The present disclosure relates to a heating, ventilating, and air conditioning system (HVAC) of a power machine and associated routing of air into a cab of the power machine.
Power machines include various work vehicles such as skid steer loaders, tracked loaders, excavators, telehandlers, and utility vehicles. Various power machines include cabs that protect the operator of the power machine and define, or help to define with a frame of the power machine, an operator compartment in which an operator is positioned while operating the power machine. Enclosed cabs provide the option for providing the operator climate controlled working conditions with heating, ventilating, and air conditioning (HVAC) systems. However, due to limited space and general construction of operator cabs in power machines, generation and distribution of conditioned air can be challenging. For example, some power machines such as skid steer loaders are very compact, and it is desirable to keep the profile, that is the height, width, and length outside dimensions, the same, with or without an HVAC system for each model. Other power machines present similar challenges.
U.S. Pat. No. 6,223,807, issued to Asche et al. on May 1, 2001, discloses an HVAC system which aids overcoming some of the above-described challenges by choice of HVAC system position and configuration. However, limitations of space available for routing ducts can still present further challenges in some power machine configurations. For example, side panels or walls of the operator cab are frequently subject to internal geometry effecting constrains such as the requirement for routing wires, requirements to maximize interior space of the cab, etc. As a result, it can be difficult to provide sufficient room for ducts through which the HVAC system moves air to remote locations of the cab.
The present disclosure relates to a heating, ventilating and air conditioning (HVAC) system for a power machine. More particularly, a ventilation system is provided in which air is moved from a duct of the HVAC system, through a side panel or other power machine cab component, without a closed duct in the side panel or cab component. The ventilation system includes a first ductwork section and a second ductwork section. An intermediate unsealed cavity is positioned between the first ductwork section and the second ductwork section. The HVAC system further includes a source of air with a primary fan that moves air through the first ductwork section into an intermediate cavity. A secondary fan draws air from the intermediate cavity, re-pressurizes the air, and forces the air out of the second ductwork section.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Before any embodiments of the present disclosure are explained in detail, it is to be understood that the concepts disclosed herein are not limited in their application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. Rather, the disclosed concepts are capable of being practiced or carried out in various other embodiments. The phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Words such as “including,” “comprising,” and “having” and variations thereof as used herein is meant to encompass the items listed thereafter, equivalents thereof, as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings.
Space is limited for placement of ductwork to move treated or conditioned air (e.g., filtered and/or heated or cooled) from an HVAC system in some power machines to remote areas of an operator compartment. For example, with an HVAC system located behind a cab, it is frequently desirable to move treated air to the lower front foot area of the operator compartment. Due to the packaging of cab components, available space, and operator compartment limitations, there may not be sufficient available room for conventional ductwork to be used over the entire distance that the air must be moved. Ductwork tooling is frequently expensive and complex. Making space for a duct can have negative impacts such as the potential need to eliminate a rear storage compartment or other features in the operator compartment and the potential required geometry changes and relocation of a number of components in side console(s) or other components in the operator compartment. Additionally, circumstances can result in the ducts being very restricted in size, rendering it difficult to supply enough treated air to the desired location, for example the foot area of the operator compartment.
Referring to
In the exemplary embodiment, power machine 10 includes a frame 12, supported by wheels 14 that are driven by a suitable power train (not shown). The power train can include hydraulic motors that are driven by a hydraulic power supply. Instead of wheels, tracks can be used as tractive elements in a tracked loader embodiment. The hydraulic power supply, which in one embodiment includes tandem hydrostatic pumps, are driven by an engine 16 (shown in
In this exemplary embodiment, the cab 20, along with portions of the frame 12, define and enclose an operator compartment 30. In other power machines, however, the cab may define the entire operator compartment. Cab 20 has a pair of opposing side walls 40 and 42, a roof 44, and a rear portion 46, including a rear window 48 and a back wall 34 (shown in
The side walls 40 and 42 of the cab 20 are shown as being made of side plates (preferably steel) with a plurality of apertures formed therethrough. In addition, transparent windows can be attached to the side plates. Alternatively still, the side walls 40 and 42 may not have the pattern of apertures shown in
Referring now to
Disclosed embodiments overcome the duct limitations and the geometry from existing parts by eliminating the need for a closed duct through the side console 310. With treated air pulled from the main duct 304 coming out of the HVAC system, the air is routed into the lower rear of the cab through the first ductwork section 302. The treated air from the HVAC system is then dumped into an intermediate cavity 330 forward of back panel 306 and in a rearward portion of the side console 310. This interior space or intermediate cavity 330 is defined by a side wall of the cab 20 and an interior component such as console 310. Intermediate cavity 330, although generally enclosed by a side wall and the side console is not an enclosed duct in that it has a much larger cross-sectional area than first ductwork section 302 and is not a sealed compartment. As discussed above, harnesses, cables, and the like are routed through the cavity 330. In addition, a storage compartment is configured to fit into the cavity 330. The result is that although there is a fairly large cross-sectional area in intermediate cavity 330, it is very difficult to route a hard duct through the volume in the intermediate cavity 330 and a soft duct is susceptible to being crushed. In addition, the obstructions in the intermediate cavity 330 impede air flow therethrough, so that without a sealed duct, air loses momentum and tends to stall out.
A shield 314 is secured to side console 310 with screws or other fasteners 316 to create a second ductwork section in the form of a plenum 315 between the shield 314 and the side console 310 on the opposing side of the intermediate cavity 330 from back panel 306. The shield 314 illustratively includes an opening or aperture 318 configured to receive a secondary fan 322, which is mounted to the shield with screws or other fasteners 326. The plenum 315 is completely sealed except for the fan which is the inlet to re-pressurize the air. In an exemplary embodiment, secondary fan 322 is a compact high speed fan that allows for remote placement, while providing excellent air flow and pressure rise characteristics. These fans vary in size from 20 mm to 200 mm, and in one exemplary embodiment an 80 mm fan is used. Secondary fan 322 pulls the treated air forward from intermediate cavity 330, and the air is pressurized inside of the plenum 315. Pressurized air is then directed out of the plenum 315 via apertures 334, which are illustratively covered by actuable louvers 338 therein. Manipulation of the louvers 338 can block air from exiting one or more apertures 334 or alternatively, can direct air flow, for example, into the foot area of the operator compartment 30. In an example embodiment, the louvers 338 are 70 mm round louvers, but other louver sizes and shapes can be used. The air is pushed by the main HVAC fan 31 via the first ductwork section 302, while a secondary fan 322 positioned behind the side console 310 pulls the air forward through the geometry. Without the secondary fan, the air would stall in the cavity because of the reasons discussed above, and therefore, there would not be sufficient air flow to the apertures 334. The plenum allows for multiple apertures 334 to be used in an exemplary embodiment, but the secondary fan can also be directly connected to a single aperture 334. Also, multiple secondary fans can be used in plenum 315 to push air through multiple apertures. While the exemplary disclosed embodiment utilizes a single fan, a single plenum, and two louver covered apertures, other embodiments are within the scope of the present disclosure.
Referring now to
It must be understood that, while in the example embodiment disclosed concepts and features are used to push/pull conditioned or treated air from an HVAC system duct through a side panel of a power machine without the use of a fully enclosed duct through the side panel, other embodiments are also within the scope of the disclosure. For example, in another embodiment where an HVAC system is positioned to route air into the lower part of the cab, the disclosed concepts can be employed to route air through a headliner or other cab structure in which there is insufficient room for an enclosed duct. Use of a secondary fan to pull/push air through a cab wall or other geometry and to re-energize the air for blowing through louvers can be implemented in a variety of different ways.
Although concepts of the present disclosure have been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the disclosure.
This Application is a Section 371 National Stage Application of International Application No. PCT/US2012/028217, internationally filed on Mar. 8, 2012 and published as WO2012/125394 on Sep. 20, 2012, in English; which claims priority to U.S. Provisional Patent Application No. 61/451,712, filed on Mar. 11, 2011, the contents of which are hereby incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2012/028217 | 3/8/2012 | WO | 00 | 5/9/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/125394 | 9/20/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2347141 | Werdehoff | Apr 1944 | A |
2551528 | Darrin | May 1951 | A |
2664308 | Appel | Dec 1953 | A |
2696774 | Bayley | Dec 1954 | A |
3555846 | Harbeck et al. | Jan 1971 | A |
3776358 | Williams | Dec 1973 | A |
3919926 | Yamada | Nov 1975 | A |
4026349 | Schaap | May 1977 | A |
4035018 | Erbele et al. | Jul 1977 | A |
4088364 | Termont | May 1978 | A |
4120527 | Lawrence | Oct 1978 | A |
4365541 | Marques et al. | Dec 1982 | A |
4512239 | Watanabe et al. | Apr 1985 | A |
4531453 | Warman et al. | Jul 1985 | A |
4612975 | Ikari | Sep 1986 | A |
5308279 | Grinberg | May 1994 | A |
5450894 | Inoue et al. | Sep 1995 | A |
5673964 | Roan et al. | Oct 1997 | A |
5873256 | Denniston | Feb 1999 | A |
5921619 | Cederberg et al. | Jul 1999 | A |
6126539 | Miller et al. | Oct 2000 | A |
6223807 | Asche et al. | May 2001 | B1 |
6502897 | Neuss et al. | Jan 2003 | B2 |
6620039 | Tao et al. | Sep 2003 | B1 |
6877787 | Ito et al. | Apr 2005 | B2 |
7303714 | Matsuzaki et al. | Dec 2007 | B2 |
7334834 | Hill et al. | Feb 2008 | B2 |
7900996 | Kimura et al. | Mar 2011 | B2 |
9126643 | Nagami et al. | Sep 2015 | B2 |
9139979 | Nagami et al. | Sep 2015 | B2 |
20020189874 | Sato et al. | Dec 2002 | A1 |
20040104578 | Wurtele | Jun 2004 | A1 |
20050211483 | Pfohl et al. | Sep 2005 | A1 |
20060131885 | Wurtele | Jun 2006 | A1 |
20070144463 | Keane et al. | Jun 2007 | A1 |
20070295017 | Pannell | Dec 2007 | A1 |
20080108032 | Tuhy et al. | May 2008 | A1 |
20090266632 | Hill et al. | Oct 2009 | A1 |
20100068983 | Williams | Mar 2010 | A1 |
20110214403 | Geiss et al. | Sep 2011 | A1 |
20110241379 | Obe et al. | Oct 2011 | A1 |
20110241380 | Mayr et al. | Oct 2011 | A1 |
20110250832 | Mayr et al. | Oct 2011 | A1 |
20110252756 | Geiss et al. | Oct 2011 | A1 |
20140027090 | Morikawa et al. | Jan 2014 | A1 |
20140034266 | Tabei; Koichi | Feb 2014 | A1 |
20140194048 | Wittmann et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
101065261 | Oct 2007 | CN |
201240243 | May 2009 | CN |
201257885 | Jun 2009 | CN |
10029211 | Dec 2001 | DE |
102007044466 | Mar 2009 | DE |
1323555 | Jul 2003 | EP |
2135758 | Sep 2010 | EP |
S6088626 | May 1985 | JP |
2010066877 | Jun 2010 | WO |
Entry |
---|
Search Report and Written Opinion dated May 30, 2012 for International Application No. PCT/US2012/028217, filed Mar. 8, 2012, 12 pages. |
Chinese Office Action and English Translation dated Dec. 30, 2015 for Chinese Application No. 201280001878.6, 6 pages. |
Chinese Office Action dated Apr. 27, 2015 with English translation for corresponding Chinese Application No. 20128001878.6, 8 pages. |
Chinese Office Action dated Jul. 16, 2015 with English translation for corresponding Chinese Application No. 20128001878.6, 6 pages. |
European Office Action dated Mar. 30, 2017 for European Application No. 12709258.3, 4 pages. |
Number | Date | Country | |
---|---|---|---|
20130344792 A1 | Dec 2013 | US | |
20160332500 A9 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
61451712 | Mar 2011 | US |