This application claims the benefit of Chinese Patent Application No. 201010130174.1 filed on Mar. 17, 2010, and Chinese Patent Application No. 201010130195.3 filed on Mar. 17, 2010 in the State Intellectual Property Office of China, the disclosure of which is incorporated herein by reference.
1. Field of the Invention
The present invention relates to a structure of an air blowing device, and particularly to a ventilating fan in which a sirocco fan is provided.
2. Description of the Related Art
A known ventilating fan 100 is shown in
The air outlet 112 of the sirocco fan 120 has a square shape. However, one end of the duct communicating with the outdoors has a round shape. Meanwhile, an area of the air outlet 112 of the sirocco fan 120 is larger than a section area of the duct. Therefore, a wind path area is necessary to be reduced at the metal adapter 1500. As shown in
The above air blowing device of the prior art has the following problems: the air blown by the sirocco fan 120 is difficult to be smoothly transformed since the square shape of the air outlet 112 is different from the round shape of the duct. That is to say, the air blown by the sirocco fan 120 is not uniform and thus prone to generate turbulence although the air outlet is evenly reduced. The ventilating fan cannot ensure amount of the blown air due to this turbulence. Thus, a large sirocco fan is required to ensure the amount of the blown air. However, the large sirocco fan will generate stronger noise.
It is apparent from the above description that the known metal adapter 1500 is composed of the shutter 1200, the air guiding structure 1100, the two sheaths 1230, the two rivets 1240 and the rubber buckle 1250.
The inventors of the present invention have found that the above adapter structure of the prior art has the following disadvantages or problems:
The adapter structure cannot be smoothly connected with the casing provided with the fan since the area of the air inlet 1110 is too large. That is to say, the air outlet of the fan is sharply enlarged at the air inlet 1110. In this way, when wind generated by the fan is blown towards the air inlet 1110, the wind will collide with the sidewall 1130 of the air inlet so as to generate turbulence and the amount of the wind is thus reduced while noise is generated;
Since the shutter 1200 entirely has the shape formed of the plane and the folded edge, a slit is formed between the shutter 1200 and the round air outlet 1120, thereby causing poor air tightness (prone to reverse airflow into the indoor from the outdoor through the duct);
In addition, it is shown from
The present invention has been made to overcome or alleviate at least one aspect of the above mentioned disadvantages.
Accordingly, an object of the present invention is to provide a ventilating fan that can provide a greater wind amount with a sirocco fan having the same performance as described above.
Another object of the present invention is to provide a ventilating fan that can achieve a quieter operation with a sirocco fan having the same performance as described above.
For the above purposes, the present invention provides a ventilating fan that comprises a sirocco fan disposed in a box-shaped body and an adapter connected to an air outlet of the sirocco fan. The sirocco fan is composed of two opposite scroll plates with scroll shapes and a casing plate sandwiched between the two scroll plates. An overall air inlet of the sirocco fan is disposed on a first scroll plate, and a central line of the air outlet of the adapter is offset towards a second scroll plate.
The adapter has a square air inlet and a round air outlet. An outside edge of the air inlet of the adapter is consistent in position with an end surface of the second scroll plate. The projection of the air outlet of the adapter is located within a projection plane of the air inlet and connected to the outside edge of the air inlet.
A flexural portion is formed to bend an air flowing direction at the casing plate and the adapter in a wind path between an expanding portion formed by the sirocco fan and the adapter and the air outlet of the adapter.
A tongue portion is disposed at a position closest to outside of fan blades in the casing plate. The flexural portion is formed by a first bending portion and a second bending portion, which are continuous to each other and bend the air flowing direction, at the tongue portion and a portion joined with an opposite side relative to the tongue portion and at the air outlet of the sirocco fan.
The expanding portion extends to an opposite side relative to the tongue portion to provide a first straight portion of the casing plate. The opposite side relative to the tongue portion linearly extends towards the air outlet of the ventilating fan to provide a second straight portion of the casing plate. The first and second straight portions at a peripheral portion of the casing compose the first bending portion to inwardly bend the wind path, and the second straight portion and a round portion of the adapter compose the second bending portion to outwardly bend the wind path. The first and second bending portions compose the flexural portion.
A tongue portion is disposed at a position closest to outside of fan blades of the casing plate. The expanding portion extends to an opposite side relative to the tongue portion to provide a first straight portion of the casing plate. The opposite side relative to the tongue portion linearly extends towards the air outlet of the ventilating fan to provide a second straight portion of the casing plate. The tongue portion linearly extends towards the air outlet of the ventilating fan to provide a third straight portion of the casing plate. The first and second straight portions at a peripheral portion of the casing compose the first bending portion to inwardly bend the wind path, the second straight portion and a round portion of the adapter compose the second bending portion to outwardly bend the wind path, and the third straight portion and the round portion of the adapter compose a third bending portion to inwardly bend the wind path. The first, second and third bending portions compose the flexural portion.
The expanding portion extends to an opposite side relative to the tongue portion to provide a first straight portion of the casing plate. The opposite side relative to the tongue portion linearly extends towards the air outlet of the ventilating fan to provide a second straight portion of the casing plate. The first and second straight portions at a peripheral portion of the casing compose the first bending portion to inwardly bend the wind path, and the second straight portion and a round portion of the adapter compose the second bending portion to outwardly bend the wind path. A bending extent of the second bending portion is smaller than that of the first bending portion.
Further, the adapter of the present invention comprises an air guiding structure and a shutter mounted inside the air guiding structure, the air guiding structure is divided into two parts of an air inlet and an air outlet. A sidewall forms a smooth transition connection between the air inlet and the air outlet. A shape of the air inlet is the same with a shape of the air outlet of the sirocco fan so as to form a communicating structure for direct and undisturbed connection. The shutter has an arcuate structure bending from a centre to both sides so as to match the shape of the air outlet and the shutter is fixed on an indoor side of the air outlet.
The air outlet of the air guiding structure is located in a projection plane of the air inlet of the air guiding structure and offset to be connected with an edge of the air inlet.
A central axis of the air outlet of the air guiding structure is offset towards the air inlet relative to the central axis of the air inlet of the air guiding structure.
The air guiding structure is integrally formed by injection moulding with resin.
Retainers are provided around the air guiding structure to fix the adapter inside the metal adapter.
Retainers are provided around the air guiding structure, the retainers comprise a plurality of elastic clips disposed on the periphery of the adapter of which each front end is provided with a protrusion, and a wall of the air outlet of the metal adapter is provided with a plurality of openings at positions corresponding to the protrusions.
The shutter has a thin structure and air guiding sheets are provided both on a lower surface of the air guiding structure close to the outdoor side and on an upper surface of the air guiding structure close to the indoor side.
The present invention is advantageous in that no turbulence is generated at the adapter and the wind amount of the ventilating fan is thus ensured and noise is reduced. Therefore, the present invention can provide a small air blowing device with high efficiency and improve stability of performance of the product.
Exemplary embodiments of the present disclosure will be described hereinafter in detail with reference to the attached drawings, wherein the like reference numerals refer to the like elements. The present disclosure may, however, be embodied in many different forms and should not be construed as being limited to the embodiment set forth herein; rather, these embodiments are provided so that the present disclosure will be thorough and complete, and will fully convey the concept of the disclosure to those skilled in the art.
It is noted that the adapter of the prior art as shown in
The following description is made with reference to actual flow of air in the adapter 2000 therein.
The central line 2121 of the round air outlet 2120 is offset towards the second scroll plate 300 as described above. That is to say, an outside edge 1311 of the air inlet 2110 of the adapter 2000 is consistent in position with an end surface 310 of the second scroll plate 300, and projection of the air outlet 2120 of the adapter 2000 towards the sirocco fan 120 is fell within the air inlet 2110 and connected to the outside edge 1311. Therefore, a distance between the central line 2121 of the round air outlet 2120 and the second scroll plate 300 is smaller than a distance between the central line 2121 of the round air outlet 2120 and the first scroll plate 200. The central line 2121 is disposed to be closer to the second scroll plate 300 rather than right in the middle between the first scroll plate 200 and the second scroll plate 300.
As described above, the outside edge 1311 of the air inlet 2110 of the adapter 2000 is consistent in position with the end surface 310 of the second scroll plate 300. In other words, projection of the air outlet 2120 of the adapter 2000 is connected with the outside edge 1311 of the air inlet 2110 of the adapter 2000 in a projection plane, and the air outlet 2120 of the adapter 2000 is offset from the central line of the sirocco fan. Accordingly, although the wind blown by the sirocco fan 120 is not uniform, resistance suffered by the wind when the wind flows from the air inlet 2110 to the air outlet 2120 of the adapter 2000 becomes less since the outside edge 1311 of the air inlet 2110 can be located in the same plane with the end surface 310 of the second scroll plate 300. Therefore, more air streams are concentrated and the air streams flow smoothly. With the above structure, the wind blown by fan blades of the sirocco fan 120 more smoothly flow along the second scroll plate 300 as compared with the first scroll plate 200 which is provided with the overall air inlet 210 of the ventilating fan, so that wind beams at the second scroll plate 300 are more than wind beams at the first scroll plate 200.
That is to say, the wind blown through the air outlet 112 of the sirocco fan 120 is slowly bent from the air inlet 210 of the ventilating fan, concentrated along the second scroll plate 300, and then blown out. The first scroll plate 200 and the air inlet 210 are located in the same plane so that the wind passing through the fan blades of the sirocco fan 120 cannot sharply flow towards the first scroll plate 200 in a flexural manner. Therefore, the square air outlet 112 of the sirocco fan can be smoothly transformed to a round duct (not shown) by reducing the wind path area from the first scroll plate 200 to the second scroll plate 300 to decrease influence on the air streams where the air outlet 2120 of the adapter 2000 is disposed to be closer to the second scroll plate 300.
In other words, the adapter 2000 does not narrow on a side closer to the second scroll plate 300. The wind path area can be reduced in a short distance by greatly narrowing the adapter 2000 on a side closer to the first scroll plate 200 to reduce effect generated by the reduction of the adapter. This can prevent occurrence of the turbulence so as to easily ensure the wind amount. Further, noise can be further reduced.
Furthermore, the narrowing of the wind path at the adapter 2000 means that a smoothly narrow shape can be easily formed by slidingly molding a mould in the air flowing direction when the adapter 2000 is being molded. A portion of the ventilating fan may be narrowed on the fan side, i.e. the sirocco fan 120 side. However, this narrowing on the fan side is made at a portion close to the fan blades so that the narrowing cannot be achieved in a short distance. This is because the air blown by the fan blades directly collides with the narrow portion so as to generate turbulence, so that the narrowing on the fan side must be made in a long distance. That is to say, the narrowing of the adapter 2000 in the present embodiment is the most desirable.
In addition, the adapter 2000 may be set to be shorter with the above structure. Specifically, an adapter of the prior art formed of a metal may be used to maintain the length thereof when a shutter (not shown) is disposed at an opening end (i.e., on the outdoor side) of the air outlet 112 of the sirocco fan 120 during transforming the shape of the air outlet 112 of the sirocco fan 120 to the shape of the duct. The shutter may be disposed at a position closer to the body 110 of the ventilating fan as compared with the prior art. Therefore, a screw cannot contact with the shutter even if the screw is used to fix the duct and the metal adapter 1500 when the duct is mounted as in the prior art. That is to say, the adapter 2000 is capable of maintaining the same length with that of the metal adapter 1500 as shown in
A tongue portion 440 is disposed at a position closest to outside of the blades in the casing plate 400. An expanding portion 740 is provided for expanding the wind path 700 in a rotating direction of the fan blades at an extending portion from the tongue portion 440. A first straight portion 410 of the casing plate 400 is provided in an extension of the expanding portion 740, which is configured by extending to an opposite side 450 of the tongue portion 440. The opposite side 450 relative to the tongue portion 440 linearly extends towards the air outlet 2120 of the ventilating fan to provide a second straight portion 420 of the casing plate 400. The tongue portion 440 linearly extends towards the air outlet 2120 of the ventilating fan to provide a third straight portion 430 of the casing plate 400.
The first straight portion 410 inclines at an angle (θ1 shown in
The first and second straight portions 410, 420 at a peripheral portion of the casing compose a first bending portion 710 to inwardly bend the wind path. The second straight portion 420 and a round portion 138 of the adapter 2000 compose a second bending portion 720 to outwardly bend the wind path. The third straight portion 430 and the round portion 138 of the adapter 2000 compose a third bending portion 730 to inwardly bend the wind path. The first, second and third bending portions 710, 720, 730 compose the flexural portion 780. It is apparent from the above that the flexural portion 780 is formed by bending the air flowing direction at the casing plate 400 and the adapter 2000 in the wind path between the expanding portion 740, which is formed by the sirocco fan 120 and the adapter 2000, and the air outlet 2120 of the adapter 2000.
The direction of the outward bending is an expanding direction of a sidewall of the casing as indicated by the direction A in
The expansion of the wind path 700 is suppressed by the first straight portion 410 in a field between the tongue portion 440 and a connecting portion for joining the first and second straight portions 410, 420 at the opposite side 450 relative to the tongue portion 440. Therefore, a static pressure in the sirocco fan 120 can be more stable and disorder of the wind beams also can be prevented.
Further, the first bending portion 710 reduces a colliding angle of the air blown from the fan blades to the third straight portion 430 and thereby reduces turbulence arose at that portion. The direction of the air flowing along the first straight portion 410 side is modified by a centrifugal force of the fan blades in the second straight portion 420 of the opposite side 450 during a flowing process of the air towards the air outlet 112 of the sirocco fan 120. Moreover, the airstream modified in the first bending portion 710 is also micro-modified in the second bending portion 720 while the air flows from the air outlet 112 of the sirocco fan 120 to the adapter 2000.
It is clearly shown in the front elevation view of
With the above structure, the wind blown by the fan blades flows along an inside of the casing plate 400 under action of the centrifugal force. Meanwhile, the air flowing direction of the air in the sirocco fan 120 is modified by means of the flexural portion 780, so that densities of the wind beams are uniform and the airstream is smooth. Further, the wind path is formed in a bending way due to the flexural portion 780. Therefore, noise generated by the fan blades collides with inside walls of the first and second straight portions 410, 430 or inside walls of the second straight portion 420 and the adapter 2000 while spreading towards the air outlet 2120 of the adapter 2000. That is to say, the noise can be reduced by repeated collision thereof.
As described above, the adapter 2000 is capable of smoothly transforming a square wind path into a round wind path in order to fit the shape of the duct. Therefore, the smooth airstream can be ensured in a narrow portion 139 even if the adapter 2000 symmetrically narrows in a left-right direction in the front elevation view of
With reference to
The bending extent of the second bending portion 720 is less than the bending extent of the first bending portion 710. Therefore, a sound vibration generated when the air passing through the flexural portion 780 collides with the flexural portion 780 will not spread and is concentrated, and communicate with inside of the duct by means of the adapter 2000. In other words, the airstream modified in the first bending portion 710 is also micro-modified by the second bending portion 720 to ensure stability of the airstream and depress noise value.
Alternatively, the values of θ2˜θ5 can be values different from the values defined in the above embodiment. The tilt angle of the first straight portion 410, the angles of the first and second straight portions 410, 420, the angle of the second straight portion 420 relative to the adapter 2000, the bending angles of the third straight portion 460 and the adapter 2000 may be in the range from 5 to 15 degrees, respectively. It is noted herein that dimensions of the angles are relative values. That is to say, θ3 may be about two times than θ4 and θ4 may be equal to θ5.
In addition, the sirocco fan 120 constructed by sandwiching the casing plate 400 between the first scroll plate 200 and the second scroll plate 300 is described in the present embodiment. Alternatively, the sirocco fan 120 is not necessary to be composed of components different to each other. For example, the first scroll plate 200 is formed of a piece of metal plate, and the second scroll plate 300 and the casing plate 400 are formed by integrally molding with a resin, or the first scroll plate 200 and the casing plate 400 are integrally formed by molding with a resin, and the second scroll plate 300 is formed of a metal plate.
When the first scroll plate 200 and the casing plate 400 is integrally formed by molding with a resin, a curved surface connection is the most desirable in order to achieve a smoother connection between the first scroll plate 200 and the casing plate 400 as described above. With this structure, the air outlet 112 of the sirocco fan 120 forms a right angle with respect to the second scroll plate 300 side and the first scroll plate 200 side forms in a curve.
Further, the air inlet of the adapter 2000 is disposed to have the same shape with the shape of the air outlet 112 within a range of the square shape of the air inlet 2110 so as to fit with that air outlet as shown in
Inside and outside structures of the adapter 2000 according to the present invention are described in detail hereinafter.
With reference to
As shown in
Again with reference to
Since the shutter 2200 is designed to be the arcuate structure so as to match the shape of the air outlet 2120 of the air guiding structure 2100, the arcuate structure is capable of tightly fitting with the air outlet 2120 of the air guiding structure 2100 to prevent occurrence of a slit and thus poor tightness.
The shutter 2200 is designed to have a thin structure which is light in weight in the present embodiment. The shutter 2200 is fixed in the air outlet 2120 of the air guiding structure 2100 near the indoor side, i.e. the shutter 2200 is close to the casing provided with the fan, so as to enlarge a wind pressure. A thickness of the shutter 2200 changes from 1.2 mm of the prior art to a thickness of 0.8 mm since the shutter 2200 is designed to have the thin structure which is light in weight. The shutter 2200 is more easily opened under action of the wind blown by the casing if the outer surface of the shutter 2200 is further provided with reinforcing ribs having a grid shape. This contributes to reduce noise.
In above air guiding structure 2100 of the present invention, the shape of the air outlet of the fan can be transformed into the shape of the duct in a shorter distance than the metal adapter 1500 of the prior art. That is to say, the shape of the air outlet of the fan is transformed into the shape of the duct by means of the air guiding structure 2100 while maintaining an entire length of the metal adapter 1500 of the prior art. The shutter 2200 located at the opening end (on the outdoor side) of the air outlet 2120 of the air guiding structure 2100 can be disposed to be closer to the body side of the ventilating fan than the prior art. Therefore, when the duct is mounted in the same way as the prior art, the screw 1300 cannot contact with the shutter 2200 even if the screw 1300 is used as shown in
Number | Date | Country | Kind |
---|---|---|---|
2010 1 0130174 | Mar 2010 | CN | national |
2010 1 0130195 | Mar 2010 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN2011/000209 | 2/10/2011 | WO | 00 | 10/11/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/113297 | 9/22/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1526917 | Leland | Feb 1925 | A |
2225398 | Hamblin | Dec 1940 | A |
2336209 | Anderson | Dec 1943 | A |
2994348 | Cape | Aug 1961 | A |
3145912 | Weis | Aug 1964 | A |
3727953 | Martin | Apr 1973 | A |
3811790 | Mikulina | May 1974 | A |
3846040 | Dennis | Nov 1974 | A |
D297043 | Vander Wilt | Aug 1988 | S |
5690881 | Horie et al. | Nov 1997 | A |
6192838 | Matsuo et al. | Feb 2001 | B1 |
6203423 | Craw et al. | Mar 2001 | B1 |
6261175 | Larson | Jul 2001 | B1 |
6488579 | Larson et al. | Dec 2002 | B2 |
6902373 | Glanton | Jun 2005 | B1 |
7055866 | Tempas | Jun 2006 | B2 |
7203416 | Craw et al. | Apr 2007 | B2 |
7216396 | Slawinski | May 2007 | B2 |
7286350 | Lee | Oct 2007 | B2 |
D571908 | Myers | Jun 2008 | S |
D576722 | Nishio | Sep 2008 | S |
7418763 | Shaver | Sep 2008 | B2 |
7473070 | Song et al. | Jan 2009 | B2 |
8876582 | Gao | Nov 2014 | B2 |
8961126 | Tom | Feb 2015 | B1 |
9028212 | Tom | May 2015 | B1 |
20050214114 | Huang et al. | Sep 2005 | A1 |
20070007762 | Hull | Jan 2007 | A1 |
20080207111 | Stroehla | Aug 2008 | A1 |
20080233856 | Okawa | Sep 2008 | A1 |
20090170421 | Adrian et al. | Jul 2009 | A1 |
20090286462 | Goto | Nov 2009 | A1 |
20130130612 | Penlesky et al. | May 2013 | A1 |
20140037478 | Yuan et al. | Feb 2014 | A1 |
20140065940 | Penlesky et al. | Mar 2014 | A1 |
20140065945 | Zakula et al. | Mar 2014 | A1 |
20160208814 | Wu | Jul 2016 | A1 |
20180023588 | Van Der Kooi | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
2748674 | Dec 2005 | CN |
1752460 | Mar 2006 | CN |
1763381 | Apr 2006 | CN |
201347873 | Nov 2009 | CN |
201621088 | Nov 2010 | CN |
847739 | Aug 1952 | DE |
4219642 | Oct 1993 | DE |
2006046170 | Feb 2006 | JP |
2007101145 | Apr 2007 | JP |
Entry |
---|
Yang, CN 2748674 Y English machine translation, Dec. 28, 2005. |
Jianrong, et al, CN 201347873 Y English machine translation, Nov. 18, 2009. |
International Search Report for International Application No. PCT/CN2011/000209, dated May 12, 2011. |
Number | Date | Country | |
---|---|---|---|
20130072105 A1 | Mar 2013 | US |