Venting system and shield for keyboard

Information

  • Patent Grant
  • 10134539
  • Patent Number
    10,134,539
  • Date Filed
    Monday, September 28, 2015
    8 years ago
  • Date Issued
    Tuesday, November 20, 2018
    5 years ago
Abstract
A venting system for a keyboard assembly is disclosed. A keyboard assembly including a printed circuit board defining a set of apertures, and a group of switch housings coupled to the printed circuit board. Each switch housing of the group of switch housings may define a switch opening positioned above one of the set of apertures of the printed circuit board. The keyboard assembly may also include a shield defining at least one channel of a venting system formed below the printed circuit board. The at least one channel may be in fluid communication with at least one aperture, and at least one of the switch openings positioned above the at least one aperture.
Description
FIELD

The disclosure relates generally to a keyboard assembly and, more particularly, to a venting system for a keyboard assembly.


BACKGROUND

Electronic devices typically include one or more input devices such as keyboards, touchpads, mice, or touchscreens to enable a user to interact with the device. These devices can be integrated into an electronic device or can stand alone as discrete devices that can transmit signals to another device via wired or wireless connection. For example, a keyboard can be integrated into the casing of a laptop computer. When integrated within the casing of the laptop computer, all of the components of the keyboard must be included within the casing of the laptop computer.


Conventional keyboards can provide inputs to electronic devices using a variety of input interfaces including one or more switches, buttons, actuators, or sensors (e.g., touch sensors), the actuation of which can be detect by the electronic device. In an example, the keyboard of the electronic device can include a button having a dome switch, which can be depressed to provide a detectable input. The dome switch is typically constructed by placing a conductive dome over a contact pad on a circuit board. When the dome is pressed, it may collapse such that an inner surface of the dome contacts the contact pad to form an electrical signal or input to the electronic device.


A dome switch can enclose a volume of air between the inner surface of the dome and the circuit board to which the dome is mounted. When the dome is depressed, the air within the enclosed volume needs to be displaced so that the center of the dome can contact the circuit board contact pad. Conventional key assemblies include an outer layer or membrane covering the dome switch that may allow the air to move through openings formed in the dome switch and subsequently permeate through the outer layer.


However, these openings in the dome switch and the permeable properties of the outer layer may leave the dome switch, the circuit board under the dome switch and/or the keyboard assembly vulnerable to damage. For example, water may pass through the outer layer and/or the openings formed in the dome switch and may damage the circuit board. As a result, the circuit board may be damaged or inoperable, rendering the keyboard of the electronic device partially or completely inoperable.


SUMMARY

A keyboard assembly is disclosed. The keyboard assembly comprises a printed circuit board defining a set of apertures; a group of switch housings coupled to the printed circuit board, each switch housing of the group of switch housings defining a switch opening positioned above one of the set of apertures of the printed circuit board; and a shield defining at least one channel formed below the printed circuit board, the at least one channel in fluid communication with at least one aperture, and at least one of the switch openings above the at least one aperture.


A keyboard assembly is disclosed. The keyboard assembly comprises: a substrate comprising a surface defining recesses; an array of key assemblies, each of the array of key assemblies positioned at least partially within a unique one of the recesses; and a shield beneath the printed circuit board and defining a venting system in fluid communication with each of the array of key assemblies; wherein the array of key assemblies is affixed to the substrate.


A shield for an input device is disclosed. The shield comprises a base layer, an aluminum layer positioned over the base layer, a graphite layer positioned over the aluminum layer, and an intermediate layer positioned over the graphite layer. The shield also comprises an adhesive sheet comprising a venting system positioned over the intermediate layer and a conductive ring substantially surrounding the adhesive layer.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:



FIG. 1 shows an electronic device including a low-travel keyboard assembly, according to embodiments.



FIG. 2 shows an exploded view of a low-travel keyboard assembly for the electronic device of FIG. 1, according to embodiments.



FIG. 3 shows an exploded view of a single key assembly and related support structures of the low-travel keyboard assembly of FIG. 2, according to embodiments.



FIG. 4 shows a cross-section view of a low-travel keyboard assembly including a venting system formed within a shield, taken along line CS-CS of FIG. 3, according to embodiments.



FIG. 5 shows a cross-section detailed view of a portion of a low-travel keyboard assembly including a venting system formed within a shield and a top case, taken along line CS-CS of FIG. 3, according to additional embodiments.



FIG. 6 shows an enlarged view of a portion of an adhesive sheet including a venting system of a shield of a low-travel keyboard assembly having linear channels, according to embodiments.



FIG. 7 shows an enlarged view of a portion of an adhesive sheet including a venting system of a shield of a low-travel keyboard assembly having tapered channels, according to additional embodiments.



FIG. 8 shows a top view of a venting system formed within a shield of a low-travel keyboard assembly having individual channels for each row of keys and multiple exits formed on distinct sides of the channel, according to embodiments.



FIG. 9 shows a top view of a venting system formed within a shield of a low-travel keyboard assembly having individual channels for each row of keys and a single exit formed on a single side of each channel, according to embodiments.



FIG. 10 shows a top view of a venting system formed within a shield of a low-travel keyboard assembly having a single channel for multiple rows of keys and multiple exits formed on distinct sides of the single channel, according to embodiments.



FIG. 11 shows a top view of a venting system formed within a shield of a low-travel keyboard assembly having a single channel for multiple rows of keys and a single exit formed on a single side of the single channel, according to embodiments.



FIG. 12 shows a cross-section front view of a low-travel keyboard assembly including a venting system formed within a switch housing, according to embodiments.



FIG. 13 shows an exploded view of a shield of a low-travel keyboard assembly, according to embodiments.



FIG. 14 shows a cross-section view of a low-travel keyboard assembly including a plating layer and an encapsulating layer, taken along line CS-CS of FIG. 3, according to embodiments.





DETAILED DESCRIPTION

Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.


The following disclosure relates generally to a keyboard assembly and, more particularly, to a venting system for a keyboard assembly. The venting system may provide an exit path for air beneath a switch, such as a dome switch, of a key. When the key is pressed, the dome switch at least partially collapses. If the air beneath the dome switch and/or within the switch housing cannot escape, then the force required to collapse the dome may be greater than desired. Further, the dome switch may rupture rather than collapse.


In a particular embodiment, a venting system may be formed within a shield below a substrate, such as a printed circuit board, on which a switch housing is affixed. The switch housing may house a dome switch. The substrate may define a set of apertures positioned below the dome switch and is in fluid communication with a channel formed in a portion of a shield for the keyboard. The shield may be configured as a planar element having multiple layers, in some embodiments.


When the dome switch collapses, air below the dome switch may flow through an aperture and into the channel formed in the shield. This may provide an exit path for air below the dome switch (and/or within the dome switch housing) so the dome switch can collapse to close an electrical circuit and generate an input signal.


In another particular embodiment, a shield is formed from multiple components and/or sub-layers to improve functionality and reduce the thickness of the keyboard assembly. For example, the shield includes various conductive components that facilitate or improve electrical connection within the various portions of the electronic device. The shield and/or its various components may electromagnetically shield circuit boards and other noise-sensitive parts of an input device.


Additionally, the shield can include an adhesive sheet, and channels can be at least partly formed in the adhesive sheet to form a venting system, as discussed herein. Further, the configuration and/or position of each component and/or sub-layer within the shield reduces the size of the shield, which in turn, reduces the required space for the shield within the keyboard assembly and/or the electronic device.


These and other embodiments are discussed below with reference to FIGS. 1-14. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.



FIG. 1 shows an electronic device 100, including a low-travel keyboard assembly 200 that may incorporate a venting system, as described in more detail below with respect to FIGS. 2-14. In a non-limiting example, as shown in FIG. 1, electronic device 100 may be a laptop computer. However, it is understood that electronic device 100 may be configured as any suitable electronic device that may utilize low-travel keyboard assembly 200. Other embodiments can implement electronic device 100 differently, such as, for example, a desktop computer, a tablet computing device, a smartphone, a gaming device, a display, a digital music player, a wearable computing device or display, a health monitoring device, and so on.


Electronic device 100 may include a top case 102. Top case 102 may take the form of an exterior, protective casing (e.g., housing) or shell for electronic device 100 and the various internal components (for example, low-travel keyboard assembly 200) of electronic device 100. Top case 102 may be formed as a single, integral component or may have a group of distinct components that may be configured to be coupled to one another, as discussed herein. Additionally, top case 102 may be formed from any suitable material that provides a protective casing or shell for electronic device 100 and the various components included in electronic device 100. In non-limiting examples, top case 102 may be made from metal, a ceramic, a rigid plastic or another polymer, a fiber-matrix composite, and so on.


Low-travel keyboard assembly 200 may be included within electronic device 100 to allow a user to interact with electronic device 100. As shown in FIG. 1, low-travel keyboard assembly 200 is positioned within and/or may be received by top case 102 of electronic device 100. Low-travel keyboard assembly 200 may include a set of keycaps 300 positioned within and partially protruding through and/or surrounded by top case 102 of electronic device 100. As discussed herein, keycaps 300 are depressed and displaced to interact with and/or collapse a dome switch of low-travel keyboard assembly 200, which in turn forms an electrical signal or input to electronic device 100.


As discussed herein, low-travel keyboard assembly 200 can include a venting system that provides an exit path for air beneath a dome switch of keyboard assembly 200 when a keycap 300 is depressed. That is, the venting system may provide a flow path for air displaced when a key is pressed and an associated dome switch collapses. The venting system can be formed in a shield positioned below a substrate, such as a printed circuit board (PCB). A switch housing may surround a dome switch and be affixed or otherwise connected to the printed circuit board. The PCB includes an aperture positioned below the dome switch in fluid communication with a channel of the venting system formed in a portion of the shield. When the dome switch collapses, air below the dome switch flows through the aperture formed within the PCB and into the channel formed in the shield. Evacuation of the air may reduce the force necessary to collapse the dome switch and/or prevent the dome switch from rupturing.


As the dome switch partially or fully collapses, it may generate an electrical signal for electronic device 100. By encasing the dome switch within a dome switch housing, the dome switch and corresponding electrical connectors or contacts of the PCB are sealed and protected from damage or debris. Additionally, by forming the venting system below the dome switch and/or PCB, the dome switch remains sealed and/or protected from contaminants, while also providing an exit path for air beneath a collapsing dome switch. This ensures contact between the dome switch and the PCB to form an electrical signal in electronic device 100 including low-travel keyboard assembly 200.


Additionally, and as discussed herein, the air expelled from the switch housing of the low-travel keyboard assembly 200 may be expelled from various positions or portions of electronic device 100. Specifically, the air expelled from the switch housing can flow through the channels of the venting system and can be expelled into the atmosphere through openings formed in top case 102 provide a gaseous exit path within keyboard assembly 200. Additionally, in another non-limiting example, the switch housing can include a passageway formed through a side wall, such that the air under the dome switch can be expelled through the passageway formed through the switch housing when keycap 300 and/or the dome switch translate (e.g., move, collapse, and the like). In one embodiment, the air may be expelled through the passageway and into the atmosphere by flowing around keycap 300 and out through an opening formed in top case 102 of electronic device 100. In other embodiments, the air may be expelled through a dedicated exit that is not associated with any keycap. In still other embodiments, one or more reservoirs may be connected to the passageway(s), such that air may flow into the reservoir when the key is depressed and from the reservoir when the key is released. In such embodiments, the passageway or channel may not atmospherically vent at all. In still other embodiments, some combination of the foregoing may be used.


In the non-limiting example shown in FIG. 1, where electronic device 100 is a laptop computer, low-travel keyboard assembly 200 may be positioned within and/or may be received by electronic device 100. In an additional embodiment, low-travel keyboard assembly 200 may be a distinct, standalone component and may be in wired or wireless electrical communication with electronic device 100. Low-travel keyboard assembly 200 may be configured to allow a user to interact with electronic device 100.



FIG. 2 shows an exploded view of electronic device 100 of FIG. 1, according to an embodiment. Specifically, FIG. 2 shows an exploded view of top case 102 of electronic device 100, and low-travel keyboard assembly 200. Additionally, FIG. 3 shows a detailed exploded view of a portion of top case 102 of electronic device 100 and a single key assembly of low-travel keyboard assembly 200. It is understood that similarly named components or similarly numbered components may function in a substantially similar fashion, may include similar materials and/or may include similar interactions with other components. Redundant explanation of these components has been omitted for clarity.


As shown in FIGS. 2 and 3, top case 102 of electronic device 100 (see, FIG. 1) may include one or more keyholes 104 formed there through. Top case 102 may also include skeletal ribs 106 configured to be positioned between the keycaps 300, and may substantially surround and/or may be positioned within the space between the keycaps 300 of low-travel keyboard assembly 200.


Low-travel keyboard assembly 200 may be formed from a number of layers or components positioned adjacent to and/or coupled to one another. The components positioned in layers may be positioned adjacent to and/or coupled to one another and may be sandwiched between top case 102 and a bottom case (not shown) of electronic device 100.


The keycaps 300 of low-travel keyboard assembly 200 may be positioned within, and extend through and/or partially above keyholes 104 of top case 102. Each of the keycaps 300 may include a glyph 302 positioned on a top or exposed surface of the keycap 300. Each glyph 302 of keycap 300 may be substantially transparent to allow a light to be emitted through and/or illuminate keycap 300. In the non-limiting example shown in FIGS. 2 and 3, keycap 300 may be substantially opaque, except for glyph 302, such that glyph 302, and the perimeter of keycap 300, may be substantially illuminated by light emitted within low-travel keyboard assembly.


Switch housings 400 of low-travel keyboard assembly 200 may be positioned below corresponding keycaps 300 and may be configured to interact with keycaps 300. Each switch housing 400 of low-travel keyboard assembly 200 may include a dome switch opening 402 formed completely through switch housing 400, and a light emitting diode (LED) recess 404 (see, FIG. 3) formed within each switch housing 400. As discussed herein, dome switch opening 402 may receive and/or house a dome switch for low-travel keyboard assembly 200 which forms an electrical signal to interact with electronic device 100 (see, FIG. 1). LED recess 404 formed in switch housing 400 may receive an LED assembly 800 (see, FIG. 4), which may emit light through switch housing 400 for illuminating keycap 300 of low-travel keyboard assembly 200.


Low-travel keyboard assembly 200 may also include a printed circuit board (PCB) 500 positioned below the group of switch housings 400. As shown in FIGS. 2 and 3, PCB 500 may include a number of recesses 502 formed within PCB 500, and a set of apertures 504 formed completely through PCB 500 in recess 502. Each recess 502 of PCB 500 may receive a corresponding switch housing 400 of low-travel keyboard assembly 200. Additionally as shown in FIGS. 2 and 3, aperture 504 of PCB 500 may be substantially aligned with dome switch opening 402 of switch housing 400 of low-travel keyboard assembly 200. As discussed herein in detail, the apertures 504 of PCB 500 may be utilized to vent air and/or relieve pressure from within dome switch opening 402 of switch housing 400 when the dome switch is collapsed by keycap 300. PCB 500 may provide a rigid support structure for switch housing 400 and the various components forming low-travel keyboard assembly 200.


Low-travel keyboard assembly 200, as shown in FIGS. 2 and 3, may also include a keyboard shield 600 positioned below PCB 500. As discussed in detail herein, shield 600 may be formed from a number of layers or components. The embodiment shown in FIGS. 2 and 3 may only depict one layer or component of shield 600 of low-travel keyboard assembly 200. Specifically, FIGS. 2 and 3 depict an adhesive sheet 602 of shield 600. Adhesive sheet 602 may be adhered to PCB 500 opposite switch housing 400. Adhesive sheet 602 of keyboard shield 600 may be at least partially conductive; the adhesive itself may be conductive, or a conductive adhesive may be used to form certain portions of the shield 600, or conductive elements may form electrically conductive paths in or through adhesive sheet. Where a conductive adhesive is used, the adhesive itself may be electrically conductive and/or the adhesive may be doped with electrically conductive particles, either in localized regions or throughout the whole sheet. Accordingly, in some embodiments, adhesive sheet may transmit signals to and/or from keyboard assembly 200 of electronic device 100 during user interaction. The electrically conductive sheet, or portions thereof, may provide a ground path to a ground plane for certain electrical components of the keyboard. In some embodiments, the ground plane may be another part of shield 600.


Additionally, adhesive sheet 602 of shield 600 may include a venting system 604. Venting system 604 may vent air expelled from switch housing 400 when dome switch is collapsed by keycap 300, as discussed herein. As shown in FIGS. 2 and 3, venting system 604 may include a group of channels 606 formed within and/or partially through adhesive sheet 602 of shield 600. Additionally, as shown in FIG. 3, channels 606 formed in adhesive sheet 602 may be in fluid communication and/or may be substantially aligned with dome switch openings 402 formed in switch housings 400, and apertures 504 formed through PCB 500.


In some embodiments, an upper and/or lower surfaces of the channels 606 may be formed by the adjacent layers of the shield 600, and/or by layers of the keyboard assembly adjacent the shield. These upper and/or lower surfaces may be flat, stepped, or they may be curved, scalloped, indented or otherwise non-planar with the portions of such layers that do not form parts of the channels. As one non-limiting example, a surface of an intermediate layer (see, FIG. 5) adjacent to the adhesive sheet 602 may be shaped to form indentations that correspond to the locations of the channels 606 (or some of the channels) when the adhesive sheet 602 is positioned atop or otherwise adjacent to the intermediate layer. Such indentations may form a portion of the overall channel or channels 606 for venting keys. In such an embodiment, the channels 606 may extend partially or fully through the adhesive layer 602. In a similar manner, an underside of the PCB 500 (as viewed when looking down on the keyboard) may be similarly shaped to define an upper portion of a venting channel 606 or channels. It should be appreciated that the cooperation of multiple layers to form a multi-layer venting channel is but one embodiment; the following description contemplates both such an embodiment and embodiments where the channel 606 or channels are formed fully or substantially fully within the adhesive layer (which, in some embodiments, need not be conductive).



FIG. 4 shows a cross-sectional view of a single key assembly of low-travel keyboard assembly 200 taken along line CS-CS in FIG. 3. Top case 102 of electronic device 100 is omitted from FIG. 4 for clarity. Additionally, adhesive sheet 602 of shield 600 is shown to be separated from PCB 500 of keyboard assembly 200 as a result of the line CS-CS forming cross-section of FIG. 4 being taken through a channel 606 (see, FIG. 2) of shield 600. It is understood that similarly named components or similarly numbered components may function in a substantially similar fashion, may include similar materials and/or may include similar interactions with other components. Redundant explanation of these components has been omitted for clarity.


Keycap 300 of low-travel keyboard assembly 200 may include retaining members 304, 306 positioned on keycap 300. More specifically, as shown in FIG. 4, keycap 300 may include at least one first retaining member 304 positioned on a first side of keycap 300 and at least one second retaining member 306 positioned on a second side of keycap 300, opposite the first side. Retaining members 304, 306 may be formed on an underside 312 of keycap 300 adjacent switch housing 400 of low-travel keyboard assembly 200.


The retaining members 304, 306 may be utilized to couple keycap 300 within low-travel keyboard assembly 200 and, specifically, to a hinge mechanism 322 coupled to PCB 500. Hinge mechanism 322, as shown in FIG. 4, may include any suitable hinge mechanism 322 capable of moving keycap 300 from a rest or undepressed state to a depressed state, including, but not limited to, a butterfly hinge mechanism, a scissor hinge mechanism, a telescoping hinge mechanism and a sliding hinge mechanism. Hinge mechanism 322 may be coupled to and/or positioned within recess 502 of PCB 500.


Low-travel keyboard assembly 200 may include switch housing 400 positioned between keycap 300 and PCB 500. Switch housing 400 may be positioned within recess 502 of PCB 500 and may be coupled to a first surface 512 of PCB 500, adjacent keycap 300. Additionally, as discussed herein with respect to FIGS. 2 and 3, switch housing 400 may include dome switch opening 402 formed through switch housing 400 and LED recess 404 formed through a portion of switch housing 400. As shown in FIG. 4, dome switch opening 402 may receive and/or house dome switch 406, which may be collapsed by keycap 300 to form an electrical connection to interact with electronic device 100 (see, FIG. 1). Additionally, as shown in FIG. 4, LED recess 404 of switch housing 400 may receive an LED assembly 800, which may emit a light through switch housing 400 to provide a light around the perimeter of keycap 300 and/or through transparent glyph 302 (see, FIGS. 2 and 3) formed through keycap 300.


As shown in FIG. 4, switch housing 400 may include a body portion 410 and a top panel 412 formed integrally and molded to body portion 410. Body portion 410 of switch housing 400 may include dome switch opening 402 and LED recess 404 formed adjacent dome switch opening 402. Body portion 410 may be directly coupled to PCB 500 within recess 502, as shown in FIG. 4. Top panel 412 of switch housing 400 may be formed integrally with body portion 410. More specifically, as shown in FIG. 4, top panel 412 may be molded to and formed integrally with body portion 410 and may cover switch opening 402 formed in body portion 410. In a non-limiting example, top panel 412 may be formed integrally with body portion 410 using a double-shot housing formation process. Body portion 410 provides rigid structure to protect dome switch 406, and top panel 412 provides an intermediate protective layer positioned between dome switch 406 and keycap 300, such that top panel 412 prevents wear to dome switch 406 caused by keycap 300 over the operational life of keyboard assembly 200. In some embodiments, top panel 412 may act as a light guide and thus may and disperse light from LED assembly 800 toward keycap 300 to illuminate keyboard assembly 200 as discussed herein.


As discussed herein, and shown in FIG. 4, PCB 500 may have one or more recesses 502 for receiving and/or positioning switch housing 400 and hinge mechanism 322 within recess 502. As shown in FIG. 4, recess 502 of PCB 500 may have a perimeter 528 that may substantially surround switch housing 400. Perimeter 528 of recess 502 may be larger than a perimeter of keycap 300. In a non-limiting example, the perimeter of keycap 300 may be smaller than perimeter 528 of recess 502 of PCB 500. As a result, a portion of keycap 300 may extend into recess 502 of PCB 500 when keycap 300 and/or dome switch 406 of switch housing 400 is in a partially-collapsed or fully collapsed state.


Adhesive sheet 602 of shield 600 may be coupled and/or adhered to second surface 518 of PCB 500. The portion of adhesive sheet 602 that may be coupled and/or adhered to second surface 518 of PCB 500 may include the portion of adhesive sheet 602 positioned adjacent to and/or substantially surrounding channels 606 of venting system 604. That is, the portions of adhesive sheet 602 substantially surrounding channels 606 may be coupled to second surface 518 of PCB 500 to couple adhesive sheet 602 to PCB 500 within keyboard assembly 200.


Adhesive sheet 602 of shield 600 may define or otherwise include a venting system 604 in fluid communication with switch housing 400. As shown in FIG. 4, venting system 604 may include channel 606 formed below PCB 500. More specifically, channel 606 may be formed in adhesive sheet 602 of shield 600, adjacent PCB 500. Channel 606 may be in fluid communication with aperture 504 formed in PCB 500, and dome switch opening 402 positioned above and substantially aligned with aperture 504. As discussed herein, adhesive sheet 602 (including channel 606) may be formed from a conductive, selectively permeable material that is impermeable to solids and liquids, but permeable to gases.


In some embodiments, the adhesive sheet 602 (or select parts thereof) may be both gas- and liquid-impermeable. In still other embodiments, the adhesive sheet 602 may be gas-permeable but may have a relatively moderate or low permeability, such that gases pass slowly through the sheet.


As shown in FIG. 4, air from within dome switch opening 402 of switch housing 400 may pass through channel 606 when dome switch 406 is collapsed by keycap 300. In a non-limiting example, as dome switch 406 of switch housing 400 is collapsed, air under dome switch 406 may be forced through aperture 504 of PCB into channel 606 of shield 600 to provide an exit path for air. The air flowing from under dome switch 406 in switch housing 400 may pass through channel 606 of adhesive layer 602 to other portions of low-travel keyboard assembly 200. In the non-limiting example, the air under dome switch 406 flowing into channel 606 via aperture 504 of PCB 500 may flow in either direction of channel 606, which may be in fluid communication with other channels 606 and/or other switch housings 400 of low-travel keyboard assembly 200, as discussed herein.


In response to a key press, air may flow through channel 606 and exit low-travel keyboard assembly 200. FIG. 5 shows a cross-sectional, detailed view of keyboard assembly 200 including top case 102. The detailed view of FIG. 5 only shows a portion of top case 102, keycap 300, hinge mechanism 322, switch housing 400 (including body portion 410 and top panel 412), dome switch 406, PCB 500 and shield 600. It is understood that the portions of keyboard assembly 200 not shown in FIG. 5 may be substantially similar and/or may function substantially similar to those portions previously discussed and shown in FIG. 4.


As shown, channel 606 of adhesive sheet 602 may be in fluid communication with the atmosphere or ambient air surrounding low-travel keyboard assembly 200 via an exit 630a, 630b. Exits 630a, 630b may be formed through a variety of distinct parts or components of low-travel keyboard assembly 200. In the non-limiting example shown in FIG. 5, exit 630a may be formed in top case 102 of electronic device 100, to vent air from channel 606 through top case 102. In another non-limiting example shown in FIG. 5, exit 630b may be formed through PCB 500, adjacent switch housing 400. Exit 630b may vent air from channel 606 through recess 502 and out into the atmosphere around keycap 300.


Turning to FIGS. 6 and 7, a top view of a portion of adhesive sheet 602, including channel 606, is shown. More specifically, FIGS. 6 and 7 may depict how channels 606 are in fluid communication with one another. Channels 606 of venting system 604 may include substantially circular portions 632 that may be in alignment with aperture 504 formed through PCB 500 and/or dome switch opening 402 of switch housing 400 (see, FIG. 4). In a non-limiting example shown in FIG. 6, the portions of channel 606 formed between circular portions 632 may have a substantially conical shape, V-shape, diamond shape and/or varying width. In another non-limiting example shown in FIG. 7, the portions of channel 606 formed between circular portions 632 may have a uniform shape and/or uniform width.


The components (e.g., keycaps 300, switch housing 400, and so on) of low-travel keyboard assembly 200 may be arranged in distinct rows. As such, and as shown in FIGS. 8-11, venting system 604 may include channels 606, where each of the channels 606 may correspond to a distinct row of low-travel keyboard assembly 200. More specifically, each of the channels 606 of venting system 604 of shield 600 may be positioned in alignment with a distinct row of keycaps 300 (shown in phantom) of low-travel keyboard assembly 200. Each channel 606 may be in alignment with and in fluid communication with dome switch openings 402 of switch housing 400 and apertures 504 in PCB 500 in the distinct row of low-travel keyboard assembly 200, as discussed herein with respect to FIG. 4. Likewise, channels 606 may be associated with all keys in a particular column, or a group of adjacent keys, and so on.


As shown in FIG. 8, each distinct row of keycaps 300 of low-travel keyboard assembly 200 may include an individual channel 606 formed in adhesive sheet 602. Each channel 606 in FIG. 8 may have an exit 630 positioned adjacent either side 108, 110 of top case 102 for venting air within low-travel keyboard assembly 200 to the atmosphere on either side of top case 102. In another non-limiting embodiment, as shown in FIG. 9, each channel 606 of venting system 604 may have exit 630 positioned adjacent a single side 108 of top case 102, such that air traveling through channels 606 may only be vented to the atmosphere on a single side 108 of top case 102. Other embodiments may vary the exit's location.



FIGS. 10 and 11 depict groups of channels 606 that are in fluid communication within one another. In a non-limiting example shown in FIG. 10, all channels 606, except for the channel 606a beneath the bottom row of keycaps 300, may be in fluid communication with one another, thereby allowing air to flow between channels 606. The keycaps 300 are shown in phantom to illustrate their placement relative to the channels 606. Additionally, as shown in FIG. 10, each row of channels 606, although in fluid communication, may include individual exits 630 for venting air from channels 606 to the atmosphere. Again, this may vary between embodiments; more or fewer exits may be implemented.


In another non-limiting example shown in FIG. 11, all channels 606 of venting system 604 are in fluid communication with one another. This may allow air displaced by key travel to flow through from any individual channel 606 to adjacent channels. As shown in FIG. 11, the channels 606 may include only a single exit 630. Here, the exit is positioned on a single side 108 of top case 102. As such, the air flowing through channel 606 may only be vented to the atmosphere through the single exit 630 of venting system 604 shown in FIG. 11. As with other embodiments, more or fewer exits may be implemented and the locations of such exits may be changed.


Although venting system 604 is shown in shield 600 of low-travel keyboard assembly 200, it is understood that venting system 604a may be formed directly in switch housing 400. In a non-limiting example shown in FIG. 12, at least one passageway 634 may be formed in fluid communication with dome switch opening 402 of switch housing 400. More specifically, passageway 634 may be formed through switch housing 400 opposite LED recess 404 formed in switch housing 400. A group of passageways 634 may be positioned through switch housing 400 opposite LED recess 404. Additionally, passageways 634 may be formed through switch housing 400 adjacent LED recess 404, as shown in FIG. 12.


As shown in FIG. 12, venting system 604a may be formed in switch housing 400, instead of (or in addition to) in shield 600. As shown, adhesive sheet 602 may be a substantially solid and adhered to second surface 518 of PCB 500. When dome switch 406 is collapsed by keycap 300, the air under dome switch 406 may be expelled through openings formed in dome switch 406 (not shown). When air is expelled from underneath dome switch 406 during collapse, the air may flow from dome switch opening 402 to the atmosphere via passageway(s) 634 formed through switch housing 400.



FIG. 13 depicts an exploded view of shield 600 of low-travel keyboard assembly 200. As shown in FIG. 13, shield 600 may include base layer 608. Base layer 608 may act as a bottom, supporting layer for shield 600 of low-travel keyboard assembly 200. As shown in FIG. 13, base layer 608 may have an opening 610 formed through a portion of base layer 608. As discussed herein, opening 610 may be formed through base layer 608 to electrically couple the components positioned above and below base layer 608. Base layer 608 may be formed from an electrically insulating material including, but not limited to, polyethylene terephthalate (PET).


Shield 600 may also have an aluminum layer 612 positioned over base layer 608. Aluminum layer 612 may be in electrical communication with a circuit board 618 for low-travel keyboard assembly 200. More specifically, as shown in FIG. 13, aluminum layer 612 may act as an electrical conduit for circuit board 618 positioned over aluminum layer 612. Additionally, aluminum layer 612 may provide electromagnetic interference (EMI) shielding for circuit board 618 during operation of low-travel keyboard assembly 200 in electronic device 100.


Aluminum layer 612 may act as an electrical conduit to circuit board 618 for a conductive gasket 620 of shield 600. That is, aluminum layer 612 may be in electrical communication with circuit board 618, and conductive gasket 620 may contact aluminum layer 612 to be in electrical communication with circuit board 618 as well. Conductive gasket 620 may contact aluminum layer 612 by positioning a contact portion 622 of conductive gasket 620 through opening 610 of base layer 608, where the contact portion 622 directly contacts aluminum layer 612. Conductive gasket 620 may be in electrical communication with circuit board 618 of shield 600 to provide a ground for various components, contacts and/or other electronic features of circuit board 618 within low-travel keyboard assembly 200.


Shield 600, as shown in FIG. 13, may also have a graphite layer 624 positioned over aluminum layer 612. More specifically, graphite layer 624 may be positioned over aluminum layer 612 and may be positioned adjacent circuit board 618, such that both graphite layer 624 and circuit board 618 may be positioned over aluminum layer 612. As such, circuit board 618 and graphite layer 624 may both be stacked on aluminum layer 612 and/or may be in the same plane within shield 600. Graphite layer 624 may be positioned adjacent circuit board 618 to spread heat generated and/or emitted by circuit board 618 during operation of low-travel keyboard assembly 200. In some embodiments, the aluminum layer may serve as an electrical ground for certain components of the keyboard.


An intermediate layer 626 may be positioned over graphite layer 624. More specifically, as shown in FIG. 13, circuit board 618 and graphite layer 624 may be positioned between intermediate layer 626 and aluminum layer 612 of shield 600. Similar to base layer 608 of shield 600, intermediate layer 626 may be formed from an electrically insulating material, such as polyethylene terephthalate (PET), to electrically insulate circuit board 618 and/or aluminum layer 612. More specifically, as shown in FIG. 13, intermediate layer 626 and base layer 608 may be formed from electrically insulating material to electrically insulate circuit board 618 and aluminum layer 612 positioned between base layer 608 and intermediate layer 626.


Shield 600 may further include adhesive sheet 602 including venting system 604 formed within adhesive sheet 602. As shown in FIG. 13, adhesive sheet 602 may be positioned over intermediate layer 626. As discussed in detail below, adhesive sheet 602 may be coupled to second surface 518 of PCB 500 of low-travel keyboard assembly 200 and may be in electrical communication with electrical connectors 522, 524 formed on, through, or within PCB 500 (see, FIG. 14). Adhesive sheet 602 may be formed from a material substantially impermeable to liquids and permeable to gases.


A conductive ring 628 may substantially surround adhesive layer 602. More specifically, as shown in FIG. 13, conductive ring 628 of shield 600 may be positioned substantially around a perimeter of adhesive layer 602 and may be positioned on intermediate layer 626. Like adhesive sheet 602, conductive ring 628 may also be coupled to second surface 518 of PCB 500 of low-travel keyboard assembly 200 and may be in electrical communication with electrical connectors 522, 524 of PCB 500 to ground components of low-travel keyboard assembly 200.


Although not shown in FIG. 13, it is understood that the components of the shield 600 may include electrical vias and/or electrical traces for electrically coupling the various layers and components of shield 600. That is, electrical vias and/or electrical traces may be formed on or through adhesive sheet 602 and intermediate layer 626 to electrically couple adhesive sheet 602 to circuit board 618. The electrical vias and/or electrical traces formed within shield 600 may allow an electrical signal to be sent from PCB 500 to circuit board 618, when dome switch 406 is collapsed to contact electrical connectors 522, 524 of PCB 500 (see, FIG. 14).


As shown in FIG. 14, LED assembly 800 may be in electrical contact with LED contact 510 formed through PCB 500. As shown in FIG. 14, LED contact 510 may be in communication with an LED driver 530 positioned on second surface 518 of PCB 500. In the non-limiting example, PCB 500 may have a number of LED drivers 530 positioned on second surface 518, where each LED driver 530 corresponds to, and is in electrical communication with, LED assembly 800 of low-travel keyboard assembly 200. LED contact 510 and LED drivers 530 may be formed adjacent and/or approximate electrical connectors or contacts 522, 524 of PCB 500, which are configured to provide an electrical signal to electronic device 100 when dome switch 406 is collapsed by keycap 300, as discussed herein. LED drivers 530 positioned on second surface 518 of PCB 500 may be configured to provide power and/or control to LED assembly 800 during operation of low-travel keyboard assembly 200 included in electronic device 100 (see, FIG. 1).


PCB 500, as discussed herein with respect to FIGS. 2-4, may also have a plated layer 532. As shown in FIG. 14, plated layer 532 may be formed over first surface 512 (see, FIG. 4) of PCB 500. More specifically, plated layer 532 may be formed over a portion of first surface 512 of PCB within recess 502 and/or over a surface of PCB 500 substantially surrounding recess 502. Plated layer 532 may be formed from any metal material that may substantially protect first surface 512 of PCB 500 from undesirable wear or damage during the operational life of low-travel keyboard assembly 200.


As shown in FIG. 14, PCB 500 may also have an encapsulating layer 534 covering first surface 512 (see, FIG. 4) of recess 502 of PCB 500 and/or a portion of switch housing 400 positioned within recess 502. That is, encapsulating layer 534 may be formed within recess 502 and may substantially cover first surface 512 and at least a portion of the various components (e.g., switch housing 400, hinge mechanism 322) of low-travel keyboard assembly 200 to maintain the position of the components within recess 502. Specifically, encapsulating layer 534 may maintain the coupling between switch housing 400 and PCB 500. Encapsulating layer 534 may be formed from any suitable transparent, bonding material that may not affect the illumination features and/or electrical connections of low-travel keyboard assembly 200.


Although shown in FIG. 14 as including both plated layer 532 and encapsulating layer 534, it is understood that PCB 500 may include only plated layer 532 or encapsulating layer 534. That is, PCB 500 may have only plated layer 532, only encapsulating layer 534 or both plated layer 532, and encapsulating layer 534, as shown in FIG. 14.


In addition to the various channels, vents, and venting systems shown herein, it should be understood that other embodiments may include additional features. For example, some embodiments may include one or more reservoirs connected to one or more venting channels and/or exits. A group of keys may be connected by a channel to an exit, as described above; the channel may have a reservoir positioned at some point along its length between the exit and one or more of the group of keys. The reservoir may permit air or other gases to flow in and out of the reservoir instead of requiring the air to be forced all the way to the exit or drawn all the way from the exit. Such reservoirs are entirely optional and may be used with any or all keys, key groups, and/or other structures (including switches, switch housings, and the like) discussed herein.


Although discussed herein as a keyboard assembly, it is understood that the disclosed embodiments may be used in a variety of input devices associated with various electronic devices. That is, low-travel keyboard assembly 200 and the components of the assembly discussed herein may be utilized or implemented in a variety of input devices for an electronic device including, but not limited to, mice, track pads, buttons, switches, toggles, wheels, touch- and/or force-sensitive surfaces, and so on.


The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not targeted to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.

Claims
  • 1. A keyboard assembly, comprising: a set of keycaps arranged along a row extending across a width of the keyboard assembly;a printed circuit board positioned below the set of keycaps and defining a set of apertures, each aperture of the set of apertures aligned with a corresponding one of the set of keycaps;a group of switch housings coupled to the printed circuit board, each switch housing of the group of switch housings defining a switch opening positioned above one of the set of apertures of the printed circuit board; anda shield defining a channel formed below the printed circuit board along the row, the channel in fluid communication with each aperture of the set of apertures, the channel comprising an exit in fluid communication with atmosphere external to the set of keycaps.
  • 2. The keyboard assembly of claim 1, wherein the shield comprises an adhesive sheet coupled to the printed circuit board.
  • 3. The keyboard assembly of claim 2, wherein the channel of the venting system is formed in the adhesive sheet.
  • 4. The keyboard assembly of claim 3, wherein the adhesive sheet is formed from a gas-permeable material.
  • 5. The keyboard assembly of claim 4, further comprising a reservoir connected to the channel and formed in the adhesive sheet.
  • 6. The keyboard assembly of claim 4, wherein the selectively permeable material is permeable to gas and impermeable to solids.
  • 7. The keyboard assembly of claim 3, wherein the shield is at least partially electrically conductive.
  • 8. The keyboard assembly of claim 1, wherein: the row is a first row;the channel is a first channel;the set of keycaps is a first set of keycaps;the keyboard assembly further comprises a second set of keycaps arranged along a second row; andthe shield defines a second channel formed below the printed circuit board along the second row.
  • 9. The keyboard assembly of claim 8, wherein the first channel and the second channel are in fluid communication with one another.
  • 10. A keyboard assembly, comprising: a group of keys arranged along a row of a keyboard, each key comprising: a keycap;a dome switch positioned below the keycap;a support structure movably supporting the keycap to the dome switch;a switch housing surrounding the dome switch;a substrate having a top surface that defines a group of recesses, each recess defining a hole and a mounting surface attached to a respective switch housing; anda shield beneath the substrate and defining a venting system in fluid communication with the group of keys.
  • 11. The keyboard assembly of claim 10, wherein: the substrate comprises a circuit board; andthe circuit board comprises a plated layer over the recesses and the surface.
  • 12. The keyboard assembly of claim 10, wherein the shield electromagnetically shields the circuit board from electrical noise.
  • 13. A keyboard assembly, comprising: an input surface; anda shield positioned below the input surface and comprising: a base layer;an aluminum layer positioned over the base layer;a graphite layer positioned over the aluminum layer;an intermediate layer positioned over the graphite layer;an adhesive sheet positioned over the intermediate layer and defining a venting system below the input surface; anda conductive ring substantially surrounding the adhesive sheet.
  • 14. The keyboard assembly of claim 13, wherein the conductive ring is in contact with the intermediate layer.
  • 15. The keyboard assembly of claim 13, wherein the base layer is formed from an electrically insulating material.
  • 16. The keyboard assembly of claim 13, wherein the intermediate layer is formed from an electrically insulating material.
  • 17. The keyboard assembly of claim 13, further comprising a circuit board positioned between the aluminum layer and the intermediate layer.
  • 18. The keyboard assembly of claim 17, wherein the graphite layer is positioned adjacent the circuit board and conducts heat generated by the circuit board.
  • 19. The keyboard assembly of claim 17, further comprising a conductive gasket formed below the base layer, and in electrical communication with the circuit board.
  • 20. The keyboard assembly of claim 17, wherein the aluminum layer is configured as an electromagnetic interference shield.
  • 21. The keyboard assembly of claim 17, wherein the adhesive sheet is in electrical communication with one or more electrical connectors formed within the printed circuit board, each of the electrical connectors corresponding to a key assembly of the keyboard assembly.
  • 22. The keyboard assembly of claim 1, wherein the channel is configured to evacuate fluid from the multiple switch openings aligned along the row of apertures from the keyboard assembly using an exit formed along an exterior surface of the keyboard assembly.
  • 23. The keyboard assembly of claim 10, wherein: the group of keycaps are arranged in a row extending from a first end of the keyboard assembly to a second, opposite end of the keyboard assembly; andthe shield defines a channel extending from the recesses and extending along the row.
  • 24. The keyboard assembly of claim 10, wherein the channel is configured to transfer fluid from a first switch housing of the group of switch housing to a second switch housing of the group of switch housings when a keycap of the group of keycaps positioned above the first switch housing is depressed.
  • 25. A keyboard assembly, comprising: a first set of keycaps arranged along a first row extending across a width of the keyboard assembly;a second set of keycaps arranged along a second row;a printed circuit board positioned below the first set of keycaps and defining a set of apertures, each aperture of the set of apertures aligned with a corresponding one of the first set of keycaps;a group of switch housings coupled to the printed circuit board, each switch housing of the group of switch housings defining a switch opening positioned above one of the set of apertures of the printed circuit board;a shield defining a first channel formed below the printed circuit board along the first row, the first channel in fluid communication with each aperture of the set of apertures, wherein the shield defines a second channel formed below the printed circuit board along the second row, wherein the first channel and the second channel are in fluid communication with one another.
  • 26. A keyboard assembly, comprising: a set of keycaps arranged along a row extending across a width of the keyboard assembly;a printed circuit board positioned below the set of keycaps and defining a set of apertures, each aperture of the set of apertures aligned with a corresponding one of the set of keycaps;a group of switch housings coupled to the printed circuit board, each switch housing of the group of switch housings defining a switch opening positioned above one of the set of apertures of the printed circuit board; anda shield defining a channel formed below the printed circuit board along the row, the channel in fluid communication with each aperture of the set of apertures;wherein the channel is configured to evacuate fluid from the multiple switch openings aligned along the row of apertures from the keyboard assembly using an exit formed along an exterior surface of the keyboard assembly.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a non-provisional patent application of and claims the benefit to U.S. Provisional Patent Application No. 62/058,087, filed Sep. 30, 2014, and titled “Keyboard Assembly,” U.S. Provisional Patent Application No. 62/129,842, filed Mar. 7, 2015, and titled “Venting System for Keyboard Assembly,” U.S. Provisional Patent Application No. 62/058,081, filed Sep. 30, 2014, and titled “Keyboard Assembly,” U.S. Provisional Patent Application No. 62/129,843, filed Mar. 7, 2015, and titled “Light Assembly for Keyboard Assembly,” U.S. Provisional Patent Application No. 62/058,074, filed Sep. 30, 2014, and titled “Keyboard Assembly,” U.S. Provisional Patent Application No. 62/129,841, filed Mar. 7, 2015, and titled “Key for Keyboard Assembly,” U.S. Provisional Patent Application No. 62/058,067, filed Sep. 30, 2014 and titled “Keyboard Assembly,” and U.S. Provisional Patent Application No. 62/129,840, filed Mar. 7, 2015, and titled “Dome Switch for Keyboard Assembly,” the disclosures of which are hereby incorporated herein by reference in their entirety.

US Referenced Citations (319)
Number Name Date Kind
3657492 Arndt et al. Apr 1972 A
3917917 Murata Nov 1975 A
3978297 Lynn et al. Aug 1976 A
4095066 Harris Jun 1978 A
4319099 Asher Mar 1982 A
4349712 Michalski Sep 1982 A
4484042 Matsui Nov 1984 A
4596905 Fowler Jun 1986 A
4670084 Durand et al. Jun 1987 A
4755645 Naoki et al. Jul 1988 A
4937408 Hattori et al. Jun 1990 A
4987275 Miller et al. Jan 1991 A
5021638 Nopper et al. Jun 1991 A
5092459 Uljanic et al. Mar 1992 A
5136131 Komaki Aug 1992 A
5278372 Takagi et al. Jan 1994 A
5280146 Inagaki et al. Jan 1994 A
5340955 Calvillo et al. Aug 1994 A
5382762 Mochizuki Jan 1995 A
5397867 Demeo Mar 1995 A
5408060 Muurinen Apr 1995 A
5421659 Liang Jun 1995 A
5422447 Spence Jun 1995 A
5457297 Chen Oct 1995 A
5477430 LaRose et al. Dec 1995 A
5481074 English Jan 1996 A
5504283 Kako et al. Apr 1996 A
5512719 Okada et al. Apr 1996 A
5625532 Sellers Apr 1997 A
5804780 Bartha Sep 1998 A
5828015 Coulon Oct 1998 A
5847337 Chen Dec 1998 A
5874700 Hochgesang Feb 1999 A
5875013 Takahara Feb 1999 A
5876106 Kordecki et al. Mar 1999 A
5878872 Tsai Mar 1999 A
5881866 Miyajima et al. Mar 1999 A
5898147 Domzaiski et al. Apr 1999 A
5924555 Sadamori et al. Jul 1999 A
5935691 Tsai Aug 1999 A
5960942 Thornton Oct 1999 A
5986227 Hon Nov 1999 A
6020565 Pan Feb 2000 A
6068416 Kumamoto et al. May 2000 A
6215420 Harrison et al. Apr 2001 B1
6257782 Maruyama et al. Jul 2001 B1
6259046 Iwama et al. Jul 2001 B1
6377685 Krishnan Apr 2002 B1
6388219 Hsu et al. May 2002 B2
6423918 King et al. Jul 2002 B1
6482032 Szu et al. Nov 2002 B1
6530283 Okada et al. Mar 2003 B2
6538801 Jacobson et al. Mar 2003 B2
6542355 Huang Apr 2003 B1
6552287 Janniere Apr 2003 B2
6556112 Van Zeeland et al. Apr 2003 B1
6559399 Hsu et al. May 2003 B2
6560612 Yamada et al. May 2003 B1
6572289 Lo et al. Jun 2003 B2
6573463 Ono Jun 2003 B2
6585435 Fang Jul 2003 B2
6624369 Ito et al. Sep 2003 B2
6706986 Hsu Mar 2004 B2
6738050 Comiskey May 2004 B2
6750414 Sullivan Jun 2004 B2
6759614 Yoneyama Jul 2004 B2
6762381 Kunthady et al. Jul 2004 B2
6765503 Chan et al. Jul 2004 B1
6788450 Kawai et al. Sep 2004 B2
6797906 Ohashi Sep 2004 B2
6850227 Takahashi et al. Feb 2005 B2
6860660 Hochgesang et al. Mar 2005 B2
6911608 Levy Jun 2005 B2
6926418 Ostergård et al. Aug 2005 B2
6940030 Takeda et al. Sep 2005 B2
6977352 Oosawa Dec 2005 B2
6979792 Lai Dec 2005 B1
6987466 Welch et al. Jan 2006 B1
6987503 Inoue Jan 2006 B2
7012206 Oikawa Mar 2006 B2
7030330 Suda Apr 2006 B2
7038832 Kanbe May 2006 B2
7129930 Cathey et al. Oct 2006 B1
7134205 Bruennel Nov 2006 B2
7146701 Mahoney et al. Dec 2006 B2
7151236 Ducruet et al. Dec 2006 B2
7151237 Mahoney et al. Dec 2006 B2
7154059 Chou Dec 2006 B2
7166813 Soma Jan 2007 B2
7172303 Shipman et al. Feb 2007 B2
7189932 Kim Mar 2007 B2
7256766 Albert et al. Aug 2007 B2
7283119 Kishi Oct 2007 B2
7301113 Nishimura et al. Nov 2007 B2
7312790 Sato et al. Dec 2007 B2
7385806 Liao Jun 2008 B2
7391555 Albert et al. Jun 2008 B2
7414213 Hwang Aug 2008 B2
7429707 Yanai et al. Sep 2008 B2
7432460 Clegg Oct 2008 B2
7510342 Lane et al. Mar 2009 B2
7531764 Lev et al. May 2009 B1
7541554 Hou Jun 2009 B2
7589292 Jung et al. Sep 2009 B2
7639187 Caballero et al. Dec 2009 B2
7639571 Ishii et al. Dec 2009 B2
7651231 Chou et al. Jan 2010 B2
7679010 Wingett Mar 2010 B2
7724415 Yamaguchi May 2010 B2
7781690 Ishii Aug 2010 B2
7813774 Perez-Noguera Oct 2010 B2
7842895 Lee Nov 2010 B2
7847204 Tsai Dec 2010 B2
7851819 Shi Dec 2010 B2
7866866 Wahlstrom Jan 2011 B2
7893376 Chen Feb 2011 B2
7923653 Ohsumi Apr 2011 B2
7947915 Lee et al. May 2011 B2
7999748 Ligtenberg et al. Aug 2011 B2
8063325 Sung et al. Nov 2011 B2
8077096 Chiang et al. Dec 2011 B2
8080744 Yeh et al. Dec 2011 B2
8098228 Shimodaira et al. Jan 2012 B2
8109650 Chang et al. Feb 2012 B2
8119945 Lin Feb 2012 B2
8124903 Tatehata et al. Feb 2012 B2
8134094 Tsao et al. Mar 2012 B2
8143982 Lauder et al. Mar 2012 B1
8156172 Muehl et al. Apr 2012 B2
8178808 Strittmatter et al. May 2012 B2
8184021 Chou May 2012 B2
8212160 Tsao Jul 2012 B2
8212162 Zhou Jul 2012 B2
8218301 Lee Jul 2012 B2
8232958 Tolbert Jul 2012 B2
8246228 Ko et al. Aug 2012 B2
8253048 Ozias et al. Aug 2012 B2
8253052 Chen Sep 2012 B2
8263887 Chen et al. Sep 2012 B2
8289280 Travis Oct 2012 B2
8299382 Takemae et al. Oct 2012 B2
8317384 Chung et al. Nov 2012 B2
8319298 Hsu Nov 2012 B2
8325141 Marsden Dec 2012 B2
8330725 Mahowald et al. Dec 2012 B2
8354629 Lin Jan 2013 B2
8378857 Pance Feb 2013 B2
8383972 Liu Feb 2013 B2
8384566 Bocirnea Feb 2013 B2
8404990 Lutgring et al. Mar 2013 B2
8451146 Mahowald et al. Mar 2013 B2
8431849 Chen Apr 2013 B2
8436265 Koike et al. May 2013 B2
8462514 Myers et al. Jun 2013 B2
8500348 Dumont et al. Aug 2013 B2
8502094 Chen Aug 2013 B2
8542194 Akens et al. Sep 2013 B2
8548528 Kim et al. Oct 2013 B2
8564544 Jobs et al. Oct 2013 B2
8569639 Strittmatter Oct 2013 B2
8575632 Kuramoto et al. Nov 2013 B2
8581127 Jhuang et al. Nov 2013 B2
8592699 Kessler et al. Nov 2013 B2
8592702 Tsai Nov 2013 B2
8592703 Johnson et al. Nov 2013 B2
8604370 Chao Dec 2013 B2
8629362 Knighton et al. Jan 2014 B1
8642904 Chiba et al. Feb 2014 B2
8651720 Sherman et al. Feb 2014 B2
8659882 Liang et al. Feb 2014 B2
8731618 Jarvis et al. May 2014 B2
8748767 Ozias et al. Jun 2014 B2
8759705 Funakoshi et al. Jun 2014 B2
8760405 Nam Jun 2014 B2
8786548 Oh et al. Jul 2014 B2
8791378 Lan Jul 2014 B2
8835784 Hirota Sep 2014 B2
8847090 Ozaki Sep 2014 B2
8847711 Yang et al. Sep 2014 B2
8853580 Chen Oct 2014 B2
8854312 Meierling Oct 2014 B2
8870477 Merminod et al. Oct 2014 B2
8884174 Chou et al. Nov 2014 B2
8921473 Hyman Dec 2014 B1
8922476 Stewart et al. Dec 2014 B2
8943427 Heo et al. Jan 2015 B2
8976117 Krahenbuhl et al. Mar 2015 B2
8994641 Stewart et al. Mar 2015 B2
9007297 Stewart et al. Apr 2015 B2
9012795 Niu et al. Apr 2015 B2
9029723 Pegg May 2015 B2
9063627 Yairi et al. Jun 2015 B2
9064642 Welch et al. Jun 2015 B2
9086733 Pance Jul 2015 B2
9087663 Los Jul 2015 B2
9093229 Leong et al. Jul 2015 B2
9213416 Chen Dec 2015 B2
9223352 Smith et al. Dec 2015 B2
9234486 Das et al. Jan 2016 B2
9235236 Nam Jan 2016 B2
9274654 Slobodin et al. Mar 2016 B2
9275810 Pance et al. Mar 2016 B2
9300033 Han et al. Mar 2016 B2
9305496 Kimura Apr 2016 B2
9443672 Martisauskas Sep 2016 B2
9448628 Tan et al. Sep 2016 B2
9471185 Guard Oct 2016 B2
9477382 Hicks et al. Oct 2016 B2
9612674 Degner et al. Apr 2017 B2
9734965 Martinez et al. Aug 2017 B2
9793066 Brock et al. Oct 2017 B1
20020079211 Katayama et al. Jun 2002 A1
20020093436 Lien Jul 2002 A1
20020113770 Jacobson et al. Aug 2002 A1
20020149835 Kanbe Oct 2002 A1
20030169232 Ito Sep 2003 A1
20040004559 Rast Jan 2004 A1
20040225965 Garside et al. Nov 2004 A1
20040257247 Lin et al. Dec 2004 A1
20050035950 Daniels Feb 2005 A1
20050253801 Kobayashi Nov 2005 A1
20060011458 Purcocks Jan 2006 A1
20060020469 Rast Jan 2006 A1
20060120790 Chang Jun 2006 A1
20060181511 Woolley Aug 2006 A1
20060243987 Lai Nov 2006 A1
20070084710 Koyano Apr 2007 A1
20070200823 Bytheway et al. Aug 2007 A1
20070285393 Ishakov Dec 2007 A1
20080131184 Brown et al. Jun 2008 A1
20080136782 Mundt et al. Jun 2008 A1
20090046053 Shigehiro et al. Feb 2009 A1
20090103964 Takagi et al. Apr 2009 A1
20090128496 Huang May 2009 A1
20090262085 Wassingbo et al. Oct 2009 A1
20090267892 Faubert Oct 2009 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100066568 Lee Mar 2010 A1
20100109921 Annerfors May 2010 A1
20100156796 Kim et al. Jun 2010 A1
20100253630 Homma et al. Oct 2010 A1
20110032127 Roush Feb 2011 A1
20110056817 Wu Mar 2011 A1
20110056836 Tatebe et al. Mar 2011 A1
20110205179 Braun Aug 2011 A1
20110261031 Muto Oct 2011 A1
20110267272 Meyer Nov 2011 A1
20110284355 Yang Nov 2011 A1
20110303521 Niu et al. Dec 2011 A1
20120012446 Hwa Jan 2012 A1
20120032972 Hwang Feb 2012 A1
20120090973 Liu Apr 2012 A1
20120098751 Liu Apr 2012 A1
20120286701 Yang et al. Nov 2012 A1
20120298496 Zhang Nov 2012 A1
20120313856 Hsieh Dec 2012 A1
20130043115 Yang et al. Feb 2013 A1
20130093500 Bruwer Apr 2013 A1
20130093733 Yoshida Apr 2013 A1
20130100030 Los et al. Apr 2013 A1
20130120265 Horii et al. May 2013 A1
20130161170 Fan et al. Jun 2013 A1
20130215079 Johnson et al. Aug 2013 A1
20130242601 Kloeppel et al. Sep 2013 A1
20130270090 Lee Oct 2013 A1
20140015777 Park et al. Jan 2014 A1
20140027259 Kawana et al. Jan 2014 A1
20140071654 Chien Mar 2014 A1
20140082490 Jung et al. Mar 2014 A1
20140090967 Inagaki Apr 2014 A1
20140098042 Kuo et al. Apr 2014 A1
20140116865 Leong et al. May 2014 A1
20140118264 Leong et al. May 2014 A1
20140151211 Zhang Jun 2014 A1
20140184496 Gribetz et al. Jul 2014 A1
20140191973 Zellers et al. Jul 2014 A1
20140218851 Klein Aug 2014 A1
20140252881 Dinh et al. Sep 2014 A1
20140291133 Fu et al. Oct 2014 A1
20140320436 Modarres et al. Oct 2014 A1
20140346025 Hendren et al. Nov 2014 A1
20140375141 Nakajima Dec 2014 A1
20150016038 Niu et al. Jan 2015 A1
20150083561 Han et al. Mar 2015 A1
20150090570 Kwan et al. Apr 2015 A1
20150090571 Leong et al. Apr 2015 A1
20150227207 Winter et al. Aug 2015 A1
20150243457 Niu et al. Aug 2015 A1
20150270073 Yarak, III et al. Sep 2015 A1
20150277559 Vescovi et al. Oct 2015 A1
20150287553 Welch et al. Oct 2015 A1
20150309538 Zhang Oct 2015 A1
20150332874 Brock et al. Nov 2015 A1
20150348726 Hendren Dec 2015 A1
20150378391 Huitema et al. Dec 2015 A1
20160049266 Stringer et al. Feb 2016 A1
20160093452 Zercoe et al. Mar 2016 A1
20160172129 Zercoe et al. Jun 2016 A1
20160189890 Leong et al. Jun 2016 A1
20160189891 Zercoe et al. Jun 2016 A1
20160259375 Andre et al. Sep 2016 A1
20160329166 Hou et al. Nov 2016 A1
20160336124 Leong et al. Nov 2016 A1
20160336127 Leong et al. Nov 2016 A1
20160336128 Leong et al. Nov 2016 A1
20160343523 Hendren et al. Nov 2016 A1
20160351360 Knopf et al. Dec 2016 A1
20160365204 Cao et al. Dec 2016 A1
20160378234 Ligtenberg et al. Dec 2016 A1
20160379775 Leong et al. Dec 2016 A1
20170004937 Leong et al. Jan 2017 A1
20170004939 Kwan et al. Jan 2017 A1
20170011869 Knopf et al. Jan 2017 A1
20170090106 Cao et al. Mar 2017 A1
20170301487 Leong et al. Oct 2017 A1
20170315624 Leong et al. Nov 2017 A1
20180029339 Liu et al. Feb 2018 A1
20180040441 Wu et al. Feb 2018 A1
20180074694 Lehmann et al. Mar 2018 A1
Foreign Referenced Citations (184)
Number Date Country
2155620 Feb 1994 CN
2394309 Aug 2000 CN
1533128 Sep 2004 CN
1542497 Nov 2004 CN
2672832 Jan 2005 CN
1624842 Jun 2005 CN
1812030 Aug 2006 CN
1838036 Sep 2006 CN
1855332 Nov 2006 CN
101051569 Oct 2007 CN
200961844 Oct 2007 CN
200986871 Dec 2007 CN
101146137 Mar 2008 CN
201054315 Apr 2008 CN
201084602 Jul 2008 CN
201123174 Sep 2008 CN
201149829 Nov 2008 CN
101315841 Dec 2008 CN
201210457 Mar 2009 CN
101438228 May 2009 CN
101465226 Jun 2009 CN
101494130 Jul 2009 CN
101502082 Aug 2009 CN
201298481 Aug 2009 CN
101546667 Sep 2009 CN
101572195 Nov 2009 CN
101800281 Aug 2010 CN
101807482 Aug 2010 CN
101868773 Oct 2010 CN
201655616 Nov 2010 CN
102110542 Jun 2011 CN
102119430 Jul 2011 CN
201904256 Jul 2011 CN
102163084 Aug 2011 CN
201927524 Aug 2011 CN
201945951 Aug 2011 CN
201945952 Aug 2011 CN
201956238 Aug 2011 CN
102197452 Sep 2011 CN
202008941 Oct 2011 CN
202040690 Nov 2011 CN
102280292 Dec 2011 CN
102338348 Feb 2012 CN
102375550 Mar 2012 CN
202205161 Apr 2012 CN
102496509 Jun 2012 CN
10269527 Aug 2012 CN
102622089 Aug 2012 CN
102629526 Aug 2012 CN
202372927 Aug 2012 CN
102679239 Sep 2012 CN
102683072 Sep 2012 CN
202434387 Sep 2012 CN
202523007 Nov 2012 CN
102832068 Dec 2012 CN
102955573 Mar 2013 CN
102956386 Mar 2013 CN
102969183 Mar 2013 CN
103000417 Mar 2013 CN
103165327 Jun 2013 CN
103180979 Jun 2013 CN
203012648 Jun 2013 CN
203135988 Aug 2013 CN
103377841 Oct 2013 CN
103489986 Jan 2014 CN
203414880 Jan 2014 CN
103681056 Mar 2014 CN
103699181 Apr 2014 CN
203520312 Apr 2014 CN
203588895 May 2014 CN
103839715 Jun 2014 CN
103839720 Jun 2014 CN
103839722 Jun 2014 CN
103903891 Jul 2014 CN
103956290 Jul 2014 CN
203733685 Jul 2014 CN
104021968 Sep 2014 CN
204102769 Jan 2015 CN
204117915 Jan 2015 CN
104517769 Apr 2015 CN
204632641 Sep 2015 CN
105097341 Nov 2015 CN
2530176 Jan 1977 DE
3002772 Jul 1981 DE
29704100 Apr 1997 DE
202008001970 Aug 2008 DE
0441993 Aug 1991 EP
1835272 Sep 2007 EP
1928008 Jun 2008 EP
2022606 Jun 2010 EP
2426688 Mar 2012 EP
2439760 Apr 2012 EP
2463798 Jun 2012 EP
2664979 Nov 2013 EP
2147420 Mar 1973 FR
2911000 Jul 2008 FR
2950193 Mar 2011 FR
1361459 Jul 1974 GB
S50115562 Sep 1975 JP
S60055477 Mar 1985 JP
S61172422 Oct 1986 JP
S62072429 Apr 1987 JP
S63182024 Nov 1988 JP
H0422024 Apr 1992 JP
H0520963 Jan 1993 JP
H0524512 Aug 1993 JP
H05342944 Dec 1993 JP
H09204148 Aug 1997 JP
H10312726 Nov 1998 JP
H11194882 Jul 1999 JP
2000010709 Jan 2000 JP
2000057871 Feb 2000 JP
2000339097 Dec 2000 JP
2001100889 Apr 2001 JP
2003114751 Sep 2001 JP
2002260478 Sep 2002 JP
2002298689 Oct 2002 JP
2003522998 Jul 2003 JP
2005108041 Apr 2005 JP
2006164929 Jun 2006 JP
2006185906 Jul 2006 JP
2006521664 Sep 2006 JP
2006269439 Oct 2006 JP
2006277013 Oct 2006 JP
2006344609 Dec 2006 JP
2007115633 May 2007 JP
2007514247 May 2007 JP
2007156983 Jun 2007 JP
2008021428 Jan 2008 JP
2008041431 Feb 2008 JP
2008100129 May 2008 JP
2008191850 Aug 2008 JP
2008533559 Aug 2008 JP
2008293922 Dec 2008 JP
2009099503 May 2009 JP
2009181894 Aug 2009 JP
2010061956 Mar 2010 JP
2010244088 Oct 2010 JP
2010244302 Oct 2010 JP
2011018484 Jan 2011 JP
2011065126 Mar 2011 JP
2011150804 Aug 2011 JP
2011165630 Aug 2011 JP
2011524066 Aug 2011 JP
2011187297 Sep 2011 JP
2012022473 Feb 2012 JP
2012043705 Mar 2012 JP
2012063630 Mar 2012 JP
2012098873 May 2012 JP
2012134064 Jul 2012 JP
2012186067 Sep 2012 JP
2012230256 Nov 2012 JP
2014017179 Jan 2014 JP
2014026807 Feb 2014 JP
2014216190 Nov 2014 JP
2014220039 Nov 2014 JP
2016053778 Apr 2016 JP
1019990007394 Jan 1999 KR
1020020001668 Jan 2002 KR
100454203 Oct 2004 KR
1020060083032 Jul 2006 KR
1020080064116 Jul 2008 KR
1020080066164 Jul 2008 KR
2020110006385 Jun 2011 KR
1020120062797 Jun 2012 KR
1020130040131 Apr 2013 KR
20150024201 Mar 2015 KR
200703396 Jan 2007 TW
M334397 Jun 2008 TW
201108284 Mar 2011 TW
201108286 Mar 2011 TW
M407429 Jul 2011 TW
201246251 Nov 2012 TW
201403646 Jan 2014 TW
WO9744946 Nov 1997 WO
WO2005057320 Jun 2005 WO
WO2006022313 Mar 2006 WO
WO2007049253 May 2007 WO
WO2008045833 Apr 2008 WO
WO2009005026 Jan 2009 WO
WO2012011282 Jan 2012 WO
WO2012027978 Mar 2012 WO
WO2013096478 Jun 2013 WO
WO2014175446 Oct 2014 WO
Non-Patent Literature Citations (25)
Entry
U.S. Appl. No. 14/472,260, filed Aug. 28, 2014, pending.
U.S. Appl. No. 14/501,680, filed Sep. 30, 2014, pending.
U.S. Appl. No. 14/736,151, filed Jun. 10, 2015, pending.
U.S. Appl. No. 14/765,145, filed Jul. 31, 2015, pending.
U.S. Appl. No. 14/826,590, filed Aug. 14, 2015, pending.
U.S. Appl. No. 14/867,598, filed Sep. 28, 2015, pending.
U.S. Appl. No. 14/867,672, filed Sep. 28, 2015, pending.
U.S. Appl. No. 14/867,746, filed Sep. 28, 2015, pending.
U.S. Appl. No. 15/615,806, filed Jun. 6, 2017, pending.
U.S. Appl. No. 15/687,297, filed Aug. 25, 2017, pending.
U.S. Appl. No. 15/940,909, filed Mar. 29, 2018, pending.
Elekson, “Reliable and Tested Wearable Electronics Embedment Solutions,” http://www.wearable.technology/our-technologies, 3 pages, at least as early as Jan. 6, 2016.
U.S. Appl. No. 15/014,596, filed Feb. 3, 2016, pending.
U.S. Appl. No. 15/154,682, filed May 13, 2016, pending.
U.S. Appl. No. 15/154,706, filed May 13, 2016, pending.
U.S. Appl. No. 15/154,723, filed May 13, 2016, pending.
U.S. Appl. No. 15/154,768, filed May 13, 2016, pending.
U.S. Appl. No. 15/230,740, filed Aug. 8, 2016, pending.
U.S. Appl. No. 15/230,724, filed Aug. 8, 2016, pending.
U.S. Appl. No. 15/261,954, filed Sep. 11, 2016, pending.
U.S. Appl. No. 15/261,972, filed Sep. 11, 2016, pending.
U.S. Appl. No. 15/262,249, filed Sep. 12, 2016, pending.
U.S. Appl. No. 15/264,827, filed Sep. 14, 2016, pending.
U.S. Appl. No. 15/268,518, filed Sep. 16, 2016, pending.
U.S. Appl. No. 15/269,790, filed Sep. 19, 2016, pending.
Related Publications (1)
Number Date Country
20160189890 A1 Jun 2016 US
Provisional Applications (8)
Number Date Country
62058087 Sep 2014 US
62129842 Mar 2015 US
62058067 Sep 2014 US
62129840 Mar 2015 US
62058074 Sep 2014 US
62129841 Mar 2015 US
62058081 Sep 2014 US
62129843 Mar 2015 US