The invention relates to a panel for a ventilation system of an oven with a housing ventilation duct, which at least partially directs air around an oven muffle, with the housing ventilation duct being at least partially divided into a first and a second subsidiary ventilation duct, with the entry of air to said subsidiary ventilation ducts taking place by means of a shared ventilation panel and a door ventilation duct, which at least partially directs air through an oven door, where a fresh air feed leads to the ventilation panel and where, when the oven door is closed, an air outlet aperture of the door ventilation duct of the housing ventilation duct's ventilation panel lies opposite to and at a distance from an area of the second subsidiary ventilation duct.
It is a disadvantageous characteristic of known ovens that it has to date not been possible for air to be sucked out of the door ventilation duct into the ventilation panel in a cost-efficient manner and with sufficient power.
The object of the invention is thus to provide a possibility for the cost-efficient and effective setting-up of air currents through an oven of the abovementioned type.
This object is achieved by means of a ventilation panel as claimed in claim 1 and an oven as claimed in claim 2. Advantageous embodiments can be taken in particular from the subclaims.
To this end the ventilation panel has a first subsidiary air inlet aperture and a second subsidiary air inlet aperture, which are separated from each other at least partially in the air entry area by a dividing wall. The entry of a quantity of fresh air through the first and the second air inlet aperture can be controlled by means of the dividing wall, via which suction strengths can be set. A suction power level between the door ventilation duct and the associated subsidiary air inlet aperture can thereby be set, in particular cost-efficiently, by adjusting the fresh air mixture.
The object is also achieved by the oven, in that the ventilation panel has a first air inlet aperture which is assigned to the first subsidiary ventilation duct, and a second air inlet aperture which is assigned to the second subsidiary ventilation duct, where the subsidiary air inlet apertures are separated from each other by a dividing wall at least partially in the air entry area.
Here, a gap through the dividing wall for the passage of fresh air to the second subsidiary ventilation duct can be created between said dividing wall and another part of the oven, for example a door housing. By means of the gap width it is possible to set the suction power level to the door ventilation duct (a narrower gap results in a higher suction level) and achieve cooling of the warm air sucked out of the door ventilation duct, which is adjustable via the fresh air feed.
Typically, the oven has a fan, in particular a radial-flow fan, for suction and expelling of the air.
For optimum control of the air currents or suction levels, the dividing wall preferably divides the air inlet apertures across their entire width.
For the purposes of cost-effective manufacture, it is advantageous if the dividing wall is a projection built in, in particular impressed, into the ventilation panel.
In order to create the suction power in the first ventilation duct it is advantageous if the projection is cross-sectionally chamfered in the form of a ramp on a side facing the first subsidiary air inlet aperture, and/or the neck of the projection is arranged in close proximity to the first subsidiary air inlet aperture. Air can thereby be conveyed directly into the first subsidiary air inlet aperture, in particular with reduction of the cross section of the flow.
In the case of a closed oven door, a defined gap between the oven door and the second subsidiary air inlet aperture is preferably created by the shape and/or position of the dividing wall.
For the effective cooling of heat-sensitive components, it is advantageous if the second subsidiary air duct runs along a wall of the muffle, and the first subsidiary air duct is separated from the muffle and accommodates electrical and/or electronic components.
The ventilation panel and an oven equipped therewith are represented diagrammatically in greater detail below, on the basis of an exemplary embodiment. This exemplary embodiment is not intended to limit the invention. In the exemplary embodiments, functionally identical parts are identified using the same reference numbers and air flows are indicated by straight arrows, where:
Set into the housing enclosure 2A is an oven muffle 8 which can be closed by means of an oven door 9 and has insulation 8A between it and the housing 9. A cooking compartment 10 is defined by the oven muffle 8 and the oven door 9 which enclose it. The oven further has a housing ventilation duct 11 which here directs air in a clockwise direction, as indicated by arrows, around the muffle between said muffle 8 and the housing 2A.
At the top of the muffle, the housing ventilation duct 11 is divided into a first, upper subsidiary ventilation duct 12, and a second, lower subsidiary ventilation duct 13. The entry of air to the subsidiary ventilation ducts 12, 13 takes place by means of the shared ventilation panel 3. The subsidiary ventilation ducts 12, 13 are separated from each other by a carrier plate 14 on which are mounted, in the first, upper subsidiary ventilation duct 12, heat-sensitive electrical and/or electrical components 15, for example control electronics, a safety circuit and the like. For this reason the first subsidiary ventilation duct 12 is separated from the muffle by the second subsidiary ventilation duct 13, thus achieving insulation of the components 15 from the heat from the muffle 8. The second subsidiary ventilation duct 13, on the other hand, runs along the muffle 8, mainly absorbing the heat radiated by the muffle 8 in this area. The subsidiary ventilation ducts 12, 13 converge once again at the rear edge of the housing 2A in the air suction area of a radial-flow fan 16, to which are linked, downstream, a rear and a lower area of the housing ventilation duct 11 extending as far as an exhaust vent 17.
The oven door 9 has a door ventilation duct 18 running vertically across a significant portion of the door width, which directs air through the oven door from an oven door air inlet aperture 19 arranged in the lower area of the oven door 9 upwards to an oven door air outlet aperture in the door cover.
Air emerges through the ventilation panel 3 into the housing ventilation duct 11 from a fresh air duct 20 formed by the switch panel 7 and the oven door 9, as well as from the second oven door air outlet aperture essentially opening toward the subsidiary air inlet aperture 5.
Fresh air is sucked out of the fresh air duct 20 formed by the switch strip 7 and the oven door 9 into the first, upper subsidiary air inlet aperture 4. As, with its upper side facing the first subsidiary air inlet aperture 4, the projection is cross-sectionally chamfered in the form of a ramp, specifically rising in an area close to the first air inlet aperture 4, fresh air can simply be sucked into the first, upper subsidiary ventilation duct 12.
Air is also sucked from the oven door 9 through the oven door air outlet aperture 21 via a narrow space between the oven door 9 or the oven door air outlet aperture 21 and the ventilation panel 3 or the second, lower subsidiary air inlet aperture 5 through the second, lower subsidiary air inlet aperture 5, which is located at around the same height, into the second, lower subsidiary air inlet aperture 13. The air sucked out of the door 9 serves in particular to cool glass panes 22 of the door 9. A seal 23 prevents an exchange of air and cooking fumes. Between the projection 6 and the oven door 9 is a gap through which fresh air sucked out of the fresh air duct 20 can be sucked in a defined manner into the second subsidiary ventilation duct 13.
Thanks to the form of embodiment shown in the exemplary embodiment it is possible to ventilate the subsidiary ventilation ducts 12, 13 to a very large extent separately from each other. Without the dividing wall 6, fresh air would also crucially be sucked from outside into the second, lower subsidiary ventilation duct 13, and the ventilation of the door 9 would thus become uncontrollably weaker. The separation of the ventilation levels is thus decisively achieved through the design of the ventilation panel. Maximum door ventilation can be set up, as it is possible to prevent significant quantities of fresh air reaching the lower row of slots (below the shaped projection), and reducing the door ventilation power. The streams of air can be controlled via the gap size(s). Direction of the fresh air into the first, upper subsidiary air inlet aperture 4 (here in the form of an upper row of slots) is improved by the ramp-like contour of the top of the shaped projection.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 005 718.2 | Feb 2007 | DE | national |