Ventilation interface for sleep apnea therapy

Information

  • Patent Grant
  • 6595215
  • Patent Number
    6,595,215
  • Date Filed
    Tuesday, January 15, 2002
    23 years ago
  • Date Issued
    Tuesday, July 22, 2003
    21 years ago
Abstract
The ventilation interface for sleep apnea therapy interfaces a ventilation device to the patient's airways. The ventilation interface includes a pair of nasal inserts made from flexible, resilient silicone which are oval shaped in cross-section and slightly tapered from a base proximal the ventilation supply to the distal tip end. A bead flange is disposed about the exterior of each insert at the distal end of the insert. A bleed port for release of exhaled air is defined through a conical vent projecting normally to the path of the incoming air flow, and continues through a nipple extending to the exterior of the air conduit. In one embodiment, a pair of nasal inserts are integral with a nasal cannula body, with bleed ports axially aligned with each insert. In another embodiment, each insert is independently connected to a separate, thin-walled, flexible supply line.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to ventilation devices, and particularly to a ventilation device having a nasal inserts which are inserted into the nostrils and seal against the nostrils without the aid of harnesses, head straps, adhesive tape or other external devices, and having exhalation ports designed to eliminate whistling noises, the ventilation interface having particular utility in various modes of therapy for obstructive sleep apnea.




2. description of the Related Art




Sleep apnea is a potentially lethal affliction in which breathing stops recurrently during sleep. Sleep apnea may be of the obstructive type (sometimes known as the pickwickian syndrome) in which the upper airway is blocked in spite of airflow drive; the central type with decreased respiratory drive; or a mixed type. Breathing may cease for periods long enough to cause or to exacerbate cardiac conditions, and may be accompanied by swallowing of the tongue. Sleep apnea frequently results in fitful periods of both day and night sleeping with drowsiness and exhaustion, leaving the patient physically and mentally debilitated.




In recent years it has been found that various forms of positive airway pressure during sleep can be an effective form of therapy for the apnea sufferer. Ventilation can be applied in the form of Continuous Positive Airway Pressure (CPAP) in which a positive pressure is maintained in the airway throughout the respiratory cycle, Bilevel Positive Airway Pressure (BiPAP) in which positive pressure is maintained during inspiration but reduced during expiration, and Intermittent Mechanical Positive Pressure Ventilation in which pressure is applied when an episode of apnea is sensed. Positive airway pressure devices have traditionally employed either a face mask which only covers the patient's nose, or nasal pillows as the interface between the ventilation device and the patient's airway. However, there are problems with both of these interfaces.




The face mask requires a harness, headband, or other headgear to keep the mask in position, which many patient's find uncomfortable, particularly when sleeping. The face mask must seal the mask against the patient's face, and may cause irritation and facial sores, particularly if the patient moves his head while sleeping, causing the mask to rub against the skin. Face masks are also position dependent, and may leak if the mask changes position with movement of the patient's head. The face mask applies pressure to the sinus area of the face adjacent to the nose, causing the airways to narrow, thereby increasing the velocity of flow through the airway, but decreasing the pressure against the nasal mucosal walls. This strips moisture from the mucosal wall during inspiration, thereby causing drying and a burning sensation. These factors will often result in the patient's removal of the mask and discontinuance of positive airway pressure therapy.




Nasal pillows are pillowed style nasal seals which are pressed against the inferior portion of the nares to close the nostril openings. Nasal pillows require a headband or harness to maintain the pressure, resulting in the same patient discomfort noted with face masks. Nasal pillows have about a 0.25″ internal diameter at the nasal entry port where the seal is made. Therefore, pressurized air must pass through a constricted port, increasing the velocity of airflow, with resultant drying and burning of the nasal airways. The narrowed interface diameter of the nasal pillows causes a pressure drop, which is directly proportional to the drop in the number of available air molecules within the closed system. It is the volume of air molecules at the area in the patient's throat where the apneic events appear that is needed to correct apnea. The narrower the airways or the internal diameter of the nasal interface, the lower the volume of air molecules that will be available and the greater the driving pressure that is required to meet the volume demand. An increase in driving pressure does not fully compensate for the loss in the number of air molecules available.




A further problem with existing ventilation devices is that the carbon dioxide bleed ports for venting exhaled gases are noisy on both nasal face masks and nasal pillows. The whistling noise that occurs while utilizing such devices can prove quite annoying to the patient, awakening the patient and causing the patient to discontinue use of the ventilation device.




A number of devices have been proposed which include a ventilation interface for supplying gases to be inhaled, for collecting exhaled gases, or for mounting sensors for measuring or monitoring respiratory function.




U.S. Pat. Nos. 5,335,654 and 5,535,739, issued on Aug. 9, 1994 to Rapoport and Jul. 16, 1996 to Rapoport et al., respectively, describe a CPAP system using a conventional nasal mask, the innovation comprising a flow sensor in the input line connected to a signal processor to determine the waveform of airflow, which is connected to a flow controller to adjust the pressure of airflow as required. U.S. Des. Pat. No. 333,015, issued Feb. 2, 1993 to Farmer et al. shows an ornamental design for a nasal mask. U.S. Des. Pat. No. 262,322, issues Dec. 15, 1981 to Mizerak, shows an ornamental design for a nasal cannula with a mouth mask.




U.S. Pat. No. 4,782,832, issued Nov. 8, 1988 to Trimble et al., discloses nasal pillows held in the patient's nose by a harness arrangement, the device having a plenum with two accordion or bellows shaped nipples for fitting against the nostril openings. U.S. Pat. Nos. 4,774,946, issued Oct. 4, 1988 to Ackerman et al., teaches a nasal and endotracheal tube apparatus for administering CPAP to infants, the nose tubes having a bulbous portion for seating in the nares of an infant and a headband with a Velcro® closure for supporting the cannula and supply tubes.




U.S. Pat. Nos. 5,269,296, issued to Landis on Dec. 14, 1993, and U.S. Pat. Nos. 5,477,852 and 5,687,715, issued to Landis et al. on Dec. 26, 1995, and Nov. 18, 1997, respectively, describe CPAP devices for the treatment of sleep apnea with relatively stiff or rigid nasal cannulae or prongs surrounded by inflatable cuffs to retain the cannulae in the nares, but which also may be supplemented by an inflatable head harness to position the cannulae and hold them in place, the two cannulae being joined by a conduit having vent holes to vent exhaled air. U.S. Pat. No. 5,533,506, issued Jul. 9, 1996 to the present inventor, discloses a nasal tube assembly in which the tubes are tapered, frustro-conical assemblies with a soft membrane over the distal tip and a washer at the base of the nasal tube to prevent the tubes from falling through a support bar connected to a harness, the nasal tubes forming a positive seal with the inside of the nostrils to prevent the escape of gases.




U.S. Pat. No. 5,682,881, issued Nov. 4, 1997 to Winthrop et al., shows a nasal cannula for CPAP therapy with cone shaped nasal prongs in which the cannula is secured to the patient's upper lip by adhesive tape strips. U.S. Pat. No. 4,915,105, issued Apr. 10, 1990 to Lee, teaches a miniature respiratory breather apparatus in which relatively stiff or rigid nasal tubes have elastomeric packings for sealing the tubes in the nares.




Several patents describe improvements to nasal cannulae, but without sealing the nose tubes against the nostrils to prevent leakage of gas, including: U.S. Pat. No. 3,513,844, issued May 26, 1970 to Smith (metal strip in cannula cross-tube to retain configuration matching patient's lip); U.S. Pat. No. 4,106,505, issued Aug. 15, 1978 to Salter et al. (cannula body with ends extending upward and rearward); U.S. Pat. No. 4,915,104, issued Apr. 10, 1990 to Marcy (clasp with lanyard supporting supply tubes to ease pressure on ears); U.S. Pat. No. 5,025,805, issued Jun. 25, 1991 to Nutter (cylindrical soft sponge cuff around supply tubes to ease pressure and prevent skin injuries); U.S. Pat. No. 5,046,491, issued Sep. 10, 1991 to Derrick (device for collecting gases exhaled from both nose and mouth); U.S. Pat. No. 5,335,659, issued Aug. 9, 1994 to Pologe (device for mounting optical sensor on nasal septum); U.S. Pat. No. 5,509,409, issued Apr. 23, 1996 to Weatherholt (nasal cannula with face guards); U.S. Pat. No. 5,572,994, issued Nov. 12, 1996 to Smith (rotatable coupling in supply tubing); U.S. Pat. No. 5,636,630, issued Jun. 10, 1997 to Miller et al. (support for supply tubes); U.S. Pat. No. 5,704,916, issued Jan. 6, 1998 to Byrd (novel head strap for nasal cannula); and U.S. Pat. No. 5,704,799, issued Apr. 21, 1998 to Nielsen (device with one-way flow through cannula and flow restrictor to equalize flow into two nose members).




None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed. Thus a ventilation interface for sleep apnea therapy solving the aforementioned problems is desired.




SUMMARY OF THE INVENTION




The ventilation interface for sleep apnea therapy interfaces a ventilation device which provides positive airway pressure (either continuous, bilevel, or intermittent) with the patient's airways. The ventilation interface includes a pair of nasal inserts made from flexible, resilient silicone which are oval shaped in cross-section and slightly tapered from a base proximal the ventilation supply to the distal tip end. A bead flange is disposed about the exterior of each insert at the distal end of the insert. A bleed port for release of exhaled air is defined through a conical vent projecting normally to the path of the incoming air flow, and continues through a nipple extending to the exterior of the air conduit. In one embodiment, a pair of nasal inserts are integral with a nasal cannula body, with bleed ports axially aligned with each insert. In another embodiment, each insert is independently connected to a separate, thin-walled, flexible supply line.




Advantageously, the construction of the nasal inserts permits the ventilation interface to be retained in the patient's nares without requiring a harness, head strap, or other retaining device. The nasal inserts do not merely seal the base of the nostrils, but are inserted into the nostrils farther than nasal pillows, as far as the nasal mucosal membrane, and are retained by resilient expansion of the inserts, the flanges engaging notches in the nares, together with the pressure of incoming air, which forms a positive seal to prevent the leakage of air past the inserts. The nasal inserts are constructed according to specifications which permit the inserts to be relatively thin-walled, and are oval-shaped in cross-section to conform to the shape of the nostrils. This construction permits the nasal inserts to have a large internal diameter in order to pass a greater volume of air than nasal pillows or prongs, without significant narrowing of the air passages, thereby maintaining lateral pressure, and avoiding drying and burning of the patient's nasal passages, as well as supplying a sufficient number of air molecules at the desired pressure to keep the patient's airways patent. Consequently, the ventilation device is more comfortable for the patient to wear while sleeping than conventional positive airway pressure devices, but at the same time is more effective in treating the patient's apnea.




The bleed ports are specially designed to avoid the whistling noises commonly experienced with conventional nasal masks and nasal pillows. By projecting the vent structure into the air passage normal to the direction of the air flow from the supply tubes, incoming air must turn ninety degrees and exit through a long, restricted diameter bleed port to vent to the atmosphere, eliminating whistling noises to increase patient comfort. In the embodiment having a nasal cannula body, the bleed ports are axially aligned with the nasal inserts, providing CO


2


with a direct path to exit the cannula body. When the nasal inserts are attached to independent supply tubes, the bleed ports are at the base of the nostrils, providing essentially normal exhalation.




When the nasal inserts are directly connected to the supply tubes, the nasal inserts may be even more thin-walled than when attached to a cannula body, resulting in an even greater volume of air supplied through the cannula body, up to a 20% increase in volume. In this case the supply tubes may be similar to heat-shrink tubing, being made from a very thin-walled thermoplastic material that is lightweight and flexible so that the supply tubing may collapse when not in use, but will expand to a predetermined diameter under pressure applied by a ventilator.




Accordingly, it is a principal object of the invention to provide a ventilation interface for sleep apnea therapy having nasal inserts which seal against the nares and do not require a harness, head strap, or other external devices to maintain pressure for retaining the inserts in or against the patient's nostrils.




It is another object of the invention to provide a ventilation device having nasal inserts made of flexible, resilient plastic with a bead flange for retaining the inserts in the nares, wherein the walls of the insert are thin-walled and maintain lateral pressure in the nares in order to provide a greater internal diameter for the delivery of a greater volume of air molecules at a constant delivery pressure and without forcing ventilation gases through restricted ports or passageways so that drying and burning of the patient's nasal airways is avoided while delivering a therapeutic volume of air to maintain the apneic patient's airways in a patent condition.




It is a further object of the invention to provide a ventilation interface for sleep apnea therapy with improved bleed ports to avoid whistling noises at the interface while maintaining a vent passage for expired air.




Still another object of the invention is to provide a ventilation interface which is lightweight and comfortable so that the apnea patient is not tempted to discard the ventilation device while sleeping.




It is an object of the invention to provide improved elements and arrangements thereof for the purposes described which is inexpensive, dependable and fully effective in accomplishing its intended purposes.




These and other objects of the present invention will become readily apparent upon further review of the following specification and drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a front environmental view of a ventilation interface for sleep apnea therapy according to the present invention.





FIG. 2A

is an exploded elevational of a ventilation interface according to the present invention.





FIG. 2B

is a perspective view of a ventilation interface embodied in a nasal cannula body according to the present invention.





FIG. 3

is a section view along the lines


3





3


of FIG.


2


A.





FIG. 4

is a section view along the lines


4





4


of FIG.


2


A.





FIG. 5

is a section view along the lines


5





5


of FIG.


2


A.





FIG. 6

is a perspective view of an embodiment of the ventilation interface with the nasal inserts incorporated into independent supply tubes.











Similar reference characters denote corresponding features consistently throughout the attached drawings.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention is a ventilation interface for sleep apnea therapy, designated generally as


10


in the drawings. The ventilation interface


10


provides an interface for connecting a ventilation device which provides positive airway pressure (either continuous, bilevel, or intermittent) with the patient's airways. As shown in

FIGS. 1 and 2A

, the ventilation interface


10


includes a conventional adapter or Y-connector


12


having a first end adapted to receive a supply hose


14


from a mechanical ventilator (not shown) and a second end having a pair of ports


16


with barbed connectors for attachment to two supply tubes


18


. Supply tubes


18


may be, e.g., 0.3125″ ID (inside diameter) flexchem tubing, made of polyvinyl chloride or other conventional gas supply tubing. For sleep apnea therapy, the mechanical ventilator will usually supply room air at a pressure of between five and fifteen centimeters of water. The room air may be supplemented with oxygen if desired by splicing an oxygen supply line into supply hose


14


or using a triple port connector in lieu of Y-connector


12


. It is normally unnecessary to humidify or add moisture to the air supplied by the mechanical ventilator in using the ventilation interface


10


of the present invention, as the interface


10


is designed to avoid stripping moisture from the nares, so that moisture does not have to be added to relieve patient discomfort from drying or burning sensation in the nasal airways.




In the embodiment shown in

FIGS. 1 and 2A

, the ends of the supply tubes distal from the Y-connector


12


are attached to opposite ends of a nasal cannula body


22


by barbed connectors


20


. Barbed connectors


20


preferably have an inside diameter substantially equal to the inside diameter of supply tubes


18


in order to prevent any constriction or narrowing of the air passage which may cause increased velocity in air flow. Nasal cannula body


22


, described more fully below, has a pair of nasal inserts


30


which are inserted into the nares of the patient P. The supply tubes may be looped over the patient's ears and joined to the Y-connector


12


, which may be suspended at about the patient's chest level when the patient is standing, as shown in FIG.


1


. For Bi-level Positive Airway Pressure (BiPAP) or Intermittent Mechanical Positive Pressure Ventilation therapy, a suitable valve may be connected between the supply tubes


18


and the cannula body


22


. An exemplary valve is described in the Applicant's prior application, Ser. No. 09/524,371, filed Mar. 13, 2000, which is hereby incorporated by reference in its entirety.




The nasal cannula body


22


is shown in greater detail in FIG.


2


B. The cannula body


22


is an arcuate, hollow, body having substantially flat top wall


22




a


and flat sidewalls


22




b


merging with a semi-cylindrical bottom wall


22




c


defining an air chamber


22




d


(seen more clearly in

FIG. 3

) for the passage of air and other gases, and having cylindrical tubes


24


at opposite ends which receive one end of the barbed connectors


20


. A notch


26


is defines transversely across the top wall


22




a


of the cannula body


22


, defining a pair of mounting pads


28


. A pair of nasal inserts


30


are formed integral with the mounting pads


28


. The nasal inserts


30


are hollow and form a continuous flow path or conduit for the passage of inhaled and exhaled gases between the patient's nasal air passages and the air chamber


22




d.






The nasal inserts are shown in greater detail in

FIGS. 3

,


4


, and


5


. The nasal inserts


30


are substantially oval in cross-section, with the major axis substantially parallel with the notch and the minor axis normal to the notch. The nasal inserts


30


taper slightly from a wide base


32


proximal the cannula body


22


to the open distal tip ends


34


. The nasal inserts


30


have a flange


36


about the distal tip ends


34


on the exterior surface of the inserts


30


, which may be formed as a semi-cylindrical bead.




The cannula body


22


, including the nasal inserts


30


, are preferably made from silicone elastomer. The cannula body


22


or air chamber


22




d


has an internal diameter of at least 0.3125 inches throughout its length. The walls of the nasal inserts


30


may be thinner than the top wall


22




a


. The thickness of the walls of the nasal inserts


30


are preferably between about {fraction (1/32)} and {fraction (1/20)} inches. The thickness of the walls at the flange


36


may be about {fraction (1/16)} inches. The hardness of the walls of the nasal insert


30


, as tested on a type A Shore durometer, may range between about 15 and 40, preferably about 30. If the walls of the nasal inserts


30


are made any thinner, they will fail to have sufficient integrity, and if made any thicker, they will have insufficient flexibility to form a seal against the nares. The thinness and softness of the nasal inserts


30


make them virtually unnoticeable while in the nostrils. For an adult patient, the nasal inserts may have a height of between about 0.25 and 0.75 inches. The internal diameter of the nasal inserts


30


may measure about 0.75″ on the major axis and 0.5″ on the minor axis, allowing for generous laminar air flow and delivering pressure more by volume of air molecules than velocity of air flow, and deliver about double the volume of nasal pillows, which have a round internal diameter of, for example, about 0.25 inches. Nasal pillows cannot be made with such large internal diameters, because it becomes difficult to create a seal under the bottom of the nose, as the pillows would have an internal diameter larger than the internal diameter of the nares, and the pillows are not as flexible as the nasal inserts


30


of the present invention.




In use, the nasal inserts


30


are inserted up the patient's nostrils until the flanges


36


lodge against the mucous membranes. As such, the nasal inserts


30


are considered an invasive device. Testing has confirmed that the nasal inserts


30


are biocompatible and meet regulatory requirements. The nasal inserts are retained in the patient's nares by the flanges


36


, by the flexibility and resiliency of the silicone elastomer, and by lateral pressure of the room air, which is maintained at between five and fifteen centimeters of water. The oval cross-section of the nasal inserts


30


is shaped to conform to the normally oval shape of the nares. The relative large internal diameter of the nasal inserts


30


permits air to be supplied to the patient's airways in sufficient volume at the driving pressure without accelerating the rate of airflow that the patient has sufficient positive airway pressure to be of therapeutic value in maintaining the patient's airways patent during an episode of obstructive apnea without drying the nasal passages. The notch


26


in the top wall


22




a


of the cannula body


22


lends additional flexibility to the cannula body


22


, so that the nasal cannula


22


can be adjusted for deviated septums, thick septums, and other anatomical variations in the configuration of the nostrils.




The cannula body


22


has a pair of bleeder ports


38


disposed in the bottom wall


22




c


directly below and axially aligned with the nasal inserts


30


. The bleeder ports are formed by an upper conically shaped nipple


40


extending upward into the air chamber


22




d


, and a lower conically shaped nipple


42


extending below the bottom wall


22




c


. The bleeder port has an internal diameter of about three millimeters and extends for a length of about 0.25 inches. The upper nipple


40


extends about 0.125 inches into the air chamber


22




d


. The internal diameter of the bleeder port


38


is ample to permit venting of carbon dioxide exhaled by the patient while not being so large as to cause a significant pressure drop in the cannula body


22


, and axial alignment of the bleeder port


38


with the nasal inserts


22


creates a direct path for venting of the expired gases. At the same time, laminar flow of air supplied by the supply tubes is normal to the bleeder ports


38


, so that air supplied by the ventilator must bend ninety degrees to exit through the elongated bleeder port


38


. The effect of this construction is that the bleeder port


38


is virtually silent in operation, eliminating the whistle associated with bleeder holes in conventional ventilation interfaces.





FIG. 6

is a generally diagrammatic view of an alternative embodiment of the ventilation interface, designated


50


in the drawing. In this embodiment, each nasal insert


52


is connected to a separate supply tube


54


, the supply tubes


54


being connected to the mechanical ventilator supply hose


56


by a suitable Y-connector


58


or adapter, the cannula body


22


and common air chamber


22




d


being omitted. The nasal inserts


52


have substantially the same construction as nasal inserts


30


, being oval in cross-section and having a similar height and an annular flange


60


about the distal tip for lodging the nasal insert


52


in a naris. The nasal insert


52


is also made from silicone elastomer, and has the same softness, thickness, flexibility and resilience as the nasal insert


30


. In this configuration, since the inserts are not connected to the cannula body


22


, the angle at which the inserts


52


enter the nostrils is not restricted by the cannula body


22


, and therefore the nares can accept a greater displacement, and may accommodate a 20% greater volume of air molecules through the insert


52


than the insert


30


.




In this embodiment, the supply tubes


54


may be made from a flexible, lightweight, but relatively inelastic thermoplastic material, similar to heat shrink tubing, so that the supply tubes


54


may be at least partially collapsed in the absence of pressure from the mechanical ventilator, but expand to their maximum diameter under a pressure of between five to fifteen centimeters of water. The lightweight of the supply tubes


54


decreases any pressure on the patient's ears resulting from the weight of the supply tubes, increasing patient comfort. The bleeder ports


62


have a similar construction to the bleeder ports


38


, having an internal nipple


65


normal to the axis of the nasal insert


52


and an external nipple


64


, the bleeder ports


62


being just above the base of the inserts


52


and normal to the flow of supply air through the inserts


52


.




It will be understood by those skilled in the art that the dimensions of the nasal inserts


30


and


52


, and of the bleeder ports


38


and


62


, are representative dimensions for a ventilation interface


10


or


50


designed for adults, and that the ventilation interface


10


or


50


may be made with correspondingly reduced dimensions for teenage children, preteens, and infants. It will also be understood that the nasal inserts


30


and


52


may be made from thermoplastic elastomers other than silicone, providing that the material has similar softness, resilience, flexibility, and biocompatibility. It will also be understood by those skilled in the art that the nasal inserts


30


and


52


, although illustrated in conjunction with ventilation devices for the treatment of sleep apnea, may be used in any other application where it is desirable to have an interface forming a seal between a person's nasal airways and a ventilation or gas collection device, including, but not limited to, rescue breathing apparatus used by firefighters and other emergency personnel, scuba diving tanks, etc.




It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.



Claims
  • 1. A ventilation interface, comprising:(a) a pair of nasal inserts, each nasal insert being hollow body made from a flexible, resilient, soft, biocompatible material, each nasal insert having a base end adapted for connection to a ventilator air flow and an open distal tip end, each nasal insert being substantially oval in cross-section at the base end and the distal end and continuously oval in cross-section between the base end an the distal end; and (b) a flange formed as a bead disposed about the distal tip end of each said nasal insert, the flange being adapted for forming a seal against a naris of a patient's nose; (c) wherein each said nasal insert is capable of being compressed and inserted into the patient's naris to a patient's mucosal membrane and being retained therein solely by said flange, by the resilience of said nasal insert, and by lateral pressure against the naris from ventilator air flow through each said nasal insert.
  • 2. The ventilation interface according to claim 1, wherein each said nasal insert is made from silicone.
  • 3. The ventilation interface according to claim 1, wherein each said nasal insert has an internal diameter of 0.75 inches on a major axis and 0.5 inches on a minor axis.
  • 4. The ventilation interface according to claim 1, wherein each said nasal insert has a wall thickness between about {fraction (1/32)} and {fraction (1/20)} inches.
  • 5. The ventilation interface according to claim 1, wherein each said nasal insert has a softness measuring between about 15 and 40 on a type A Shore durometer.
  • 6. The ventilation interface according to claim 1, further comprising a nasal cannula body, the base end of each said nasal insert being integral with said nasal cannula body, said nasal cannula body defining an air chamber common to each said nasal insert.
  • 7. The ventilation interface according to claim 1, further comprising a pair of supply tubes for delivering a gas from a ventilator, the base of each of said nasal inserts being connected to a separate one of the pair of supply tubes so that each said nasal insert is independently supplied with gas from the ventilator.
  • 8. A ventilation interface, comprising:(a) a nasal cannula, the cannula being a hollow, arcuate body having a flat top wall and a semi-cylindrical bottom wall defining an air chamber, the body having cylindrical tubes at opposing ends of the body adapted for connection to ventilator supply tubes; and (b) a pair of hollow, flexible, resilient nasal inserts, each nasal insert having a base end connected to the top wall of said nasal cannula and an open distal tip end, each nasal insert being oval in cross-section and defining a conduit forming an air passage in communication with said air chamber, each said nasal insert having a flange formed as a bead disposed about the distal tip end; (c) wherein each said nasal insert is capable of being compressed and inserted into a patient's naris to a patient's mucosal membrane and being retained therein solely by said flange, by the resilience of said nasal insert, and by lateral pressure against the naris from ventilator air flow through each said nasal insert.
  • 9. The ventilation interface according to claim 8, wherein said nasal cannula and each of said nasal inserts is made from silicone, said nasal inserts being formed integral with said nasal cannula.
  • 10. The ventilation interface according to claim 8, wherein each said nasal insert has an internal diameter of 0.75 inches on a major axis and 0.5 inches on a minor axis.
  • 11. The ventilation interface according to claim 8, wherein each said nasal insert has a wall thickness between about {fraction (1/32)} and {fraction (1/20)} inches.
  • 12. The ventilation interface according to claim 8, wherein each said nasal insert has a softness measuring between about 15 and 40 on a type A Shore durometer.
  • 13. The ventilation interface according to claim 8, further comprising:(a) a pair of barb connectors; and (b) a pair of supply tubes, said supply tubes being connected to the cylindrical tubes at opposite ends of said nasal cannula by said barb connectors.
  • 14. The ventilation interface according to claim 13, further comprising a Y-connector having a first end adapted for connection to a ventilator supply hose, and a second end having a pair of ports connected to said supply tubes.
  • 15. The ventilation interface according to claim 8, wherein the top wall of said nasal cannula has a notch defined therein parallel to and disposed between said nasal inserts for increasing flexibility of said nasal cannula in order to bend said nasal cannula to conform to a patient's nostril configuration.
  • 16. The ventilation interface according to claim 8, further comprising a pair of bleeder ports defined through the bottom wall of said nasal cannula, each said bleeder port being axially aligned with a separate one of said nasal inserts and further including an upper nipple projecting into said air chamber and a lower nipple depending from the bottom wall of said nasal cannula, the bleeder port being defined through said upper and lower nipples.
  • 17. A ventilation interface, comprising:(a) a pair of nasal inserts, each nasal insert being a hollow body made from a flexible, resilient, soft, biocompatible material, each nasal insert having a base end and an open distal tip end, each nasal insert being substantially oval in cross-section at the base end and the distal end and continuously oval in cross-section between the base end and the distal end; (b) a flange formed as a bead disposed about the distal tip end of each said nasal insert, the flange being adapted for forming a seal against a naris of a patient's nose; and (c) a pair of supply tubes adapted for connection to a ventilator air flow, the base of each said nasal insert being attached to a separate one of said supply tubes, whereby said nasal inserts are adapted for independent connection to a ventilator air supply; (d) wherein each said nasal insert is capable of being compressed and inserted into the patient's naris to a patient's mucosal membrane and being retained therein solely by said flange, by the resilience of said nasal insert, and by lateral pressure against the naris from ventilator air flow through each said nasal insert.
  • 18. The ventilator interface according to claim 7, wherein each said supply tube is made from a flexible, inelastic, lightweight, thin-walled material.
  • 19. The ventilator interface according to claim 18, wherein each said nasal insert further comprises a bleeder port defined through said nasal insert adjacent the base of said nasal insert, the bleeder port further including an interior nipple projecting into said nasal insert and an exterior nipple extending from said nasal insert, the bleeder port being defined through said interior and exterior nipples, the bleeder port being aligned normal to air flow through said nasal insert.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of my prior application Ser. No. 09/524,371, filed Mar. 13, 2000, U.S. Pat. No. 6,478,026.

US Referenced Citations (41)
Number Name Date Kind
1129583 Nieschang Feb 1915 A
1362766 McGargill Dec 1920 A
2427721 Goldstein Sep 1947 A
2663297 Turnberg Dec 1953 A
3255750 Schwartzman et al. Jun 1966 A
3513844 Smith May 1970 A
3902486 Guichard Sep 1975 A
4106505 Salter et al. Aug 1978 A
4156426 Gold May 1979 A
4273124 Zimmerman Jun 1981 A
D262322 Mizerak Dec 1981 S
4367735 Dali Jan 1983 A
4422456 Tiep Dec 1983 A
4648398 Agdanowski et al. Mar 1987 A
4660555 Payton Apr 1987 A
4774946 Ackerman et al. Oct 1988 A
4782832 Trimble et al. Nov 1988 A
4915104 Marcy Apr 1990 A
4915105 Lee Apr 1990 A
5025805 Nutter Jun 1991 A
5046491 Derrick Sep 1991 A
5099836 Rowland et al. Mar 1992 A
5113857 Dickerman et al. May 1992 A
D333015 Farmer et al. Feb 1993 S
5269296 Landis Dec 1993 A
5335654 Rapoport Aug 1994 A
5335659 Pologe Aug 1994 A
5477852 Landis et al. Dec 1995 A
5509409 Weatherholt Apr 1996 A
5513634 Jackson May 1996 A
5533506 Wood Jul 1996 A
5535739 Rapoport et al. Jul 1996 A
5572994 Smith Nov 1996 A
5595174 Gwaltney Jan 1997 A
5636630 Miller et al. Jun 1997 A
5682881 Winthrop et al. Nov 1997 A
5687715 Landis et al. Nov 1997 A
5704916 Byrd Jan 1998 A
5740799 Nielsen Apr 1998 A
5794619 Edelman et al. Aug 1998 A
6354293 Madison Mar 2002 B1
Continuation in Parts (1)
Number Date Country
Parent 09/524371 Mar 2000 US
Child 10/044925 US