The present invention relates to a face mask used to protect from hazardous particles and material, and more particularly, to an improved full-face mask that allows both respiration and ventilation.
Pathogens, such as bacteria and viruses, commonly cause infections and disease and are transmitted through various mechanics. One of the most common transmission routes for pathogens is through airborne transmission, e.g., by inhalation through the nose and mouth. Further, it is understood that some pathogens may be transmitted through a person's eyes. For example, the coronavirus responsible for causing the disease COVID-19 has been suspected of being transmittable through the human eye. In a health care setting, it is critical to be able to treat patients with potentially lethal diseases without exposing health care providers to transmission. Similarly, toxic gasses and materials, such as carbon monoxide and asbestos, are common health threats in various environments.
Additionally, some diseases, such as COVID-19, may result in respiratory distress in a patient and require the need for a ventilator to aid a person with breathing. However, such a patient would require another face mask device to replace a respirator, which would enable the patient to spread the disease. Moreover, some ventilators must be invasive and have been found to cause lasting mental distress in a patient, such as post-traumatic stress disorder.
There have been approaches to protecting people against ingesting such hazardous materials through various breathing apparatuses such as face masks or respirators. Additionally, there have been attempts to provide patients with non-invasive ventilation through masks, hoods, or helmets. Generally, non-invasive ventilation comprises (1) a ventilator supplying fresh gas to a patient; (2) a breathing device affixed to a patient; and (3) breathing tubes connecting the fresh gas to the breathing device and the exhausted gas from the patient to receiving tank.
Generally, most of the breathing devices utilize a small vent hole to assist patients to breathe through a ventilator. The primary concern with these devices is to help the patient recover from respiratory ailments. However, these devices do not consider the health risks of health care providers that are in contact with patients using these devices. Further, such devices are constructed in a manner that mixes the ingested gas with the exhausted air. These devices generally only cover a patient's nose and mouth and expose their eyes to the environment, which create ample opportunities for disease to be transmitted. Therefore, it is an objective of the invention to provide a full-faced ventilator mask to mitigate and/or obviate the aforementioned problems.
The present invention overcomes many of the aforementioned disadvantages of prior art by providing a full-face snorkeling and diving mask with superior sealing qualities that is more streamlined and efficient. The individual parts of the mask of the present invention are preferably fused together using injection molding techniques to create a unitary mask body. The improved mask includes a faceplate that incorporates a lateral partition on the interior surface that delineates an upper section from a lower section. In one embodiment, a snorkel coupling and passageway is also incorporated into the upper portion of the faceplate. While the upper portion of the faceplate includes a transparent lens section, the lower portion includes a region that extends away from the transparent lens section and features a first cutout having a flexible insert installed therein which allows the user to readily squeeze the nose when necessary to equalized pressure on the eardrums. In one embodiment, the faceplate may also comprise a drainage or purge valve arranged in the lower or breathing chamber to evacuate liquid to outside the mask. Alternatively, in another embodiment, in place of the drainage or purge valve the faceplate may include a second cutout configured below the first cutout and fitted with a flexible tubular insert defining a passageway through the faceplate to the lower or breathing chamber and dimensioned to fit and seal onto the mouthpiece receiver tube of a conventional 2nd stage scuba regulator. The faceplate may also incorporate two or more buckle devices for attaching elastic retention straps to the mask.
The faceplate includes a flange that is formed along the entire outer periphery or rim of the faceplate. The flange is used as a bonding surface to mount and bond the faceplate to a rigid annular rib or support frame configured within the outer periphery of the faceplate. The rigid annular frame provides structural support to the faceplate while remaining contained within the circumference of the outer periphery of the faceplate. Preferably, the rigid annular frame is permanently bonded to the flange of the faceplate. Alternatively, the rigid annular rib or frame may be incorporated into the faceplate. In such a case, the rigid annular rib or frame is an integral portion of the flange of the faceplate and extends longitudinally away from the backside of the flange forming a protruding annular lip configured within the outer periphery of the faceplate.
The mask of the present invention further includes a flexible annular sidewall element or skirt that is affixed to the rigid annular frame or the rigid annular frame portion of the faceplate. The flexible annular skirt is hollow and filled with a gas or other cushioning substance to seal the mask to the diver's face while providing a comfortable, ergonomic and waterproof interface with the diver's face. The flexible sealing skirt also includes a lateral nose piece section, attached to the partition of the faceplate, which effectively seals off the upper chamber from the lower chamber when the mask is worn. The lateral nose piece section includes a barrier wall section that is attached to the partition. The lateral nose piece is formed or sculpted so as come in sealing contact with the user's face in the nasal region just above the user's nose.
In one embodiment of the mask of the present invention, the barrier wall section of the lateral nose piece section may include at least one aperture, which allows inhaled air from the snorkel device to travel through the upper chamber to the lower chamber. Each aperture also comprises an outlet check valve device which allows the flow of inhaled air directed through each aperture solely from the upper chamber towards the lower chamber during an inhalation phase by the user. By means of the outlet check valve device, the aperture is closed off during an exhalation phase preventing the flow of exhaled air from rising back into the upper chamber, thereby improving the efficacy of the anti-fogging system of the mask. In a preferred embodiment, the barrier wall section of the lateral nose piece section includes two apertures with matching outlet check valve devices.
In one embodiment of the mask of the present invention, the barrier wall section of the lateral nose piece section may further include at least one orifice through which an exhalation conduit extends from the lower chamber to the snorkel device forming a passageway for exhaled air to pass through the upper chamber to the snorkel device. The passageway allows warm, humid air exhaled by the user to be efficiently exhausted though the snorkel without fogging up the transparent lens of the mask. The lower end of the exhalation conduit may further include an outlet check valve device that permits the flow of exhaled air through each passageway only from the lower chamber through the upper chamber and out through the snorkel device during the exhalation phase. By means of the outlet check valve device, the conduit/passageway is closed off during the inhalation phase preventing the flow of inhaled air from the snorkel device into the lower chamber. In a preferred embodiment, the lateral nose piece section includes two orifices and matching conduits.
Alternatively, in another embodiment of the mask of the present invention, the barrier wall section of the lateral nose piece section does not include any apertures or orifices so that the flow of air between the upper and lower chamber is prevented during use.
In one embodiment of the mask of the present invention, a snorkel device is connected via a snorkel coupling formed in the upper portion of the faceplate. The snorkel device has a ventilation system that provides an air pathway into and out of the mask. In a preferred embodiment, the snorkel device comprises an elongated body which slidably couples to the snorkel coupling on one end and comprises an air-permeable enclosure on the distal end. The elongated body encloses an air passageway which fluidly connects a passageway in the snorkel coupling with the airway inlet near the distal end of the snorkel device.
In a preferred embodiment, the snorkel device provides separate pathways for inhaled and exhaled air. The snorkel device may have a distal end having an air-permeable enclosure. The snorkel device further comprises a shut-off device that is mobile within the enclosure so that when the snorkel is submerged in water the shut-off device is caused to move and close the inlet to the air passageway in the snorkel. Nonetheless, the snorkel device is constructed so that when the user exhales air while under water the inlet may be momentarily forced open to exhaust the air. When the snorkel device is out of the water, the shut-off device does not cover the inlet to the air passageway in the snorkel allowing fresh air be inhaled through the air passageway and into the mask via the upper chamber through the aperture and into the lower chamber.
In a preferred embodiment, the snorkel device is removable from the snorkel coupling formed in the upper portion of the faceplate. With the snorkel device removed, the mask may be quickly and easily converted into a hybrid scuba mask embodiment by connecting a conventional 2nd stage scuba regulator to the snorkel coupling using a tubular interface sleeve that is preferably flexible and elastic. One end of the tubular interface sleeve is dimensioned to fit snuggly onto the outer periphery of the snorkel coupling end while the opposing end is dimensioned to fit and seal onto the mouthpiece receiver of a conventional 2nd stage regulator. The tubular interface sleeve forms a watertight connection between the conventional 2nd stage scuba regulator and the snorkel coupling that fluidly connects the air inlet and exhaust passageways of the mask with the mouthpiece receiver of the regulator.
The scuba-enabled embodiment of the hybrid scuba mask works essentially the same as with a snorkel device attached, however, when a user exhales during the exhalation phase or cycle, the exhaust air travels up and out of the exhaust passageways of the mask and on through the exhaust valve of the conventional 2nd stage scuba regulator where it is preferably vented out of an exhaust tee deflector device. Similarly, during an inhalation phase or cycle the user creates a slight vacuum pressure in the air inlet passageways of the mask, which triggers the air supply demand valve of the conventional 2nd stage scuba regulator to supply air. The air supplied by the scuba regulator flows through the mouthpiece receiver and into the air inlet passageways of the mask. A wide variety of conventional 2nd stage scuba regulators may be used with the scuba-enabled embodiment of the mask.
The flexible hollow skirt, flexible tubular interface and the flexible insert configured in the faceplate are preferably made of silicone while the rigid annular frame and faceplate may be made of rigid plastic such as polypropylene or polycarbonate. The arrangement is advantageous since it allows a mask to be manufactured using a minimum number of parts. Preferably the parts are fused together using injection molding techniques to create a unitary mask body.
The mask of the present invention may also comprise an elastic retention strap which extends between two or more buckle devices incorporated into the faceplate of the mask. In a preferred embodiment, the mask includes two buckle devices extending from the upper portion of the faceplate and two buckle devices extending from the lower portion of the faceplate.
In a preferred embodiment, the elastic retention strap may comprise two elastic retention straps bonded together in the center of both straps. The elastic strap is therefore X-shaped making it possible to cover the rear part of the user's head, thereby providing stability and maintaining the mask on the user's head. A first elastic retention strap having one end attached to a buckle device extending from the upper portion of a first side of the faceplate and a second end attached to a buckle device extending from the lower portion of a first side of the faceplate. A second elastic retention strap having one end attached to a buckle device extending from the upper portion of a second side of the faceplate and a second end attached to a buckle device extending from the lower portion of a second side of the faceplate. This preferred embodiment facilitates the mounting operation of the elastic strap and the holding in place thereof in relation to the mask.
The elastic retention straps may also include a quick-release clasp mechanism for quickly and easily detaching the retention straps from the user's head. In a preferred embodiment, the quick-release clasp mechanism comprises two component parts, which are easily fastened or buckled to one another. In a preferred embodiment, the quick-release clasp mechanism includes a quick-release button, which when pushed quickly unbuckles the two component parts from one another.
In another preferred embodiment, the diving mask of previous embodiments is modified into a respirator/ventilator mask. A tubular ventilating sleeve is coupled to the snorkel coupling to provides a fluid connection between the ventilator mask and a ventilator inhalation hose. The tubular ventilating sleeve comprises an inhalation conduit which fluidly connects a snorkel coupling passageway to the inhalation hose of the ventilating device. Additionally, the tubular ventilating sleeve may be configured with at least one exhaust chamber. The ventilator enabled embodiment of the mask functions similarly to the previous mask embodiments. However, when a user exhales the exhaust air is directed through the mask, eventually being discharged through the exhaust chamber. Similarly, during an inhalation cycle, the user creates a slight vacuum pressure in the air inlet passageways of the mask by breathing in, which triggers the air supply demand valve of the ventilating device to supply clean air via the ventilator inhalation hose. The connection between the inhalation conduit of the tubular ventilating sleeve and air inlet passageways of the mask forms a hermetic seal, which prevents contamination of incoming clean air or recirculation of exhausted air.
A more complete understanding of the apparatus of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings, wherein:
Where used in the various figures of the drawing, the same numerals designate the same or similar parts. Furthermore, when the terms “top,” “bottom,” “first,” “second,” “upper,” “lower,” “height,” “width,” “length,” “end,” “side,” “horizontal,” “vertical,” and similar terms are used herein, it should be understood that these terms have reference only to the structure shown in the drawing and are utilized only to facilitate describing the invention.
All figures are drawn for ease of explanation of the basic teachings of the present invention only; the extensions of the figures with respect to number, position, relationship, and dimensions of the parts to form the preferred embodiment will be explained or will be within the skill of the art after the following teachings of the present invention have been read and understood. Further, the exact dimensions and dimensional proportions to conform to specific force, weight, strength, and similar requirements will likewise be within the skill of the art after the following teachings of the present invention have been read and understood.
The faceplate body 10 includes a lateral partition 20 on the interior side of the faceplate 10 that delineates an upper chamber 22 from a lower or breathing chamber 24. As will be understood with reference to
The faceplate 10 also incorporates two or more buckle devices 2 for attaching an elastic retention strap 70 to the mask. The faceplate 10 may also comprise a drainage or purge valve 4 configured in the lower portion 16 of the faceplate 10 and arranged to evacuate liquid from the lower or breathing chamber 24 to outside the mask 100. Water contained in the lower chamber 16 can be expelled to outside the mask 100 via the purge valve 4 by means of sharp exhalation.
As shown in
With reference now to
With reference again to the Figures, and in particular,
The flexible sealing skirt 50 also includes a lateral nose piece section 54 attached to the partition 20 of the faceplate 10. The lateral nose piece section 54 effectively seals off at the partition 20 the upper chamber 22 from the lower chamber 24 when the mask 100 is worn. The lateral nose piece section 54 includes a barrier wall section 56 that is preferably flexible, and fixably attached and bonded to the partition 20. The lateral nose piece 54 is formed or sculpted so as come in sealing contact with the user's face in the nasal region just above the user's nose.
The barrier wall section 56 of the lateral nose piece section 54 preferably includes at least one intake aperture 55, which allows air to be inhaled from the snorkel device 40. The inhaled air from the snorkel device 40 enters the mask 100 via the passageway 27 formed the snorkel coupling 26 and travels through the upper chamber 22 to the lower chamber 24 through the intake aperture 55. Each intake aperture 55 in the lateral nose piece section 54 also comprises an inlet check valve device 59 which permits the flow of inhaled air through each intake aperture 55 solely from the upper chamber 22 to the lower chamber 24 during an inhalation phase by the user. By means of the inlet check valve device 59, the intake aperture 55 is sealed during an exhalation phase by the user preventing the flow of exhaled air from rising back into the upper chamber 22, thereby improving the effectiveness of the anti-fogging system of the mask 100. In a preferred embodiment, the barrier wall section 56 of the lateral nose piece section 54 includes two intake apertures 55 and matching inlet check valve devices 59.
The barrier wall section 56 of the lateral nose piece section 54 further includes at least one exhaust orifice 58 through which an exhaust conduit 60 extends from the lower chamber 24 through the upper chamber 22 and to the passageway 27 contained in the snorkel coupling 26 forming an enclosed passageway for exhaled air to pass through the upper chamber 22 to the snorkel device 40. The enclosed passageway 60 allows warm, humid air exhaled by the user to be efficiently exhausted though the snorkel device 40 without fogging up the transparent lens section 12 of the mask 100. As shown in the Figures, and particularly
The flexible annular skirt 50 may also include a valve device 53 for varying the amount of cushioning substance in the hollow annular skirt 50. For example, the valve device 53 could be a simple air valve for increasing or decreasing the amount of air contained in the hollow annular skirt 50. The hollow annular skirt 50 may further include a chin guard 51 configured at the bottom of the mask 100. As depicted in
A snorkel device 40 is connected via the snorkel coupling 26 formed in the upper portion 14 of the faceplate 10. The snorkel device 40 may include a ventilation system that provides an air pathway into and out of the mask 100. In a preferred embodiment, the snorkel device 40 comprises an elongated body 44, which slidably couples to the snorkel coupling 26 on one end 42 and includes an air-permeable enclosure 48 on the distal end. The elongated body 44 encloses an air passageway 45 which fluidly connects a passageway 27 in the snorkel coupling 26 with the airway inlet 43 near the distal end 46 of the snorkel device 40.
The snorkel device 40 may have a distal end 46 having an air-permeable enclosure 48 containing an air inlet 43. The snorkel device 40 may further comprise a shut-off device that is mobile within the enclosure so that when the snorkel device 40 is submerged in water the shut-off device is caused to move and close the inlet to the air passageway 45 in the snorkel device 40. Nonetheless, the snorkel device 40 is constructed so that when a user exhales air while under water the inlet 43 may be momentarily forced open to exhaust the air.
When the snorkel device 40 is out of the water, the shut-off device does not cover the inlet to the air passageway 45 in the snorkel 40 allowing fresh air be inhaled through the air passageway 45 and into the upper chamber 22 of the mask 100, through the intake apertures 55 and past inlet check valve 59 into the lower chamber 24. In a preferred embodiment, the snorkel device 40 is detachable from the snorkel coupling 26 formed in the upper portion 14 of the faceplate 10.
As shown in
In a preferred embodiment, the snorkel coupling 26 and the snorkel device 40 provides separate pathways or channels for inhaled and exhaled air. For example, with reference to
The flexible hollow skirt 50 and the flexible insert 8 of the faceplate 10 are preferably made of silicone while the frame 30 and faceplate 10 may be made of rigid plastic such as polypropylene or polycarbonate. The arrangement is advantageous since it allows a mask 100 to be manufactured using a minimum number of parts. Preferably the parts are fused together using injection molding techniques to create a unitary mask body.
The mask 100 of the present invention may also comprise an elastic retention strap 70 which extends between the two or more buckle devices 2 incorporated into the faceplate 10 of the mask 100. In a preferred embodiment shown in
In a preferred embodiment, the elastic retention strap 70 may comprise two elastic retention straps bonded together in the center of both straps, where each of the straps 70 is attached to a buckles 2 on the same side of the mask and configured on the upper 14 and lower portion 16 of the faceplate 10. For example, a first elastic retention strap 70 having one end attached to a buckle device 2 extending from the upper portion 14 of a first side of the faceplate 10 and a second end attached to a buckle device 2 extending from the lower portion 16 of a first side of the faceplate 10. A second elastic retention strap 70 having one end attached to a buckle device extending from the upper portion of a second side of the faceplate and a second end attached to a buckle device extending from the lower portion of a second side of the faceplate. The configured elastic straps are, therefore, X-shaped making it possible to cover the rear part of the user's head, thereby providing stability while maintaining of the mask snugly on the user's head and face. This preferred embodiment facilitates the mounting operation of the elastic strap and the holding in place thereof in relation to the mask.
Finally, the mask may further include ear buds or earplugs 74 for sealing the user's ears. The earplugs 74 are attached to the mask 100 by means of connecting straps 72 attached to the faceplate 10.
With reference now to Figures, and in particular
Detaching the snorkel device 40 from the snorkel coupling 26 uncovers the snorkel coupling end 26a and provides access to the passageway 27 contained within the snorkel coupling 26.
The tubular interface sleeve 90 comprises a tubular body 90a that is preferably flexible, yet firm enough to maintain its shape when configured as a passageway between the snorkel coupling 26 and the conventional 2nd stage scuba regulator 84. An opened first end 92 of the tubular interface sleeve 90 is dimensioned to fit snuggly onto the outer periphery of the snorkel coupling end 26a while an opposing opened end 94 is dimensioned to fit and seal onto the mouthpiece receiver tube 85 of a conventional 2nd stage regulator 84. The tubular interface sleeve 90 forms a watertight connection between the conventional 2nd stage scuba regulator 84 and the snorkel coupling 26, and fluidly connects the air inlet 27a and exhaust 27b passageways of the mask 200 with the mouthpiece receiver tube 85 of the regulator 84.
The scuba-enabled embodiment of the mask 200 works essentially the same as previously described snorkel mask 100 (
A wide variety of conventional 2nd stage scuba regulators may be used with the scuba enabled embodiment of the mask. For example, Matsuoka (U.S. Pat. No. 6,718,976) discloses a 2nd stage scuba regulator that is suitable for use in the scuba enabled embodiment of the mask 200 in the present invention. The AQUA LUNG® LX model 2nd stage regulator has also been successfully utilized with the scuba-enabled embodiment of the mask 200 of the present invention. The exhaust tee deflector device 88 of the AQUA LUNG® LX model regulator advantageously rests on top of the user's head when the regulator 84 is properly attached to the snorkel coupling end 26a of the mask 200 using the flexible elastic tubular interface sleeve 90 as illustrated in
With reference now to
While the cross-sectional dimension or area of the auxiliary passageway 96 can be held constant over the length of the tubular interface sleeve 90, it is understood that it may vary over the length of the tubular interface sleeve 90. For example, in the preferred embodiment depicted in
In addition, while the opened ends 92, 94 of the tubular interface sleeve 90 are depicted in the drawings as being oblong, it is understood that the opened ends 92, 94 may have any cross-sectional shape that is most conducive to connecting and sealing with a particular snorkel coupling end 26a (
The interior surface 95 of the tubular interface sleeve 90 may include one or more radial projections 91 for securing the seals against the snorkel coupling end 26a (
The tubular interface sleeve 90 may further include first and second exterior radial channel 98, 97 near opposing ends 92, 94 that are bounded by raised rings 93. The exterior radial channels 98, 97 enhance compression attachment by use of a quick-tie or similar radial fastener.
The tubular interface sleeve 90 forms a watertight connection between the conventional 2nd stage scuba regulator 84 and the snorkel coupling 26 that fluidly connects the air inlet 27a and exhaust 27b passageways of the mask 200 with the mouthpiece receiver tube 85 of the regulator 84. Fresh air flows from the regulator 84 to the air inlet passageway 27a and into the mask 200 during the inhalation cycle and exhaust air flows up and out of the exhaust conduits/enclosed passageways 60 of the mask and on through the exhaust valve (not shown) of the conventional 2nd stage scuba regulator 84 where it is preferably vented out of an exhaust tee deflector device 88 (
The scuba-enabled embodiment of the mask 200 of the present invention provides a first one-way fluid pathway from the air supply hose 83 (
With reference now to Figures, and in particular
The faceplate body 110 includes a lateral partition 120 on the interior side of the faceplate 110 that delineates an upper chamber 122 from a lower or breathing chamber 124. As will be understood with reference to
A first or upper cutout 106 is configured about the user's nasal region when worn. A flexible waterproof insert 108 is installed in the first or upper cutout opening 106 that allows the user to readily squeeze the user's nose when necessary to equalized pressure on the eardrums. The insert 108 includes an outer peripheral edge or rim 108a that is complementary to the shape and dimension to the first or upper cutout opening 106 in the faceplate 110. The insert 108 is bonded to the first or upper cutout opening 106 along the outer peripheral edge or rim 108a with a waterproof seal. The insert may also include thin-walled recessed portions 108b and a thin-walled bulbous nose section 108c, which enables a user to perform the Valsalva maneuver with their hands by grabbing the nose through the thin-walled bulbous nose section 108c. While the preferred embodiment of the first/upper cutout 106 and its corresponding insert 108 shown in the Figures are generally triangular-shaped, it is understood any other conceivable geometric shape may be used.
A second or lower cutout 104 is positioned directly below the first or upper cutout 106 and generally in line with the user's mouth when worn. The second or lower cutout 104 is fitted with a flexible tubular insert 109, which defines a passageway 190 through the faceplate 110 to the lower or breathing chamber 124. The flexible tubular insert 109 includes an outer peripheral edge or rim 109a that is complementary to the shape and dimension to the second or lower cutout opening 104 in the faceplate 110. The tubular insert 109 is bonded to the second or lower cutout opening 104 along the outer peripheral edge or rim 109a with a waterproof seal. As shown in the Figures, and particularly
The flexible tubular insert 109 forms a watertight connection between the conventional 2nd stage scuba regulator 184 and the lower or breathing chamber 124 that fluidly connects the lower or breathing chamber 124 of the mask 300 with the mouthpiece receiver tube 185 of the regulator 184. Fresh air flows from the regulator 184 through the tubular insert's passageway 190 and into the lower or breathing chamber 124 of the mask 300 during the inhalation cycle and exhaust air flows out of the lower or breathing chamber 124 of the mask, through the insert's passageway 190 and on through to the exhaust valve (not shown) of the conventional 2nd stage scuba regulator 184 where it is preferably vented out of the exhaust tee deflector device.
While the preferred embodiment shown in
While the first 106 and second 104 cutout openings and their complementary inserts are depicted in the Figures as being separate and distinct, it is understood that they may be combined into a single cutout opening configured to receive a complementarily-shaped single insert having both a bulbous nose section and a tubular section defining a passageway through the faceplate 110 to the lower or breathing chamber 124.
Similar to the previously disclosed embodiments, the faceplate 110 of the diving mask 300 of the present invention also includes a flange 117 that is formed along the entire outer periphery or rim 118 of the faceplate 110. The flange 117 is used as a bonding surface to affix the faceplate 110 to a rigid annular oblong-shaped support rib or frame 130 configured within the outer periphery 118 of the flange 117 of the faceplate 110. The rigid annular frame 130 may be bonded or fused to the back side (i.e., the rearward facing side of the flange 117). The rigid annular frame 130 provides structural support to the faceplate 110 while remaining contained within the circumference of the outer periphery 118 of the faceplate 110. Preferably, the rigid annular frame 130 is permanently bonded to the outer periphery flange 117 of the faceplate 110.
As previously noted in regard to the previously described embodiments of the faceplate, in a preferred embodiment a rigid annular rib or frame 130 is incorporated into the faceplate 110 of the diving mask 300 of the present invention as an integral extension formed in the flange 117 of the faceplate 110. The rigid annular support rib or frame 130 is formed in the flange 117 and extends longitudinally away from the backside (i.e., the rearward facing side) of the flange 117 forming a protruding annular lip 130 configured within the outer periphery 118 of the faceplate 110.
With reference again to the Figures, and in particular,
The flexible sealing skirt 150 of the diving mask 300 of the present invention also includes a lateral nose piece section 154 attached to the partition 120 of the faceplate 110. The lateral nose piece section 154 effectively seals off at the partition 120 the upper chamber 122 from the lower chamber 124 when the mask 300 is worn. The lateral nose piece section 154 includes a barrier wall section 56 that is preferably flexible, and fixably attached and bonded to the partition 120. The lateral nose piece 154 is formed or sculpted so as come in sealing contact with the user's face in the nasal region just above the user's nose.
However, in marked contrast to the other previously disclosed embodiments, the barrier wall section 156 of the diving mask 300 of the present invention does not include any openings, apertures or orifices connecting the upper chamber 122 from the lower chamber 124 when the mask 300 is worn. Moreover, the barrier wall section 156 of the diving mask 300 does not include any check valve devices. Consequently, during use the upper chamber 122 is completely sealed off from the lower chamber 124
The flexible annular sealing skirt 150 may also include a valve device 153 for varying the amount of cushioning substance in the hollow annular skirt 150. For example, the valve device 153 could be a simple air valve for increasing or decreasing the amount of gas contained in the hollow annular skirt 150. The hollow annular skirt 150 may further include a chin guard 151 configured at the bottom of the mask 300. As depicted in
The faceplate 110 also incorporates two or more, preferably four, buckle devices 102 for attaching an elastic retention strap 170 to the mask. The faceplate 110 may also include one or more accessory mounts 160 formed therein which are used to mount an accessory device, such as a camera, to the mask. For example, as shown in the embodiment of the mask 300 depicted in
The flexible hollow skirt 150 and flexible inserts (i.e., bulbous nose section insert 108 and the flexible tubular insert 109) are made of a flexible, yet durable material, such as silicone. In contrast, the faceplate 110 and the rigid annular support rib or frame 130, are preferably made of rigid plastic such as polypropylene or polycarbonate. Indeed, the faceplate 110 is preferably formed as a single, unitary body having the rigid annular support rib or frame 130, buckles 102 and accessory mounts 160 formed and incorporated therein. This arrangement is advantageous since it allows a mask 300 to be manufactured using a minimum number of parts. Preferably, the parts are fused together using injection molding techniques to create a unitary mask body.
The mask 300 of the present invention may also comprise one or more elastic retention straps 170, which extend between the two or more buckle devices 102 incorporated into the faceplate 110 of the mask 300. In one embodiment, two elastic retention straps are bonded together in the center of both straps, where each of the straps 170 is attached to a buckles 102 on the same side of the mask and configured on the upper 114 and lower portion 116 of the faceplate 110. For example, a first elastic retention strap 170 having one end attached to a buckle device 102 extending from the upper portion 114 of a first side of the faceplate 110 and a second end attached to a buckle device 102 extending from the lower portion 116 of a first side of the faceplate 110. A second elastic retention strap 170 having one end attached to a buckle device extending from the upper portion of a second side of the faceplate and a second end attached to a buckle device extending from the lower portion of a second side of the faceplate. The configured elastic straps are, therefore, X-shaped making it possible to cover the rear part of the user's head, thereby providing stability while maintaining the mask snugly on the user's head and face.
Alternatively, the elastic retention straps 170 may also include a quick-release clasp mechanism 172 for quickly and easily releasing the retention straps 170 from the user's head. In a preferred embodiment, the quick-release clasp mechanism 172 comprises two component parts 171, 173, which are selectively and easily coupled or latched to one another. The receiver component 171 and clip component 173 each include at least one buckle element 174 for attaching a separate retention strap 170 connected to the mask 300. In a preferred embodiment, the quick-release clasp mechanism 172 includes a centralized quick-release button 177, which quickly decouples and disengages the two component parts from one another when activated.
With reference to the Figures, and particularly
In the preferred embodiment, the mask 300 includes two buckle devices 102 extending from the upper portion 114 of the faceplate 110 and two buckle devices 102 extending from the lower portion 116 of the faceplate 110. A separate elastic retention strap 170 is attached to each buckle device 102. A corresponding distal end of each elastic retention strap 170 is attached to a buckle element 174 on the quick-release clasp mechanism 172.
For example as shown in
In the preferred embodiment, the quick-release clasp mechanism 172 comprises a two-piece assembly consisting of a left/female/receiver component 171 selectively coupled to a right/male/clip component 173. By manipulating the quick-release clasp mechanism 172 a user can quickly disengage the latching mechanism coupling the components together. The left/female/receiver component 171 includes a receiver end 175 comprising a lower 175a and upper 175b plate. The upper plate 175b further includes an aperture 176 formed therein. Correspondingly, the right/male/clip component 173 includes an end or tongue section 178 having a shape complementary to the receiver component 171 so as to slide between the lower 175a and upper 175b plates. The end or tongue section 178 of the right/male/clip component 173 further includes a protrusion or button 177 extending away from the surface of the end or tongue section 178 and having a shape that is complementary to the shape of the aperture 176 formed in the upper plate 175b of the receiver end 175 of the left/female/receiver component 171. For example, as depicted in
The upper plate 175b is capable of flexing in order to receive and capture the button 177 of the end or tongue section 178 within the aperture 176 of the upper plate 175b. To release, a user simply pulls on the upper plate 175b of the of the receiver end 175 causing the upper plate 175b to flex so that the button 177 extending away from the surface of the end or tongue section 178 becomes uncaptured or released from the confines of the aperture 176 of the upper plate 175b. Latent tension forces in the retention strap 170 greatly assist in pulling apart the components of the quick-release clasp mechanism 172 upon the button 177 becoming uncaptured or released from the confines of the aperture 176. Indeed, a user can typically release the clasp mechanism 172 with a single hand.
Alternatively, the button 177 of the end or tongue section 178 may be spring-loaded such that when depressed the end or tongue section 178 can slide between the lower 175a and upper 175b plates of the receiver end 175, and when released or extended the button 177 is captured within the confines of the aperture 176 of the upper plate 175b.
In contrast to the previously described embodiments, the third embodiment of the diving mask 300 of the present invention does not include any openings, apertures or orifices connecting the upper chamber 122 to the lower chamber 124 when the mask 300. Consequently, all breathing operations (i.e., the inhalation and exhalation cycles) are much simpler and contained within the lower chamber 124, the passageway 190 of the flexible tubular insert 109 and a conventional 2nd stage scuba regulator 184.
For example, during an inhalation cycle the user creates a slight vacuum pressure in the lower chamber 124 of the mask 300 by breathing in, which triggers the air supply demand valve of the conventional 2nd stage scuba regulator 184 to supply pressurized air via air supply hose 183. The air supply hose 183 connects the regulator 184 to a source of pressurized air (e.g., a portable or stationary pressurized canister/tank or a surface air pump). The pressurized air supplied to the 2nd stage scuba regulator 184 flows to the mouthpiece receiver tube 185, through the passageway 190 of the flexible tubular insert 109 and into the lower breathing chamber 124 of the mask 300.
During an exhalation cycle, the exhaust air is directed from the lower breathing chamber 124 through the passageway 190 of the flexible tubular insert 109, and into the mouthpiece receiver tube 185 of a conventional 2nd scuba regulator 184. The exhaust air then proceeds to an exhaust valve (not shown) in the conventional 2nd scuba regulator 184 where it is preferably vented out of an exhaust tee deflector device.
A wide variety of conventional 2nd stage scuba regulators may be used with the e third embodiment of the diving mask 300 of the present invention. For example, Matsuoka (U.S. Pat. No. 6,718,976) discloses a 2nd stage scuba regulator that is suitable for use in the third embodiment of the mask 300 in the present invention. The AQUA LUNG® LX model 2nd stage regulator has also been successfully utilized with the third embodiment of the mask 300 of the present invention.
The third embodiment of the mask 300 in the present invention provides a fluid pathway from the air supply hose 183 (
With reference now to Figures, and in particular
As will be understood with additional reference to
With further reference to
A second or lower cutout 204 is positioned directly below the first or upper cutout 206 and generally in line with the user's mouth when worn. The second or lower cutout 204 is fitted with a flexible tubular insert 209, which defines a passageway 290 through the faceplate 210 to the lower or breathing chamber 224. The flexible tubular insert 209 includes an outer peripheral edge or rim 209a that is complementary in shape and dimensioned to fit snugly within the second or lower cutout opening 204 in the faceplate 210. The tubular insert 209 is bonded to the second or lower cutout opening 204 along the outer peripheral edge or rim 209a with a waterproof seal. As shown in the Figures, and particularly
The flexible tubular insert 209 forms a watertight connection between the conventional 2nd stage scuba regulator 284 and the lower or breathing chamber 224 that fluidly connects the lower or breathing chamber 224 of the mask 400 with the mouthpiece receiver tube 285 of the regulator 284. Fresh air flows from the regulator 284 through the tubular insert's passageway 290 and into the lower or breathing chamber 224 of the mask 400 during the inhalation cycle and exhaust air flows out of the lower or breathing chamber 224 of the mask, through the insert's passageway 290 and on through to the exhaust valve (not shown) of the conventional 2nd stage scuba regulator 284 where it is preferably vented out of the exhaust tee deflector device.
While the preferred embodiment shown in
While the first 206 and second 204 cutout openings and their complementary inserts are depicted in the Figures as being separate and distinct, it is understood that they may be combined into a single cutout opening configured to receive a complementarily-shaped single insert having both a bulbous nose section and a tubular section defining a passageway through the faceplate 210 to the lower or breathing chamber 224.
Similar to the previously disclosed embodiments, the faceplate 210 of the diving mask 400 of the present invention also includes a flange 217 that is formed along the entire outer periphery or rim 218 of the faceplate 210. The flange 217 is used as a bonding surface to affix the faceplate 210 to a rigid annular oblong-shaped support rib or frame 230 configured within the outer periphery 218 of the flange 217 of the faceplate 210. The rigid annular frame 230 may be bonded or fused to the back side (i.e., the rearward facing side of the flange 217). The rigid annular frame 230 provides structural support to the faceplate 210 while remaining contained within the circumference of the outer periphery 218 of the faceplate 210. Preferably, the rigid annular frame 230 is permanently bonded to the outer periphery flange 217 of the faceplate 210.
As previously noted in regard to the previously described embodiments of the faceplate, in a preferred embodiment a rigid annular rib or frame 230 is incorporated into the faceplate 210 of the diving mask 400 of the present invention as an integral extension formed in the flange 217 of the faceplate 210. The rigid annular support rib or frame 230 is formed in the flange 217 and extends longitudinally away from the backside (i.e., the rearward facing side) of the flange 217 forming a protruding annular lip 230 configured within the outer periphery 218 of the faceplate 210.
With reference again to the Figures, and in particular,
The flexible sealing skirt 250 of the diving mask 400 of the present invention also includes a lateral nose piece section 254 attached to the partition 120 of the faceplate 110. The lateral nose piece section 254 effectively seals off at the partition 220 the upper chamber 222 from the lower chamber 224 when the mask 400 is worn. The lateral nose piece section 254 includes a barrier wall section 256 that is preferably flexible, and fixably attached and bonded to the partition 220. The lateral nose piece 254 is formed or sculpted so as come in sealing contact with the user's face in the nasal region just above the user's nose.
As shown in the Figures, and particularly
The barrier wall section 256 of the lateral nose piece section 254 further includes at least one exhaust orifice 258 through which an exhaust conduit 260 extends from the lower chamber 224 through the upper chamber 222 and to the passageway 227 contained in the snorkel coupling 226 forming an enclosed passageway for exhaled air to pass through the upper chamber 222 to the snorkel device 240. The enclosed passageway 260 allows warm, humid air exhaled by the user to be efficiently exhausted though the snorkel device 240 without fogging up the transparent lens section 212 of the mask 400. As shown in the Figures, and particularly
The flexible annular sealing skirt 250 (
With reference again to
The flexible hollow skirt 250 and flexible inserts (i.e., bulbous nose section insert 208 and the flexible tubular insert 209) are made of a flexible, yet durable material, such as silicone. In contrast, the faceplate 210 and the rigid annular support rib or frame 230, are preferably made of rigid plastic such as polypropylene or polycarbonate. Indeed, the faceplate 210 is preferably formed as a single, unitary body having the rigid annular support rib or frame 230, buckles 202 and accessory mounts 294 formed and incorporated therein. This arrangement is advantageous since it allows a mask 400 to be manufactured using a minimum number of parts. Preferably, the parts are fused together using injection molding techniques to create a unitary mask body.
The mask 400 of the present invention may also comprise one or more elastic retention straps 270, which extend between the two or more buckle devices 202 incorporated into the faceplate 210 of the mask 400. The elastic retention straps 270 may be configured in any of the previously described embodiments or arrangements and may or may not utilize any previously disclosed quick-release clasp mechanism.
In contrast to the previously described third embodiment 300, the fourth embodiment of the diving mask 400 of the present invention further includes openings, apertures and orifices that the upper chamber 222 to the lower chamber 224 as found in the first and second embodiments 100, 200. Consequently, the fourth embodiment of the mask 400 is much more flexible in its use and may be used interchangeably in either a scuba configuration or a snorkeling configuration. When the mask 400 is properly configured for scuba diving (i.e., with scuba regulator 284 switched on and the snorkel device 240 submerged below the water's surface) a cutoff mechanism (not shown) (e.g., one or more floats in the snorkel device 240) seals off the passageways 227 formed in the snorkel coupling 226. Alternatively, the snorkel device 240 or distal end of the snorkel coupling 226 may capped off with a water-proof cap (not shown). Alternatively, the snorkel device 240 or distal end of the snorkel coupling 226 may capped off with a water-proof cap (not shown)). Additionally, the snorkel coupling may further include a ball valve mechanism (not shown) for sealing off the passageways 227.
With the snorkel device 240 and the passageways 227 sealed off, all breathing operations (i.e., the inhalation and exhalation cycles) are much simpler and essentially contained within the lower chamber 224, the passageway 290 of the flexible tubular insert 209 and a conventional 2nd stage scuba regulator 284.
For example, during an inhalation cycle the user creates a slight vacuum pressure in the lower chamber 224 of the mask 400 by breathing in, which triggers the air supply demand valve of the conventional 2nd stage scuba regulator 284 to supply pressurized air via an air supply 283. The air supply 283 connects the regulator 284 to a source of pressurized air (e.g., a portable or stationary pressurized canister/tank 286, a hose connected to a portable or stationary pressurized canister/tank or a surface air pump (not shown)). The embodiment depicted in
Because the snorkel device 240, passageways 227 and exhalation conduit 260 are sealed, during an exhalation cycle, the exhaust air is directed from the lower breathing chamber 224 through the passageway 290 of the flexible tubular insert 209, and into the mouthpiece receiver tube 285 of a conventional 2nd scuba regulator 284. The exhaust air then proceeds to an exhaust valve (not shown) in the conventional 2nd scuba regulator 284 where it is preferably vented out of an exhaust tee deflector device.
A wide variety of conventional 2nd stage scuba regulators may be used with the fourth embodiment of the diving mask 400 of the present invention. For example, Matsuoka (U.S. Pat. No. 6,718,976) discloses a 2nd stage scuba regulator that is suitable for use in the fourth embodiment of the mask 400 in the present invention. The AQUA LUNG® LX model 2nd stage regulator has also been successfully utilized with the fourth embodiment of the mask 400 of the present invention.
When properly configured for scuba diving, the fourth embodiment of the mask 400 in the present invention provides a fluid pathway from the air supply (
Thus, with the fourth embodiment of the mask 400 in the present invention, a diver can quickly and easily switch from a snorkeling configuration to a scuba configuration and back to a snorkeling configuration. The mask 400 offers an expanded flexibility of use that was previously unheard of.
With reference now to the Figures, and in particular
The snorkel coupling 26 comprises an air inlet passageway 227a that is sealed off and separate from two exhaust air passageways 227b (
The ventilator enabled embodiment of the mask 500 functions in a similar manner as the previously described scuba-enabled mask 300 (
Similarly, during an inhalation cycle, as depicted in
While the first end 94c of the inhalation conduit 103 may be configured in a circular shape to connect to the ventilator inhalation hose 83a, the second end of the inhalation conduit 94d may be configured in a variety of shapes (e.g., circular, square, hexagonal, tapered). In at least one embodiment, the tubular inhalation conduit 103 may be removable from tubular ventilating sleeve 90c to enable health care providers to easily switch to different sized inhalation conduits and passageways 94. The ability to use various sized inhalation conduits ensures that the mask 500 is adaptable to various ventilation hoses and devices.
Similarly, when a ventilator supplies clean air through the inhalation conduit 103, which is sealed off from the exhaust air passageways 227b, into the upper chamber 222 (
Thus, the ventilator-enabled mask 500 effectively isolates potential pathogen-containing air from a user's respiratory system from health care providers and prevents the recirculation of potential pathogen-containing air in the user's breathing circuit. The ventilator mask of the present 500 may further include a removable regulator cap 211 in the mask that enables health care providers to access the user's mouth and nasal region. Such access enables health care providers to quickly administer medication without having to disconnect the patient from the ventilating system that might place the user in respiratory distress.
With reference now to
The tubular ventilating sleeve 90b further comprises a tubular inhalation conduit 103 extending through the tubular body of the ventilation sleeve 90b. The inhalation conduit 103 comprises a first end 94a and a second end 94b. The first end 94a is dimensioned to hermetically couple and seal to a ventilator inhalation hose 83a. The tubular inhalation conduit 103 includes a passageway 94 that fluidly connects the air inlet passageway 227a in the snorkel coupling 26 to the ventilator inhalation hose 83a of the ventilating device. The tubular inhalation conduit 103 has a first end 94a, which extends out of the closed-off end 95a of the tubular ventilating sleeve 90b and is designed to connect to a ventilator inhalation hose 83a. The second end 94b of the inhalation conduit 103 extends past the first end 92a of the tubular ventilating sleeve 90b. When the first end 92a of the tubular ventilating sleeve 90b is properly coupled and sealed to the distal end 26a of the snorkel coupling 26, the second end 94b of the tubular inhalation conduit 103 is properly seated and sealed within the air inlet passageway 227a enabling the air inlet passageway 227a to be fluidly connected to the ventilator inhalation hose 83a. The auxiliary passageway 96 (i.e., the volumetric area within the body of the tubular ventilating sleeve 90b surrounding the tubular inhalation conduit 103) fluidly connects the exhaust air passageways 227b to an exhaust port 107. The exhaust port 107 is dimensioned to hermetically connect the auxiliary passageway 96 to a ventilator exhalation hose 83b (
While the cross-sectional dimension or area of the auxiliary passageway 96 can be held constant over the length of the tubular ventilating sleeve 90b, it is understood that it may vary over the length of the tubular ventilating sleeve 90b. For example, in the embodiment depicted in
The tubular ventilating sleeve 90b may further include first and second exterior radial channel 98, 97 near opposing ends 92a, 94a that are bounded by raised rings 93. The exterior radial channels 98, 97 enhance compression attachment by use of a quick-tie or similar radial fastener. The tubular ventilating sleeve 90b forms hermetic connections between the ventilator inhalation/exhalation hoses 83a, 83b and the air inlet 227a and exhaust passageways 227b of snorkel coupling 26, respectively. Fresh air flows from the ventilator inhalation hose 83a to the air inlet passageway 227a and into the mask 500 during the inhalation cycle and exhaust air flows up and out of the exhaust conduits/enclosed passageways 260 of the mask and on through the exhaust outlet 107 of the tubular ventilating sleeve 90b exits through a ventilator exhalation hose 83b.
The ventilator-enabled embodiment of the mask 500 of the present invention provides a first one-way fluid pathway 227a (
As mentioned previously, either embodiment of the mask 500 provides a covering over the entirety of a user's face (e.g., the mouth, nose, and eyes). Further, the faceplate partition and flexible annular skirt provide a tight seal around the user's skin, which prevents air or fluid from being transmitted between the user and the outer environment. For example, pathogens such as viruses or bacteria would not be exchanged between a patient wearing a mask and a health care provider. Further, the hermetic seal formed in between the tubular ventilating sleeve 90c and the snorkel coupling 26 prevent the clean air from a ventilator from becoming contaminated (e.g., pathogens) or releasing pathogen containing air, in the form of exhausted air, into the environment.
The ventilator enabled embodiment of the mask 500 functions in a similar manner as the previously described scuba-enabled mask 300 (
Similarly, when a user exhales, the exhaust air is directed through the mask eventually being discharged through the exhaust port 107 (
Similarly, during an inhalation cycle, as depicted in
While the first end 94a of the inhalation conduit 103 may be configured in a circular shape to connect to the ventilator inhalation hose 83a, the second end of the inhalation conduit 94b may be configured in a variety of shapes (e.g., circular, square, hexagonal, tapered). In at least one embodiment, the tubular inhalation conduit 103 may be removable from tubular ventilating sleeve 90b to enable health care providers to easily switch to different sized inhalation conduits and passageways 94. The ability to use various sized inhalation conduits ensures that the mask 500 is adaptable to various ventilation hoses and devices.
Similarly, when a ventilator supplies clean air through the inhalation conduit 103, which is sealed off from the exhaust air passageways 227b, into the upper chamber 222 (
Accordingly, the ventilator-enabled mask 500 effectively isolates potential pathogen-containing air from a user's respiratory system from health care providers and prevents the recirculation of potential pathogen-containing air in the user's breathing circuit. The ventilator mask of the present 500 may further include a removable regulator cap 211 in the mask that enables health care providers to access the user's mouth and nasal region. Such access enables health care providers to quickly administer medication without having to disconnect the patient from the ventilating system that might place the user in respiratory distress.
Throughout the description, including the claims, the term “comprising a” should be understood as being synonymous with “comprising at least one” unless otherwise stated. In addition, any range set forth in the description, including the claims should be understood as including its end value(s) unless otherwise stated. Specific values for described elements should be understood to be within accepted manufacturing or industry tolerances known to one of skill in the art, and any use of the terms “substantially” and/or “approximately” and/or “generally” should be understood to mean falling within such accepted tolerances.
It will now be evident to those skilled in the art that there has been described herein an improved ventilator mask. Although the invention hereof has been described by way of a preferred embodiment, it will be evident that other adaptations and modifications can be employed without departing from the spirit and scope thereof. The terms and expressions employed herein have been used as terms of description and not of limitation; and thus, there is no intent of excluding equivalents, but on the contrary it is intended to cover any and all equivalents that may be employed without departing from the spirit and scope of the invention.
This application is a continuation-in-part of U.S. application Ser. No. 16/815,697 filed Mar. 11, 2020, which is a continuation-in-part of U.S. application Ser. No. 16/031,131 filed Jul. 10, 2018, which is related to copending U.S. application Ser. No. 16/031,090 filed Jul. 10, 2018, and is a continuation-in-part of U.S. patent application Ser. No. 15/832,290, filed on Dec. 5, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 15/789,717, filed on Oct. 20, 2017.
Number | Date | Country | |
---|---|---|---|
Parent | 16815697 | Mar 2020 | US |
Child | 16863615 | US | |
Parent | 16031131 | Jul 2018 | US |
Child | 16815697 | US | |
Parent | 15832290 | Dec 2017 | US |
Child | 16031131 | US | |
Parent | 15789717 | Oct 2017 | US |
Child | 15832290 | US |