The field of this invention relates generally to ventilation systems, and more particularly, to a method and a system for ventilating a power train enclosure in a power plant.
At least some known power plants include a steam turbine, an electric generator, and a rotatable member, such as a shaft, that couples the steam turbine to the electric generator. In many power plants, the burning of a combustible fuel, such as coal, produces thermal energy that boils water to produce steam. The steam is channeled through the turbine, which converts the thermal energy to mechanical energy by rotating the rotatable member coupling the turbine to the electric generator. The rotation of the rotatable member spins the electric generator to produce electricity.
During operation, rotation of the rotatable member generates heat and noise due to friction between the surfaces of the rotatable member and the surrounding air, and the level of noise can make for unpleasant operating conditions. To facilitate mitigating the noise level, at least some known systems employ an enclosure around the rotatable member. However, although the noise levels may be mitigated, the heat generated as the rotatable member is rotated may, over time, create excessive temperatures within the enclosure.
To facilitate preventing excessive temperatures within the enclosure, at least some known enclosures are ventilated. However, known ventilation systems may require a larger footprint, may increase the costs associated with the assembly, maintenance, and operation of the system, and may decrease the operating efficiency of the system.
In one aspect, a method for assembling a ventilation system is provided. The method includes providing a ventilation hood that includes a cover portion and a discharge portion extending from the cover portion. The cover portion includes a first aperture, an opposite second aperture, and a cavity therein, wherein an interior of the discharge portion is in flow communication with the cover portion cavity. The method also includes coupling a rotatable member at least partially within the ventilation hood, such that the rotatable member extends at least partially through at least one of the first and second apertures, and such that rotation of the rotatable member induces a windage-driven flow of fluid between a portion of the rotatable member and at least one of the first and second apertures.
In another aspect, a ventilation apparatus for use with a rotatable member is provided. The ventilation apparatus includes a hood that has a cover portion and a discharge portion that extends from the cover portion. The cover portion is hollow and defines a cavity therein, and an interior of the discharge portion is coupled in flow communication with the cavity. The cover portion includes an outer surface including at least one of a first aperture and a second aperture defined thereon, wherein at least one of the first and second apertures is capable of receiving a fluid therethrough. The ventilation apparatus also includes a rotatable member extending at least partially through at least one of the first and second apertures such that rotation of the rotatable member induces a windage-driven flow of fluid inward through at least one of the first and second apertures and outward through the discharge portion.
In another aspect, a system for ventilating an area is provided. The system includes a ventilation hood including a cover portion and a discharge portion extending from the cover portion. The cover portion includes a first aperture, an opposite second aperture, and a cavity therein, wherein an interior of the discharge portion is in flow communication with the cover portion cavity. The system also includes a rotatable member coupled at least partially within the ventilation hood, wherein the rotatable member extends at least partially through at least one of the first and second apertures, and wherein rotation of the rotatable member induces a windage-driven flow of fluid between a portion of the rotatable member and at least one of the first and second apertures.
Ventilation system 10 includes enclosure 12 and a ventilation apparatus 14. Ventilation apparatus 14 includes a ventilation hood 16 and a rotatable member 18. Enclosure 12, as described in more detail below, facilitates mitigating noise generated by the rotation of rotatable member 18, and ventilation apparatus 14 facilitates ventilating enclosure 12. While enclosure 12 is described herein as facilitating mitigating noise, enclosure 12 may also facilitate various other purposes, such as, for example, weather protection, fire protection, and/or personnel protection. Alternatively, the primary purpose of enclosure 12 may be to facilitate ventilating rotatable member 18.
In the exemplary embodiments, enclosure 12 has a generally rectangular cross-sectional shape. In alternative embodiments, enclosure 12 may have any suitable size or shape that enables system 10 to function as described herein. More specifically, in the exemplary embodiment, enclosure 12 includes an outer wall 20 that includes a first opening 26 and a second opening 28 defined thereon. Openings 26 and 28 are sized to receive at least a portion of rotatable member 18 therethrough. Furthermore, openings 26 and 28 are disposed on opposing sides of enclosure 12, are substantially co-axially aligned, and are substantially symmetrical in size and shape. Alternatively, one of the first opening 26 and the second opening 28 may have a different size, shape, and/or orientation than the other opening 26 or 28. Additionally, in an alternative embodiment, enclosure 12 may not include openings 26 and 28, and rotatable member 18 may be completely housed within enclosure 12. Outer wall 20 also includes an inlet 22 and an outlet 24 defined on adjacent sides of enclosure 12. Inlet 22 and outlet 24 enable a fluid 62 to flow through enclosure 12 from inlet 22 through outlet 24. Alternatively, inlet 22 and outlet 24 may be positioned on opposing sides of enclosure 12 or may be positioned on a single side of enclosure 12. While inlet 22 and outlet 24 are spaced a distance apart on outer wall 20 in the exemplary embodiment, inlet 22 and outlet 24 may be formed together in an alternative embodiment. Additionally, enclosure 12 may include a plurality of inlets 22 and/or a plurality of outlets 24 defined thereon.
As shown in
In the exemplary embodiment, discharge portion 32 includes a first end 46, a second end 48, and a body 50 extending between ends 46 and 48. First end 46 is coupled in flow communication with cover portion 30, and, as shown in
In another embodiment, an interior surface 45 (shown in
In the exemplary embodiment, as shown in
As shown in
In the exemplary embodiment, a first edge 68 and a second edge 70 of cover portion 30 define apertures 38 and 42 respectively, and rotatable member 18 extends through apertures 38 and/or 42 such that a gap 60 separates outer surface 58 of rotatable member 18 from edges 68 and/or 70. As such, fluid 62 is capable of entering cover portion 30 through gap 60.
As shown in
Upon rotation of rotatable member 18, as illustrated in
In each embodiment, the above-described ventilation methods and systems facilitate ventilating an area. More specifically, in each embodiment, the above-described ventilation apparatus generates a windage-driven airflow through an enclosure in order to facilitate expelling from the enclosure, without the use of supplemental, motor-driven ventilation fans and the like, fluid and heat therein. Accordingly, the above-described methods and systems facilitate cooling the interior of a power train enclosure in a power plant and expelling any unwanted fluids from within the enclosure, while reducing energy costs associated with ventilating the enclosure by eliminating the need for supplemental, motor-driven ventilation systems.
Exemplary embodiments of ventilation methods and systems are described above in detail. These ventilation methods and systems are not limited to the specific embodiments described herein, but rather, components of the methods and systems may be utilized independently and separately from other components described herein. For example, the ventilation apparatus described above may have other industrial or consumer applications and is not limited to practice with energy systems alone, as described herein. Rather, the present invention may be implemented and utilized in connection with many other products and systems.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.