sometimes rotation or reorientation of a discrete piece is also desirable prior to deposition onto another portion of an absorbent article. Such pad turning devices 12 are especially needed and are suited for use in connection with the manufacture and packaging of sanitary napkins as well as absorbent pads which are used in the assembly of disposable garments such as adult incontinence garments or children's training pants.


Also seen in FIG. 1, articles 14 are successively and individually picked-up by the transfer heads 16 of the pad transfer device 12. In the illustrated embodiment, the articles 14 are picked up from a vacuum drum (not shown). Various conventional conveying and direction changing devices such as rollers may be employed in the feeding of the web and do not form a part of this invention.


After the articles 14 have been rotated 90 degrees, they are deposited at the lay down point onto a second vacuum source, for example a drum 20. A conveyor 28 or the like transport the articles 14 for further processing or to a packaging device, as required by a particular application. Alternatively, the deposition point can be for instance a coupling point for an ear or an extension panel onto a chassis web, such as shown and described in U.S. Pat. No. 8,016,972, incorporated herein by reference.


Referring to FIG. 2, there is seen a diagrammatic depiction of the travel path of the web 22 and the resultant pads 14 which are formed therefrom. In this depiction the various apparatus have been eliminated but are partially illustrated by means of phantom lines.


As can be seen, the article is rotated 90° from the pick up point to the lay down point, and is also stretched during this time it spends on the puck 16. In some instance however, it is not necessary to rotate the article between pick up and lay down, depending on the design of the article being produced or the manufacturing technique used.


As shown in FIG. 3, a perspective view of an embodiment of a prior art puck 16 prior art is shown. At high speeds, it has been found that air entering vacuum ports 32 is drawn across an article carrying face 36 of the puck 16, and the air drawn into the ports 32 can adversely impact control over the discrete components by causing misalignment, folding or other loss of total control.


Referring now to FIG. 4, a perspective view of one embodiment of a ventilated puck 40 of the present invention is shown. Air is drawn into commutation ports 32 by commutation pipes 38. The pipes 38 carry a preferably radially shaped vented article carrying structure 36, although flat pucks can also be used. A plurality of air supplying vents 34 are situated about vacuum commutation ports 32. Air supply vents 34 receive air drawn through sides 43 of the ventilated puck 40, and drawn through the air surrounding the commutation pipes 38. The ventilated puck 40 preferably lacks solid sidewalls 30 as shown in prior art pucks such as FIG. 3, allowing the ingress of air through the void sides 42 into the interior of the puck 40, as well as through air supplying vents 34 not overlain by a discrete piece of material. The air enters the interior vacuum ports 44 from the underside of article carrying structure 36, and the air is drawn into proximally situated vacuum ports 32.


The commutation pipes 38 are rigid enough to support the vented article carrying structure, and rigid enough to withstand collapse due to applied vacuum. And although the commutation pipes 38 are depicted as narrow square tubular in shape leading to the small and circular vacuum commutation ports 32, the commutation pipes 38, the air supplying vents 34, and the vacuum commutation ports 32 can take different cross-sectional shapes, such as star shaped, circular, oval, rectangular, etc.


A pattern of vacuum ports 32 is provided on the surface of article carrying structure 36 through which the internal vacuum acts to draw the pads 14 towards the surface. It is clear that this technology can be applied to the transfer and placement of many different types of articles in the disposable goods industry and other industries as well.


Metal laser sintering is a good way to make the products of the present invention.


Referring now to FIG. 5, vacuum is drawn through interior vacuum ports 44 of commutation pipes 38 in a manner such as shown in U.S. Pat. No. 7,770,712, which is incorporated by reference. Commutation pipes 38 extend between and are coupled to a vacuum port plate 46 and the article carrying structure 36. Together, the commutation pipes 38, vacuum port plate 46 and the article carrying structure 36 of the puck 16 are rotated and supplied with vacuum as previously described.


Referring now to FIG. 6, a top perspective view of the article carrying structure 36 of the puck 16 is shown. The article carrying structure, as previously described, has a plurality of circular vacuum commutation ports 32 and air supplying vents 34, both of which can vary in shape, size, or distribution. A plurality of clearance holes 52 for mounting the puck 16 are shown. As shown on FIG. 7, corresponding clearance holes 52 on the vacuum port plate 46 for receiving a coupling means (such as a screw) through both sets of clearing holes 52, and are used to couple the puck 16 to a receiving surface/apparatus (not shown). Sidewalls 50 of the vacuum port plate 46, together with a vacuum manifold (not shown), provide vacuum to the regions defined by the sidewalls 50. FIGS. 8 and 9 show a top and a bottom view of a ventilated puck 16 of the present invention.


In the embodiment depicted in FIGS. 6-9, a plurality of side and top ventilated pucks 16 can be joined together on a rotting device (e.g., FIG. 14) such that the article carrying structures 36 of the pucks 16 present a radius around the rotating device. In a preferred embodiment, the article carrying structures 36 of the pucks 16 are trapezoidal in top view, and if a flat vacuum port plate 46 is used, the commutation pipes 38 will be of varying lengths to accommodate the variable distance between the flat port plate 46 and curved article carrying structure 36. Because the article carrying structures 36 are curved, the portion of the commutation pipes 38 that meet the article carrying structures 36 are also curved. The portion of the commutation pipes 38 that meet the flat port plates 46 are flat.


Referring now to FIGS. 10-13, an alternative embodiment of a ventilated puck 234 is shown. As can be seen from FIG. 14, two types of pucks are provided, non-rotating pucks 234A and rotating pucks 234B. The non-rotating pucks 234A carry ears (not shown) that do not require rotation, and the rotating pucks 234B carry ears requiring rotation. As the ear turner assemblies 200R and 200L go through their rotation, ears 12 are picked up from the ear die/anvil station 230/232 and rotate about the rotator 200, while every rotating puck 234B also rotates radially during rotation of the rotator 200. The ears are then deposited onto chassis web and bonded thereto, for instance by ultrasonic bonding ring, where the resulting product is sent downstream for further processing.


Again in this embodiment commutation pipes 38 extend between and are coupled to a vacuum port plate 130 and the article carrying structure 36. Together, the commutation pipes 38, vacuum port plate 46 and the article carrying structure 36 of the puck 16 are rotated and supplied with vacuum as previously described. A rotating body coupling structure 120 is provided for attaching to the rotating unit 200.


The rotation and operation of the non-rotating pucks 234A and rotating pucks 231B are described in U.S. application Ser. No. 12/925,033, and U.S. Pat. Nos. 8,172,977, 8,106,972, and 7,780,052, each of which is incorporated by reference.


Referring now to FIG. 15, a ported vacuum drum (or anvil roll) with ear retaining portions of the prior art is shown. Anvil roll 114 is shown carrying ear forming material 7 (and later, after being severed, individual ears 8) in phantom. The anvil roll 114 is formed with two vacuum portions 116 separated by a center groove portion 118. The vacuum portions 116 are preferably mirror images of each other. The anvil roll 114 is symmetrical about a center plane through its circumference. Each vacuum portion 116 contains several circumferential rows of circular vacuum holes 24. Each vacuum portion 116 may also contain a circumferential groove 120 with an additional circumferential row of vacuum holes 24 located in the circumferential groove 120.


Referring now to FIG. 16, a side view of the anvil 114 of the prior art is shown. The vacuum slot 128 contains a plurality of vacuum holes 24 that allow commutation of the vacuum to the entire ear vacuum hole pattern 126, allowing the pattern 126 to be activated simultaneously, as opposed to each of the rows that comprise the vacuum of vacuum holes 24 being enabled one at a time. The vacuum pattern 126 is activated utilizing drilled ports 28 that communicate the vacuum from the slot 128 to the individual holes 24 of the pattern 126. It should be noted that the pattern 126 can also be provided with a depressed slot configuration so that it too is all simultaneously enabled with vacuum. The remaining vacuum holes 24 provided on the anvil roll 114 are enabled sequentially, by known vacuum commutation method utilizing cross drilled ports 28.


Improvements to the prior art drums for carrying webs either continuous or of discrete pieces such as ears 8 of FIGS. 15 and 16 are described in FIGS. 17-29.


Referring now to FIGS. 17-19, a top vented transfer roll shell 300 is disclosed. Shell 300 is mounted to a rotating body (not shown) to form a continuous ventilated drum surface. In cases where there are vacuum manifolds 320 adjacent both sides of the drum (see, e.g., FIG. 19), side ventilation is not possible, therefore ventilation is provided through the shell surface 36 outside of the product contact region(s). In this embodiment vent channels 302 are provided, preferably at outer edges of the top vented transfer roll shell 300. Air passes under the article carrying surface 36 from the vent channels 302 underneath the surface 36 to both a first zone of air supplying vents 34/and commutation ports 32, and to a zone of exclusively air supplying vents 34. Vacuum is drawn from the vacuum manifolds 320 at the under surface of the shell 300, and through commutation ports 32 as shown in cross section at FIG. 18B. The arrangement of air supplying vents 34 and commutation ports 32 can be varied and patterned based on the configuration of the pieces intended to be carried. The ventilated shell 300 contains nested ventilation and vacuum commutation construction through the article carrying surface.


As can be seen in FIG. 18A, a plurality of top vented transfer roll shells 300 can be provided to create a vacuum roll or drum. In the depicted embodiment, four top vented transfer roll shells 300, are provided, each accounting for 90 degrees of the periphery of the drum.


In FIGS. 20-23, top vented vacuum ring 400 is disclosed, for use where vacuum manifold 320 is adjacent to sides of a drum formed by the rings 400 precludes side ventilation (see FIG. 23). In this embodiment, vacuum applied from the sides of the ring 400 through vacuum commutation channels 402 allows vacuum to be pulled through commutation ports 32 from the surface of the commutation ports 32 exposed to the interior of the ring 400, and through the ports 32 to the exterior article carrying surface of the ring 400. A plurality of air supplying vents 40 are supplied at the surface of the ring 400, so that the surface of the ring will contain an arrangement of both vents 40 and commutation ports 32. Venting and air supply is first from the outside of the shell surface outside of product contact regions, next through channels 404 to underneath product contact regions, next out through vents 40 underneath product contact regions and next drawn into ports 32.


In FIGS. 24-26, a top and side vented vacuum pattern plate 500 is disclosed similar in construction to pucks previously described. Commutation ports 32 are provided on article carrying surface 35 coupled with commutation pipes 38. A secondary zone of aggressive channeled and interconnected ports 37 are also coupled commutation pipes 38 between article carrying surface 36 and vacuum port plate 46.



FIGS. 27-29 show a similar top and side vented vacuum pattern plate 600, showing a patterned vacuum commutation port 32 configuration.


The foregoing is considered as illustrative only of the principles of the invention. Furthermore, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

Claims
  • 1. A structure for carrying portions of a disposable article, said structure comprising: an article carrying structure comprising an underside and an article carrying face;a plurality of vacuum commutation pipes coupled to a source of vacuum;a plurality of vacuum void spaces on said article carrying face of said article carrying structure, said vacuum void spaces coupled to said vacuum commutation pipes;air supply void spaces on said article carrying face of said article carrying structure,an open sidewall structure positioned between said underside and said article carrying face, said open sidewall structure allowing passage of air to said air supply void spaces.
  • 2. A structure according to claim 1, said structure further comprising a vacuum port plate coupled to said vacuum commutation pipes.
  • 3. A structure according to claim 2, said vacuum port plate comprising port plate vacuum void spaces coupled to said source of vacuum.
  • 4. A structure according to claim 1, said structure carried by a rotating body for rotating said structure in an orbital fashion about a first axis.
  • 5. A structure according to claim 4, said structure further carried by a secondary rotating body for rotating said structure rotationally about a second axis.
  • 6. A structure according to claim 1, said vacuum void spaces positioned adjacent said air supply void spaces.
  • 7. A structure according to claim 1, said vacuum void spaces receiving air from said air supply void spaces.
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/857,905, filed 24 Jul. 2013.

US Referenced Citations (693)
Number Name Date Kind
135145 Murphy Jan 1873 A
293353 Purvis Feb 1884 A
312257 Cotton et al. Feb 1885 A
410123 Stilwell Aug 1889 A
432742 Stanley Jul 1890 A
643821 Howlett Feb 1900 A
1393524 Grupe Oct 1921 A
1431315 Le Moine Oct 1922 A
1605842 Jones Nov 1926 A
1686595 Belluche Oct 1928 A
1957651 Joa May 1934 A
2009857 Potdevin Jul 1935 A
2054832 Potdevin Sep 1936 A
2117432 Linscott May 1938 A
2128746 Joa Aug 1938 A
2131808 Joa Oct 1938 A
2164408 Joa Jul 1939 A
2167179 Joa Jul 1939 A
2171741 Cohn et al. Sep 1939 A
2213431 Joa Sep 1940 A
2254290 Joa Sep 1941 A
2254291 Joa Sep 1941 A
2282477 Joa May 1942 A
2286096 Joa Jun 1942 A
2296931 Joa Sep 1942 A
2304571 Joa Dec 1942 A
2324930 Joa Jul 1943 A
2345937 Joa Apr 1944 A
2466240 Joa Apr 1949 A
2481929 Joa Sep 1949 A
2510229 Joa Jun 1950 A
2540844 Strauss Feb 1951 A
2584002 Elser et al. Jan 1952 A
2591359 Joa Apr 1952 A
2618816 Joa Nov 1952 A
2627859 Hargrave Feb 1953 A
2695025 Andrews Nov 1954 A
2702406 Reed Feb 1955 A
2721554 Joa Oct 1955 A
2730144 Joa Jan 1956 A
2772611 Heywood Dec 1956 A
2780253 Joa Feb 1957 A
2785609 Billeb Mar 1957 A
2788786 Dexter Apr 1957 A
2811905 Kennedy, Jr. Nov 1957 A
2828745 Deutz Apr 1958 A
2839059 Joa Jun 1958 A
2842169 Joa Jul 1958 A
2851934 Heywood Sep 1958 A
2875724 Joa Mar 1959 A
2890700 Lonberg-Holm Jun 1959 A
2913862 Sabee Nov 1959 A
2939461 Joa Jun 1960 A
2939646 Stone Jun 1960 A
2960143 Joa Nov 1960 A
2990081 De Neui et al. Jun 1961 A
2991739 Joa Jul 1961 A
3016207 Comstock, III Jan 1962 A
3016582 Joa Jan 1962 A
3017795 Joa Jan 1962 A
3020687 Joa Feb 1962 A
3021135 Joa Feb 1962 A
3024957 Pinto Mar 1962 A
3053427 Wasserman Sep 1962 A
3054516 Joa Sep 1962 A
3069982 Heywood et al. Dec 1962 A
3075684 Rothmann Jan 1963 A
3086253 Joa Apr 1963 A
3087689 Heim Apr 1963 A
3089494 Schwartz May 1963 A
3091408 Schoeneman May 1963 A
3114994 Joa Dec 1963 A
3122293 Joa Feb 1964 A
3128206 Dungler Apr 1964 A
3203419 Joa Aug 1965 A
3230955 Joa Jan 1966 A
3268954 Joa Aug 1966 A
3288037 Burnett Nov 1966 A
3289254 Joa Dec 1966 A
3291131 Joa Dec 1966 A
3301114 Joa Jan 1967 A
3318608 Smrekar May 1967 A
3322589 Joa May 1967 A
3336847 Durat Aug 1967 A
3342184 Joa Sep 1967 A
3356092 Joa Dec 1967 A
3360103 Joa Dec 1967 A
3391777 Joa Jul 1968 A
3454442 Heller, Jr. Jul 1969 A
3463413 Smith Aug 1969 A
3470848 Dreher Oct 1969 A
3484275 Lewicki, Jr. Dec 1969 A
3502322 Cran Mar 1970 A
3521639 Joa Jul 1970 A
3526563 Schott, Jr. Sep 1970 A
3527123 Dovey Sep 1970 A
3538551 Joa Nov 1970 A
3540641 Besnyo Nov 1970 A
3575170 Clark Apr 1971 A
3607578 Berg et al. Sep 1971 A
3635462 Joa Jan 1972 A
3656741 Macke et al. Apr 1972 A
3666611 Joa May 1972 A
3673021 Joa Jun 1972 A
3685818 Burger et al. Aug 1972 A
3728191 Wierzba et al. Apr 1973 A
3745947 Brocklehurst Jul 1973 A
3751224 Wackerle Aug 1973 A
3758102 Munn et al. Sep 1973 A
3762542 Grimes Oct 1973 A
3772120 Radzins Nov 1973 A
3776798 Milano Dec 1973 A
3796360 Alexeff Mar 1974 A
3810344 Evans et al. May 1974 A
3811987 Wilkinson et al. May 1974 A
3816210 Aoko et al. Jun 1974 A
3836089 Riemersma Sep 1974 A
3847710 Blomqvist et al. Nov 1974 A
3854917 McKinney et al. Dec 1974 A
3883389 Schott, Jr. May 1975 A
3888400 Wiig Jun 1975 A
3901238 Geller et al. Aug 1975 A
3903768 Amberg et al. Sep 1975 A
3904147 Taitel et al. Sep 1975 A
3918698 Coast Nov 1975 A
3921481 Fleetwod Nov 1975 A
3941038 Bishop Mar 1976 A
3960646 Wiedamann Jun 1976 A
3988194 Babcock et al. Oct 1976 A
3991994 Farish Nov 1976 A
4002005 Mueller et al. Jan 1977 A
4003298 Schott, Jr. Jan 1977 A
4009626 Gressman Mar 1977 A
4009814 Singh Mar 1977 A
4009815 Ericson et al. Mar 1977 A
4053150 Lane Oct 1977 A
4056919 Hirsch Nov 1977 A
4081301 Buell Mar 1978 A
4090516 Schaar May 1978 A
4094319 Joa Jun 1978 A
4103595 Corse Aug 1978 A
4106974 Hirsch Aug 1978 A
4108584 Radzins et al. Aug 1978 A
4136535 Audas Jan 1979 A
4141193 Joa Feb 1979 A
4141509 Radzins Feb 1979 A
4142626 Bradley Mar 1979 A
4157934 Ryan et al. Jun 1979 A
4165666 Johnson et al. Aug 1979 A
4168776 Hoeboer Sep 1979 A
4171239 Hirsch et al. Oct 1979 A
4205679 Repke et al. Jun 1980 A
4208230 Magarian Jun 1980 A
4213356 Armitage Jul 1980 A
4215827 Roberts et al. Aug 1980 A
4220237 Mohn Sep 1980 A
4222533 Pongracz Sep 1980 A
4223822 Clitheroe Sep 1980 A
4231129 Winch Nov 1980 A
4234157 Hodgeman et al. Nov 1980 A
4236955 Prittie Dec 1980 A
4275510 George Jun 1981 A
4284454 Joa Aug 1981 A
4297157 Van Vilet Oct 1981 A
4307800 Joa Dec 1981 A
4316756 Wilson Feb 1982 A
4325519 McLean Apr 1982 A
4331418 Klebe May 1982 A
4342206 Rommel Aug 1982 A
4349140 Passafiume Sep 1982 A
4364787 Radzins Dec 1982 A
4374576 Ryan Feb 1983 A
4379008 Gross et al. Apr 1983 A
4394898 Campbell Jul 1983 A
4411721 Wishart Oct 1983 A
4426897 Littleton Jan 1984 A
4452597 Achelpohl Jun 1984 A
4479836 Dickover et al. Oct 1984 A
4492608 Hirsch et al. Jan 1985 A
4501098 Gregory Feb 1985 A
4508528 Hirsch et al. Apr 1985 A
4522853 Szonn et al. Jun 1985 A
4543152 Nozaka Sep 1985 A
4551191 Kock et al. Nov 1985 A
4578052 Engel et al. Mar 1986 A
4578133 Oshefsky et al. Mar 1986 A
4586199 Birring May 1986 A
4587790 Muller May 1986 A
4589945 Polit May 1986 A
4603800 Focke et al. Aug 1986 A
4606964 Wideman Aug 1986 A
4608115 Schroth et al. Aug 1986 A
4610681 Strohbeen et al. Sep 1986 A
4610682 Kopp Sep 1986 A
4614076 Rathemacher Sep 1986 A
4619357 Radzins et al. Oct 1986 A
4625612 Oliver Dec 1986 A
4634482 Lammers Jan 1987 A
4641381 Heran et al. Feb 1987 A
4642150 Stemmler Feb 1987 A
4642839 Urban Feb 1987 A
4650173 Johnson et al. Mar 1987 A
4650406 Peters Mar 1987 A
4650530 Mahoney et al. Mar 1987 A
4663220 Wisneski et al. May 1987 A
4672705 Bors et al. Jun 1987 A
4675016 Meuli et al. Jun 1987 A
4675062 Instance Jun 1987 A
4675068 Lundmark Jun 1987 A
4686136 Homonoff et al. Aug 1987 A
4693056 Raszewski Sep 1987 A
4701239 Craig Oct 1987 A
4707970 Labombarde et al. Nov 1987 A
4720415 Vander Wielen et al. Jan 1988 A
4723698 Schoonderbeek Feb 1988 A
4726725 Baker et al. Feb 1988 A
4726874 Van Vliet Feb 1988 A
4726876 Tomsovic, Jr. Feb 1988 A
4743241 Igaue et al. May 1988 A
4751997 Hirsch Jun 1988 A
4753429 Irvine et al. Jun 1988 A
4756141 Hirsch et al. Jul 1988 A
4764325 Angstadt Aug 1988 A
4765780 Angstadt Aug 1988 A
4776920 Ryan Oct 1988 A
4777513 Nelson Oct 1988 A
4782647 Williams et al. Nov 1988 A
4785986 Daane et al. Nov 1988 A
4795416 Cogswell et al. Jan 1989 A
4795451 Buckley Jan 1989 A
4795510 Wittrock et al. Jan 1989 A
4798353 Peugh Jan 1989 A
4801345 Dussaud et al. Jan 1989 A
4802570 Hirsch et al. Feb 1989 A
4826499 Ahr May 1989 A
4840609 Jones et al. Jun 1989 A
4845964 Bors et al. Jul 1989 A
4864802 D'Angelo Sep 1989 A
4873813 Labombarde et al. Oct 1989 A
4880102 Indrebo Nov 1989 A
4888231 Angstadt Dec 1989 A
4892536 Des Marais et al. Jan 1990 A
4904440 Angstadt Feb 1990 A
4908175 Angstadt Mar 1990 A
4909019 Delacretaz et al. Mar 1990 A
4909697 Bernard et al. Mar 1990 A
4915767 Rajala et al. Apr 1990 A
4917746 Kons Apr 1990 A
4925520 Beaudoin et al. May 1990 A
4927322 Schweizer et al. May 1990 A
4927486 Fattal et al. May 1990 A
4927582 Bryson May 1990 A
4937887 Schreiner Jul 1990 A
4963072 Miley et al. Oct 1990 A
4987940 Straub et al. Jan 1991 A
4994010 Doderer-Winkler Feb 1991 A
5000806 Merkatoris et al. Mar 1991 A
5007522 Focke et al. Apr 1991 A
5021111 Swenson Jun 1991 A
5025910 Lasure et al. Jun 1991 A
5029505 Holliday Jul 1991 A
5045039 Bay Sep 1991 A
5045135 Meissner et al. Sep 1991 A
5062597 Martin et al. Nov 1991 A
5064179 Martin Nov 1991 A
5064492 Friesch Nov 1991 A
5080741 Nomura et al. Jan 1992 A
5094658 Smithe et al. Mar 1992 A
5096532 Neuwirth et al. Mar 1992 A
5108017 Adamski, Jr. et al. Apr 1992 A
5109767 Nyfeler et al. May 1992 A
5110403 Ehlert May 1992 A
5114392 McAdam et al. May 1992 A
5127981 Straub et al. Jul 1992 A
5131525 Musschoot Jul 1992 A
5131901 Moll Jul 1992 A
5133511 Mack Jul 1992 A
5147487 Nomura et al. Sep 1992 A
5163594 Meyer Nov 1992 A
5171239 Igaue et al. Dec 1992 A
5176244 Radzins et al. Jan 1993 A
5183252 Wolber et al. Feb 1993 A
5188627 Igaue et al. Feb 1993 A
5190234 Ezekiel Mar 1993 A
5195684 Radzins Mar 1993 A
5203043 Riedel Apr 1993 A
5213645 Nomura et al. May 1993 A
5222422 Benner, Jr. et al. Jun 1993 A
5223069 Tokuno et al. Jun 1993 A
5226992 Morman Jul 1993 A
5246433 Hasse et al. Sep 1993 A
5252228 Stokes Oct 1993 A
5267933 Precoma Dec 1993 A
5273228 Yoshida Dec 1993 A
5275076 Greenwalt Jan 1994 A
5275676 Rooyakkers et al. Jan 1994 A
5308345 Herrin May 1994 A
5328438 Crowley Jul 1994 A
5334446 Quantrille et al. Aug 1994 A
5340424 Matsushita Aug 1994 A
5353909 Mukai et al. Oct 1994 A
5368893 Sommer et al. Nov 1994 A
5389173 Merkatoris et al. Feb 1995 A
5393360 Bridges et al. Feb 1995 A
5407507 Ball Apr 1995 A
5407513 Hayden et al. Apr 1995 A
5410857 Utley May 1995 A
5415649 Watanabe et al. May 1995 A
5417132 Cox et al. May 1995 A
5421924 Ziegelhoffer et al. Jun 1995 A
5424025 Hanschen et al. Jun 1995 A
5429576 Doderer-Winkler Jul 1995 A
5435802 Kober Jul 1995 A
5435971 Dyckman Jul 1995 A
5449353 Watanabe et al. Sep 1995 A
5464401 Hasse et al. Nov 1995 A
5472153 Crowley et al. Dec 1995 A
5486253 Otruba Jan 1996 A
5494622 Heath et al. Feb 1996 A
5500075 Herrmann Mar 1996 A
5513936 Dean May 1996 A
5516392 Bridges et al. May 1996 A
5518566 Bridges et al. May 1996 A
5525175 Blenke et al. Jun 1996 A
5531850 Herrmann Jul 1996 A
5540647 Weiermann et al. Jul 1996 A
5540796 Fries Jul 1996 A
5545275 Herrin et al. Aug 1996 A
5545285 Johnson Aug 1996 A
5552013 Ehlert et al. Sep 1996 A
5555786 Fuller Sep 1996 A
5556246 Broshi Sep 1996 A
5556360 Kober et al. Sep 1996 A
5556504 Rajala et al. Sep 1996 A
5560793 Ruscher et al. Oct 1996 A
5575187 Dieterlen Nov 1996 A
5582497 Noguchi Dec 1996 A
5586964 Chase Dec 1996 A
5602747 Rajala Feb 1997 A
5603794 Thomas Feb 1997 A
5624420 Bridges et al. Apr 1997 A
5624428 Sauer Apr 1997 A
5628738 Suekane May 1997 A
5634917 Fujioka et al. Jun 1997 A
5636500 Gould Jun 1997 A
5643165 Klekamp Jul 1997 A
5643396 Rajala et al. Jul 1997 A
5645543 Nomura et al. Jul 1997 A
5659229 Rajala Aug 1997 A
5660657 Rajala et al. Aug 1997 A
5660665 Jalonen Aug 1997 A
5683376 Kato et al. Nov 1997 A
5683531 Roessler et al. Nov 1997 A
5685873 Bruemmer Nov 1997 A
RE35687 Igaue et al. Dec 1997 E
5693165 Schmitz Dec 1997 A
5699653 Hartman et al. Dec 1997 A
5705013 Nease Jan 1998 A
5707470 Rajala et al. Jan 1998 A
5711832 Glaug et al. Jan 1998 A
5725518 Coates Mar 1998 A
5725714 Fujioka Mar 1998 A
5743994 Roessler et al. Apr 1998 A
5745922 Rajala et al. May 1998 A
5746869 Hayden et al. May 1998 A
5749989 Linman et al. May 1998 A
5759340 Boothe et al. Jun 1998 A
5766389 Brandon et al. Jun 1998 A
5766411 Wilson Jun 1998 A
5779689 Pfeifer et al. Jul 1998 A
5788797 Herrin et al. Aug 1998 A
5817199 Brennecke et al. Oct 1998 A
5827259 Laux et al. Oct 1998 A
5829164 Kotischke Nov 1998 A
5836931 Toyoda et al. Nov 1998 A
5858012 Yamaki et al. Jan 1999 A
5865393 Kreft et al. Feb 1999 A
5868727 Barr et al. Feb 1999 A
5876027 Fukui et al. Mar 1999 A
5876792 Caldwell Mar 1999 A
5879500 Herrin et al. Mar 1999 A
5897291 Gerwe et al. Apr 1999 A
5902222 Wessman May 1999 A
5902431 Wilkinson et al. May 1999 A
5904675 Laux et al. May 1999 A
5932039 Popp et al. Aug 1999 A
5935367 Hollenbeck Aug 1999 A
5938193 Bluemle et al. Aug 1999 A
5938652 Sauer Aug 1999 A
5964390 Borresen et al. Oct 1999 A
5964970 Woolwine et al. Oct 1999 A
5971134 Trefz et al. Oct 1999 A
5983764 Hillebrand Nov 1999 A
6009781 McNeil Jan 2000 A
6022443 Rajala et al. Feb 2000 A
6036805 McNichols Mar 2000 A
6043836 Kerr et al. Mar 2000 A
6050517 Dobrescu et al. Apr 2000 A
6074110 Verlinden et al. Jun 2000 A
6076442 Arterburn et al. Jun 2000 A
6080909 Osterdahl et al. Jun 2000 A
6098249 Toney et al. Aug 2000 A
6123792 Samida et al. Sep 2000 A
6138436 Malin et al. Oct 2000 A
6142048 Bradatsch et al. Nov 2000 A
6171432 Brisebois Jan 2001 B1
6183576 Couillard et al. Feb 2001 B1
6193054 Henson et al. Feb 2001 B1
6193702 Spencer Feb 2001 B1
6195850 Melbye Mar 2001 B1
6196147 Burton et al. Mar 2001 B1
6210386 Inoue Apr 2001 B1
6212859 Bielik, Jr. et al. Apr 2001 B1
6214147 Mortellite et al. Apr 2001 B1
6217274 Svyatsky et al. Apr 2001 B1
6250048 Linkiewicz Jun 2001 B1
6264639 Sauer Jul 2001 B1
6264784 Menard et al. Jul 2001 B1
6276421 Valenti et al. Aug 2001 B1
6276587 Borresen et al. Aug 2001 B1
6280373 Lanvin Aug 2001 B1
6284081 Vogt et al. Sep 2001 B1
6287409 Stephany Sep 2001 B1
6305260 Truttmann et al. Oct 2001 B1
6306122 Narawa et al. Oct 2001 B1
6309336 Muessig et al. Oct 2001 B1
6312420 Sasaki et al. Nov 2001 B1
6314333 Rajala et al. Nov 2001 B1
6315022 Herrin et al. Nov 2001 B1
6319347 Rajala Nov 2001 B1
6336921 Kato et al. Jan 2002 B1
6336922 VanGompel et al. Jan 2002 B1
6336923 Fujioka et al. Jan 2002 B1
6358350 Glaug et al. Mar 2002 B1
6369291 Uchimoto et al. Apr 2002 B1
6375769 Quereshi et al. Apr 2002 B1
6391013 Suzuki et al. May 2002 B1
6416697 Venturino et al. Jul 2002 B1
6425430 Ward et al. Jul 2002 B1
6431038 Couturier Aug 2002 B2
6440246 Vogt et al. Aug 2002 B1
6443389 Palone Sep 2002 B1
6446795 Allen et al. Sep 2002 B1
6473669 Rajala et al. Oct 2002 B2
6475325 Parrish et al. Nov 2002 B1
6478786 Glaug et al. Nov 2002 B1
6482278 McCabe et al. Nov 2002 B1
6494244 Parrish et al. Dec 2002 B2
6514233 Glaug Feb 2003 B1
6521320 McCabe et al. Feb 2003 B2
6523595 Milner et al. Feb 2003 B1
6524423 Hilt et al. Feb 2003 B1
6533879 Quereshi et al. Mar 2003 B2
6540857 Coenen et al. Apr 2003 B1
6547909 Butterworth Apr 2003 B1
6550517 Hilt et al. Apr 2003 B1
6551228 Richards Apr 2003 B1
6551430 Glaug et al. Apr 2003 B1
6554815 Umebayashi Apr 2003 B1
6557466 Codde et al. May 2003 B2
6569275 Popp et al. May 2003 B1
6572520 Blumle Jun 2003 B2
6581517 Becker et al. Jun 2003 B1
6585841 Popp et al. Jul 2003 B1
6589149 VanEperen et al. Jul 2003 B1
6596107 Stopher Jul 2003 B2
6596108 McCabe Jul 2003 B2
6605172 Anderson et al. Aug 2003 B1
6605173 Glaug et al. Aug 2003 B2
6620276 Kuntze et al. Sep 2003 B1
6632209 Chmielewski Oct 2003 B1
6634269 Eckstein et al. Oct 2003 B2
6637583 Anderson Oct 2003 B1
6648122 Hirsch et al. Nov 2003 B1
6649010 Parrish et al. Nov 2003 B2
6656309 Parker et al. Dec 2003 B1
6659150 Perkins et al. Dec 2003 B1
6659991 Suckane Dec 2003 B2
6675552 Kunz et al. Jan 2004 B2
6682626 Mlinar et al. Jan 2004 B2
6684925 Nagate et al. Feb 2004 B2
6685130 Stauber et al. Feb 2004 B2
6722494 Nakakado Apr 2004 B2
6730189 Franzmann May 2004 B1
6743324 Hargett et al. Jun 2004 B2
6750466 Guha et al. Jun 2004 B2
6758109 Nakakado Jul 2004 B2
6766817 da Silva Jul 2004 B2
6779426 Holliday Aug 2004 B1
6808582 Popp et al. Oct 2004 B2
D497991 Otsubo et al. Nov 2004 S
6811019 Christian et al. Nov 2004 B2
6811642 Ochi Nov 2004 B2
6814217 Blumenthal et al. Nov 2004 B2
6820671 Calvert Nov 2004 B2
6823981 Ogle et al. Nov 2004 B2
6837840 Yonekawa et al. Jan 2005 B2
6840616 Summers Jan 2005 B2
6852186 Matsuda et al. Feb 2005 B1
6869494 Roessler et al. Mar 2005 B2
6875202 Kumasaka et al. Apr 2005 B2
6884310 Roessler et al. Apr 2005 B2
6893528 Middelstadt et al. May 2005 B2
6913664 Umebayashi et al. Jul 2005 B2
6913718 Ducker Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
6976521 Mlinar Dec 2005 B2
6978486 Zhou et al. Dec 2005 B2
6978964 Beccari Dec 2005 B2
7017321 Salvoni Mar 2006 B2
7017820 Brunner Mar 2006 B1
7045031 Popp et al. May 2006 B2
7047852 Franklin et al. May 2006 B2
7048725 Kling et al. May 2006 B2
7066586 da Silva Jun 2006 B2
7069970 Tomsovic et al. Jul 2006 B2
7077393 Ishida Jul 2006 B2
7130710 Popp et al. Oct 2006 B2
7137971 Tanzer Nov 2006 B2
7172666 Groves et al. Feb 2007 B2
7175584 Maxton et al. Feb 2007 B2
7195684 Satoh Mar 2007 B2
7201345 Werner Apr 2007 B2
7204682 Venturino et al. Apr 2007 B2
7214174 Allen et al. May 2007 B2
7214287 Shiomi May 2007 B2
7220335 Van Gompel et al. May 2007 B2
7247219 O'Dowd Jul 2007 B2
7252730 Hoffman et al. Aug 2007 B2
7264686 Thorson et al. Sep 2007 B2
7303708 Andrews et al. Dec 2007 B2
7326311 Krueger et al. Feb 2008 B2
7332459 Collins et al. Feb 2008 B2
7374627 McCabe May 2008 B2
7380213 Pokorny et al. May 2008 B2
7398870 McCabe Jul 2008 B2
7399266 Aiolfi et al. Jul 2008 B2
7449084 Nakakado Nov 2008 B2
7452436 Andrews Nov 2008 B2
7500941 Coe et al. Mar 2009 B2
7533709 Meyer May 2009 B2
7537215 Beaudoin et al. May 2009 B2
7569007 Thoma Aug 2009 B2
7587966 Nakakado et al. Sep 2009 B2
7618513 Meyer Nov 2009 B2
7638014 Coose et al. Dec 2009 B2
7640962 Meyer et al. Jan 2010 B2
7695464 Fletcher et al. Apr 2010 B2
7703599 Meyer Apr 2010 B2
7708849 McCabe May 2010 B2
7770712 McCabe Aug 2010 B2
7771407 Umebayashi Aug 2010 B2
7780052 McCabe Aug 2010 B2
7793772 Schafer Sep 2010 B2
7811403 Andrews Oct 2010 B2
7861756 Jenquin et al. Jan 2011 B2
7871400 Sablone et al. Jan 2011 B2
7909956 Coose et al. Mar 2011 B2
7922983 Prokash et al. Apr 2011 B2
7935296 Koele et al. May 2011 B2
7975584 McCabe Jul 2011 B2
7987964 McCabe Aug 2011 B2
8007484 McCabe et al. Aug 2011 B2
8007623 Andrews Aug 2011 B2
8011493 Giuliani et al. Sep 2011 B2
8016972 Andrews et al. Sep 2011 B2
8025652 Hornung et al. Sep 2011 B2
8062279 Miyamoto Nov 2011 B2
8062459 Nakakado et al. Nov 2011 B2
8100173 Hornung et al. Jan 2012 B2
8172977 Andrews et al. May 2012 B2
8176573 Popp et al. May 2012 B2
8178035 Edvardsson et al. May 2012 B2
8182624 Handziak May 2012 B2
8182735 Edvardsson May 2012 B2
8182736 Edvardsson May 2012 B2
8257237 Burns, Jr. et al. Sep 2012 B2
8273003 Umebayashi et al. Sep 2012 B2
8293056 McCabe Oct 2012 B2
8295552 Mirtich et al. Oct 2012 B2
8381489 Freshwater et al. Feb 2013 B2
8398793 Andrews et al. Mar 2013 B2
8417374 Meyer et al. Apr 2013 B2
8439814 Piantoni et al. May 2013 B2
8460495 McCabe Jun 2013 B2
8485956 Burns, Jr. et al. Jul 2013 B2
8512496 Makimura Aug 2013 B2
8607959 Papsdorf et al. Dec 2013 B2
8656817 Fritz et al. Feb 2014 B2
8663411 McCabe Mar 2014 B2
8673098 McCabe Mar 2014 B2
8794115 McCabe Aug 2014 B2
20010012813 Bluemle Aug 2001 A1
20010017181 Otruba et al. Aug 2001 A1
20010035332 Zeitler Nov 2001 A1
20010042591 Milner et al. Nov 2001 A1
20020040630 Piazza Apr 2002 A1
20020046802 Tachibana et al. Apr 2002 A1
20020059013 Rajala et al. May 2002 A1
20020084568 Codde et al. Jul 2002 A1
20020096241 Instance Jul 2002 A1
20020125105 Nakakado Sep 2002 A1
20020162776 Hergeth Nov 2002 A1
20030000620 Herrin et al. Jan 2003 A1
20030015209 Gingras et al. Jan 2003 A1
20030051802 Hargett et al. Mar 2003 A1
20030052148 Rajala et al. Mar 2003 A1
20030066585 McCabe Apr 2003 A1
20030083638 Molee May 2003 A1
20030084984 Glaug et al. May 2003 A1
20030089447 Molee et al. May 2003 A1
20030115660 Hopkins Jun 2003 A1
20030121244 Abba et al. Jul 2003 A1
20030121614 Tabor et al. Jul 2003 A1
20030135189 Umebayashi Jul 2003 A1
20030150551 Baker Aug 2003 A1
20030226862 Vogt et al. Dec 2003 A1
20040007328 Popp et al. Jan 2004 A1
20040016500 Tachibana et al. Jan 2004 A1
20040044325 Corneliusson Mar 2004 A1
20040073187 Karami Apr 2004 A1
20040084468 Kelbert et al. May 2004 A1
20040087425 Ng et al. May 2004 A1
20040098791 Faulks May 2004 A1
20040112517 Groves et al. Jun 2004 A1
20040122413 Roessler et al. Jun 2004 A1
20040157041 Leboeuf et al. Aug 2004 A1
20040164482 Edinger Aug 2004 A1
20040167493 Jarpenberg et al. Aug 2004 A1
20040177737 Adami Sep 2004 A1
20040182213 Wagner et al. Sep 2004 A1
20040182497 Lowrey Sep 2004 A1
20040216830 Van Eperen Nov 2004 A1
20040228709 Ueda Nov 2004 A1
20050000628 Norrby Jan 2005 A1
20050022476 Hamer Feb 2005 A1
20050026760 Yamamoto et al. Feb 2005 A1
20050056678 Nomura et al. Mar 2005 A1
20050077418 Werner et al. Apr 2005 A1
20050101929 Waksmundzki et al. May 2005 A1
20050139713 Weber et al. Jun 2005 A1
20050196538 Sommer et al. Sep 2005 A1
20050230056 Meyer et al. Oct 2005 A1
20050230449 Meyer et al. Oct 2005 A1
20050233881 Meyer Oct 2005 A1
20050234412 Andrews et al. Oct 2005 A1
20050257881 Coose et al. Nov 2005 A1
20050275148 Beaudoin et al. Dec 2005 A1
20060011030 Wagner et al. Jan 2006 A1
20060021300 Tada et al. Feb 2006 A1
20060099055 Stefani May 2006 A1
20060137298 Oshita et al. Jun 2006 A1
20060199718 Thoma Sep 2006 A1
20060201619 Andrews Sep 2006 A1
20060224137 McCabe et al. Oct 2006 A1
20060265867 Schaap Nov 2006 A1
20060266465 Meyer Nov 2006 A1
20070074953 McCabe Apr 2007 A1
20070131343 Nordang Jun 2007 A1
20070131817 Fromm et al. Jun 2007 A1
20070140817 Hansl Jun 2007 A1
20080041206 Mergola et al. Feb 2008 A1
20080125738 Tsuji et al. May 2008 A1
20080208152 Eckstein et al. Aug 2008 A1
20080210067 Schlinz et al. Sep 2008 A1
20080223537 Wiedmann Sep 2008 A1
20080281286 Petersen Nov 2008 A1
20080287898 Guzman Reyes et al. Nov 2008 A1
20090020211 Andrews et al. Jan 2009 A1
20090126864 Tachibana et al. May 2009 A1
20090198205 Malowaniec et al. Aug 2009 A1
20090212468 Edvardsson et al. Aug 2009 A1
20100078119 Yamamoto Apr 2010 A1
20100078120 Otsubo Apr 2010 A1
20100078127 Yamamoto Apr 2010 A1
20100193135 Eckstein et al. Aug 2010 A1
20100193138 Eckstein Aug 2010 A1
20100193155 Nakatani Aug 2010 A1
20100249737 Ito et al. Sep 2010 A1
20110003673 Piantoni et al. Jan 2011 A1
20110033270 Toncelli Feb 2011 A1
20110106042 Sablone et al. May 2011 A1
20120079926 Long et al. Apr 2012 A1
20120123377 Back May 2012 A1
20120172828 Koenig et al. Jul 2012 A1
20120270715 Motegi et al. Oct 2012 A1
20120285306 Weibelt Nov 2012 A1
20120310193 Ostertag Dec 2012 A1
20120312463 Ogasawara et al. Dec 2012 A1
20130066613 Russell Mar 2013 A1
20130079741 Nakashita et al. Mar 2013 A1
20130239765 McCabe et al. Sep 2013 A1
20140155855 Romzek et al. Jun 2014 A1
Foreign Referenced Citations (150)
Number Date Country
1007854 Nov 1995 BE
1146129 May 1983 CA
1153345 Sep 1983 CA
1190078 Jul 1985 CA
1210744 Sep 1986 CA
1212132 Sep 1986 CA
1236056 May 1988 CA
1249102 Jan 1989 CA
1292201 Nov 1991 CA
1307244 Sep 1992 CA
1308015 Sep 1992 CA
1310342 Nov 1992 CA
2023816 Mar 1994 CA
2330679 Sep 1999 CA
2404154 Oct 2001 CA
2541194 Oct 2006 CA
2559517 Apr 2007 CA
2337700 Aug 2008 CA
2407867 Jun 2010 CA
2699136 Oct 2010 CA
142627 Jun 2013 CA
2600432 Jul 2013 CA
2573445 Mar 2014 CA
2547464 Apr 2014 CA
155189 Dec 2014 CA
202105105 Jan 2012 CN
60123502 Oct 2006 DE
60216550 Dec 2006 DE
102005035544 Feb 2007 DE
1020060472-80 Apr 2007 DE
102005048868 Apr 2007 DE
102007063209 Jun 2009 DE
0044206 Jan 1982 EP
0048011 Mar 1982 EP
0089106 Sep 1983 EP
0099732 Feb 1984 EP
0206208 Dec 1986 EP
0304140 Feb 1989 EP
0411287 Feb 1991 EP
0439897 Aug 1991 EP
0455231 Nov 1991 EP
510251 Oct 1992 EP
0589859 Mar 1994 EP
0676352 Apr 1995 EP
0652175 May 1995 EP
0811473 Dec 1997 EP
0812789 Dec 1997 EP
0901780 Mar 1999 EP
0990588 Apr 2000 EP
1132325 Sep 2001 EP
1035818 Apr 2002 EP
1199057 Apr 2002 EP
1366734 Dec 2003 EP
1393701 Mar 2004 EP
1415628 May 2004 EP
1433731 Jun 2004 EP
1571249 Sep 2005 EP
1619008 Jan 2006 EP
1707168 Oct 2006 EP
1726414 Nov 2006 EP
1302424 Dec 2006 EP
1801045 Jun 2007 EP
1870067 Dec 2007 EP
1941853 Jul 2008 EP
1961403 Aug 2008 EP
1994919 Nov 2008 EP
2180864 Nov 2008 EP
2211812 Nov 2008 EP
2103427 Sep 2009 EP
2233116 Sep 2010 EP
2238955 Oct 2010 EP
1175880 May 2012 EP
2508156 Oct 2012 EP
1868821 Jan 2013 EP
2036522 Mar 2013 EP
1272347 Apr 2013 EP
2032338 Aug 2013 EP
2659869 Nov 2013 EP
2332505 Dec 2013 EP
2412348 Mar 2014 EP
2829257 Jan 2015 EP
509706 Nov 1982 ES
520559 Dec 1983 ES
296211 Dec 1987 ES
2310447 Jul 2009 ES
2311349 Sep 2009 ES
2177355 Nov 1973 FR
2255961 Jul 1975 FR
1132325 Oct 2006 FR
2891811 Apr 2007 FR
191101501 Jan 1912 GB
439897 Dec 1935 GB
856389 Dec 1960 GB
941073 Nov 1963 GB
1096373 Dec 1967 GB
1126539 Sep 1968 GB
1346329 Feb 1974 GB
1412812 Nov 1975 GB
1467470 Mar 1977 GB
2045298 Oct 1980 GB
2115775 Sep 1983 GB
2288316 Oct 1995 GB
1374910 May 2010 IT
1374911 May 2010 IT
428364 Jan 1992 JP
542180 Feb 1993 JP
576566 Mar 1993 JP
626160 Feb 1994 JP
626161 Feb 1994 JP
6197925 Jul 1994 JP
9299398 Nov 1997 JP
10035621 Feb 1998 JP
10-277091 Oct 1998 JP
2008-161300 Jul 2008 JP
0602047 May 2007 SE
529295 Jun 2007 SE
532059 Oct 2009 SE
WO9315248 Aug 1993 WO
WO9403301 Feb 1994 WO
WO9723398 Jul 1997 WO
WO9732552 Sep 1997 WO
WO9747265 Dec 1997 WO
WO9747810 Dec 1997 WO
WO9821134 May 1998 WO
WO9855298 Dec 1998 WO
WO9907319 Feb 1999 WO
WO9913813 Mar 1999 WO
WO9932385 Jul 1999 WO
WO9965437 Dec 1999 WO
WO 0102277 Jan 2001 WO
WO0143682 Jun 2001 WO
WO0172237 Oct 2001 WO
WO03031177 Apr 2003 WO
WO2004007329 Jan 2004 WO
WO2005075163 Aug 2005 WO
WO2006038946 Apr 2006 WO
WO2007029115 Mar 2007 WO
WO2007039800 Apr 2007 WO
WO2007126347 Nov 2007 WO
WO2008001209 Jan 2008 WO
WO2008015594 Feb 2008 WO
WO2008037281 Apr 2008 WO
WO2008123348 Oct 2008 WO
WO2008155618 Dec 2008 WO
WO2009065497 Mar 2009 WO
WO2009065500 Mar 2009 WO
WO2010028786 Mar 2010 WO
WO2011101773 Aug 2011 WO
WO2012123813 Sep 2012 WO
WO 2014021897 Feb 2014 WO
Non-Patent Literature Citations (1)
Entry
European Search Report, related to EP patent application No. 14178233, dated Nov. 6, 2014, 7 pages.
Related Publications (1)
Number Date Country
20150028612 A1 Jan 2015 US
Provisional Applications (1)
Number Date Country
61857905 Jul 2013 US