The invention relates to a ventilation insert for ventilating textiles, shoes and soles of shoes, gloves, protective helmets and their visors, protective goggles, insulating mats, cushioning mats, knee pads and shin pads, headgear and similar articles.
Previously known ventilation for the named articles essentially uses micro fibers, open-pored materials, or ventilation openings.
Openings or open-pored materials still offer the most effective possibility for air exchange and the concomitant release of water vapor and heat. Openings or perforations through the material, for example in jackets, employ solutions such as zippers or hook-and-loop (Velcro) fasteners that with manual opening and closing prevent penetration of water or allow for ventilation. It is also possible with the use of fiber layers to cover the openings and prevent penetration of water.
Shoes often have openings in the top portion that are connected in part with structures, for example lamellas, that are supposed to provide for improved supply of external air or exhaust water vapor. Some shoes have openings in the sole of the shoe. These openings are covered with a special membrane or a fiber layer in order to avoid penetration of water and foreign objects.
Special membranes or fiber layers in which ventilation openings are to be protected from penetration of water and foreign objects prevent to a considerable degree the circulation of air and thus removal of used air or water vapor. As regards use of special membranes, it is a matter of laboratory models that in fact mostly fail to yield noticeable success. Materials of this kind also have the disadvantage that they are permeable from only one side. That is, if water vapor is to exit, it is not possible for external air to enter due to the properties of the material, namely the orientation of the capillaries.
Attempts at a solution are already known according to which fibers of textile surfaces are coated or impregnated with an elastomer (a so-called super absorbent) so that they swell up when in contact with water and seal by means of an increase of volume due to the water in the interstices between the fibers and thus prevent penetration of water. The use of super absorption in textile surfaces turns out to be disadvantageous in that corresponding textiles fill their entire surfaces with water leading to a large increase in their weight. There is also the disadvantage that super absorbents cannot permanently be connected with textile fibers, that they do not seal permanently, and that corresponding textiles often evince a jell-like consistency after absorption of moisture that is often felt to be unpleasant.
The most effective possibility for ventilation is still the use of open-pored materials or openings. Different openings in textiles and shoes offer the possibility of protection by hand using covering elements against entry of water. Appropriate covering elements are preferably fastened in place by zippers or hook-and-loop fasteners or they are fixed constituents of textiles and shoes that can be adjusted as to their position by turning or pushing.
These solutions previously mentioned have a disadvantage, however, in that water can penetrate, that they allow insufficiently for ventilation, or that they must be protected by hand against penetration of fluids.
Super absorbents are also used in the construction industry to seal against leaks, for example in deep sea cables and for waterproofing roofs. In these cases it is a matter of sealing against penetration of fluids and not of protection of ventilation openings.
Fiber layers that prevent penetration of water by absorbing moisture have the disadvantage that they let air through only to a much reduced amount because of their relatively great thickness and material strength. In addition, they can conduct water into the internal spaces due to their capillary action (moisture bridge). They thus take a long time to dry out again. Formation of mold and bacteria is possible.
A compromise had to be entered into up to now between wearing comfort and function in order to prevent penetration of water and dirt.
The invention addresses the task of creating a ventilation insert with ventilation openings that close independently in the presence of moisture or low temperatures and thus prevent penetration of water or cold air. They must dry out quickly and in drying or with rising temperatures open again and effectuate systematic ventilation. This kind of ventilation inserts must be capable of being manufactured in a simple manner as to design, be cost-effective, and be made from materials that do not endanger health.
The task is solved according to the invention by a ventilation insert for ventilation of textiles, shoes and soles of shoes, gloves, protective goggles, insulating mats, cushioning mats, knee pads and shin pads, headgear and similar articles, characterized in that an open-pored carrier layer is provided with an open-pored cover or individual covering elements that at least in part consist of material that undergoes a swelling or shrinking effect or change of form at least by means of a fluid, moisture, a temperature differential, or an electrical voltage or such a material is connected with the carrier layer, the cover, and/or a covering element or represents the carrier layer or cover so that opening or closing of ventilation openings in the carrier layer and/or cover occurs through swelling or shrinking or change in form. Further embodiments are the object of dependent claims or are described in the following.
Accordingly, an open-pored carrier layer with an open-pored cover or with individual covering elements is provided for the ventilation insert according to the invention that at least in part consists of a material that undergoes a swelling or shrinking effect or change of form through moisture, a change of temperature, or electrical voltage or such a material is connected with the carrier layer, the cover, and/or the covering elements or constitutes the carrier layer or cover so that opening or closing of ventilation openings in the carrier layer and/or the cover occurs by means of swelling or shrinking.
The material capable of swelling may be a granulate or pieces of flat material or a material formed from filiform material. It may be a fluid absorbent, preferably a granulate fluid absorbent of cross-linked sodium poly acrylate, a poly acrylate acid copolymer, a protein, or casein. A thermoplastic elastomer composite material that swells with moisture is, for example, available from the Fraunhofer Institute under the name Q-TE-C. Shape memory alloys or thermoplastic elastomer composites can be used as material that changes form due to heat or electrical voltage.
The carrier layer can, for example, be a fleece material onto which the material that swells is attached. The carrier layer can also consist of the following materials or mixtures: polymer compounds, thermoplastic elastomer composite, materials from animals such as bones, horn, fibers, vegetable materials such as coconut husks, wood, herbs, fibers, carbon compound composite materials such as carbon, metal, mineral composites, ceramics, magnetic materials, glass, rubber, resins, leather, cardboard and/or protein composites. The materials are either shaped by injection moulding or combined with plastic materials.
The cover can also be a fleece material or a plastic or metal grid.
The arrangement can be multiply built up to strengthen the opening and closing effect.
The cover can at the same time serve as a surface for evaporation or attraction of moisture.
Reversible swelling of moisture absorbents, such as cross-linked sodium poly acrylate, proteins, or casein, caused by moisture is used with the invention independently to close or open the ventilation openings, whereby they are capable of automatically reversing the motion. The swelling or shrinking of the absorbent materials is used to cause simple mechanical movement and thus ventilation.
Polymers with reversible phase transformation also come into question as material that swells. The interstices within this material that may be of fleece or fiber material or granulate applied to such material are triggered by the reaction of such memory alloys through moisture, heat, or an electrical voltage and at least partially closed. A self-regulating ventilation insert can, for example, be made with a heat-sensitive polymer that automatically closes the ventilation opening with a low external temperature or opens it with a high temperature. Suitable plastics are already available, especially plastics that have a so-called “shape memory effect.”
According to a first exemplary variant, a provision is made that covering elements connected on one of their ends by adhesive or thermoplastic bonding with the carrier layer can be folded in the manner of a butt hinge by the swelling or shrinking of a material that swells connected with the carrier lay or the covering elements and thus, depending on the direction of movement, can release or cover the ventilation opening in the cover or the upper surface of a fiber layer that is permeable to air and vapor.
In the vicinity of the hinge there is, for example, an elastic casing permeable to fluid, a vapor and fluid absorbent like, for example, cross-linked sodium poly acrylate, or a thermoplastic elastomer composite material that may also be formed material. The ventilation openings or fiber layers permeable to vapor are located in the vicinity of the hinge and allow penetration of fluid and a rapid release of water vapor. If moisture penetrates the casing surrounding the fluid and vapor absorbent, which prevents loss of the vapor absorbent, the vapor absorbent absorbs the fluid. The covering element rises or sinks depending on the design and on the absorption of fluid and the swelling associated with it (at least 50 g per m2 cm). If the vapor absorbent is above the hinge, the covering element is depressed with absorption of fluid. If, on the other hand, the vapor absorbent is on the bottom side of the covering element, the covering element rises with absorption of fluid. The volume of the vapor absorbent is reduced by evaporation of the absorbed fluid and the movement reverses due to the reset force of the covering element, the elastic casing, the shrinking of the absorbent, and/or that of the hinge. Loss of the fluid and vapor absorbent can be prevented by retainers.
Anchor points such as a joint face, adhesive face or hook-and-loop face, or seam can be located on a frame of the carrier layer and/or cover that make it possible to hold the ventilation insert in the desired position above the penetrations or openings in the material of the ventilated object. Manufacture of the joint faces can be done in different strengths depending on the area of use. The faces are preferably thin and converge to the surface at 0. The joint faces can preferably be textured already during the injection moulding process or afterwards by mechanical buffing, etching, radiating with UV light, or treatment with a gas like ozone. An upper surface of the joint face textured accordingly eases fixing to the ventilated object if means of adhesion are selected such as gluing, bonding, or similar. The frame can also serve for thermoplastic bonding with the ventilated object.
According to a further design of the invention, the circumstance is used that the permeability of air and water of two open-pored materials lying over each other (carrier layer and cover with air openings or a fiber layer permeable to air and vapor) is interrupted when there is a material that swells between them, for example an absorbent granulate or a thermoplastic elastomer composite that also may be of flat material that, when dry, allows air circulation through the layering. An increase of volume caused by fluid seals the interstices that occur between these two layers lying over each other against water. When dry, the volume of the vapor absorbent is again reduced and air can circulate through the interstices. The two materials lying over each other prevent loss of the absorbent granulate or similar material and limit the space available to the material when swelling occurs, which results in compaction and impermeability of air and water.
After further design of the invention the carrier layer or cover itself consists of the material that swells and the ventilated openings are dimensioned such that they are closed during the swollen phase of the swelling material.
In a given case the swelling material can be supplemented by a spacing material such as cork or plastic granulate or fibers. Other spacing materials can be used, for example polymer compounds, thermoplastic elastomer composite, coal, animal fibers like hair, down, leather, bones, horn, vegetable fiber like cotton, cellulose, cardboard, linen, coconut husks, wood, fibers, herbal, metallic, or mineral materials also in other forms than in fiber form, carbon fiber fabrics, rubber, etc, materials or mixtures of them, powder or granulate or materials with heat-retention characteristics, for example micro-encapsulated wax.
The cover elements are preferably connected on their edges by an adhesive, for example, with a material that flows at the time of manufacture or by thermoplastic bonding so that a frame is formed and leakage of the vapor absorbent to the outside is prevented. The adhesion can in a given case also be across the entire surface area.
Anchorages like joint faces, adhesion surfaces, or seams can be located on the frame that make it possible to hold the ventilation insert above penetrations or openings in the material at a desired position in the object. Air can circulate through the ventilation insert under dry conditions. The connection to the joint faces can be made, for example by means of magnetic force, snap fitting, plug connection, with material that flows at the time of manufacture, slide connection, glued connection, folded joint, thermoplastic bonding, or seams.
If moisture enters the ventilation insert, the moisture or vapor absorbent removes it. The interstice between the carrier layer and cover is made to be waterproof because of the absorption of moisture and the associated increase in volume. If the introduction of moisture is interrupted, the moisture already absorbed evaporates, the volume of the vapor absorbent decreases, and air can again circulate in through the ventilation insert.
The swelling characteristics of vapor absorbents are almost completely reversible with cross-linked sodium poly acrylate or a plastic that swells.
The permeability of a vapor absorbent to vapor can be controlled by a protective layer that can be a paint, for example. This is sensible especially when a flat vapor absorbent is present that swells with moisture and the edges serve to limit the extent and do not themselves swell.
The invention will be illustrated in more detail below. The drawings show:
In this first variant the swelling property of vapor absorbent 3 is used through its absorption of moisture to fold covering element 2 down or up and thus to close ventilation opening 5. It opens again by reset force due to evaporation of the moisture absorbed previously.
Attachment of a ventilation insert in a jacket is shown in
According to the variant in
In
Number | Date | Country | Kind |
---|---|---|---|
10 2005 043 069.4 | Sep 2005 | DE | national |
10 2005 051 575.4 | Oct 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/008691 | 9/6/2006 | WO | 00 | 3/25/2009 |