The invention relates to a venting unit for a vulcanizing mold of a pneumatic vehicle tire, having a central longitudinal mid-axis, a cylindrical housing and a valve insert, which is positioned in the housing and is movable relative thereto and has a valve shank with a valve disk and has a helical compression spring, which surrounds the valve shank and is supported with its one end on the housing and with its other end on the valve disk, it being possible for the housing to be anchored in a venting bore of the vulcanizing mold by a press fit.
It is known and customary that in vulcanizing molds for pneumatic vehicle tires, in particular for passenger cars, there are on average approximately 4500 venting bores, with the same number of venting units inserted in them. The venting units contain valve inserts, the valve disks of which close the venting bores on the molded green tire and at least largely prevent the occurrence of rubber flash during the vulcanization of the tire. During the molding of the green tire, the valve inserts are open and the valves disks protrude on the inner side of the mold, so that the required venting can take place during the molding of the green tire.
A venting unit of the type mentioned at the beginning is known for example from EP 0 774 333 B1. The cylindrical housing of this known venting unit has an outer diameter which is adapted to the inner diameter of the venting bore in such a way that the complete housing of the venting unit can be inserted into the respective venting bore by a press fit. Relatively high forces must be exerted for this purpose, only allowing manual fastening of the venting units in the venting bores. This way of anchoring the venting units, involving expenditure of great force, can lead to the walls of the bores being damaged, in particular if the venting units are inadvertently inserted off-center.
Furthermore, the high forces to be applied for inserting the venting units often do not allow exact and accurate positioning of the housing in relation to the inner side of the mold, which however is required to ensure satisfactory functioning of the venting units and optimum formation of the outer side of the tread of the pneumatic vehicle tire.
It is an object of the invention to improve a venting unit of the type mentioned at the beginning in this respect, in particular in order to ensure exact and optimum fitting of the venting units in the venting bores and in order to allow the venting units also to be inserted with an automatically actuated tool.
The stated object can, for example, be achieved via the housing being able to be anchored in the venting bore by a press fit just over 30% to 45% of the housing length and at least directly at the outer end of the venting bore.
It has been found that it is sufficient for a secure fit of the housing of the venting unit in the venting bore to anchor the housing in the venting bore wall by a press fit just over a portion of its extent in the venting bore. The pressing in consequently requires a much lower expenditure of force than the pressing in of venting units according to the prior art. As a result, damage to the walls of the bore can be effectively avoided, the time expended for insertion is much less and there is also the possibility of being able to insert venting units into the venting bores automatically with a corresponding tool.
In the case of an embodiment of the invention, the housing can be anchored in the venting bore by a press fit via a single outer cylindrical portion that extends over 30% to 45% of the housing length. This particularly expedient embodiment of the housing can also be produced particularly easily.
In the case of an alternative variant of the embodiment, the housing can be anchored in the venting bore by a press fit via a number of cylindrical portions extending altogether over 30% to 45% of the housing length. This variant offers the advantage of distributing the press fitting surfaces over a greater region of the housing.
In the case of this alternative variant of the embodiment, one of the cylindrical portions is a peripheral portion which runs around the outer end of the housing and the length of which is at least 1.0 mm.
Of particular advantage is an embodiment of the housing in which it has a cylindrical portion which directly adjoins its inner end and the outer diameter of which is smaller than the outer diameter of that portion or those portions via which the housing can be anchored in the venting bore by a press fit. It is particularly advantageous in this case if the inner cylindrical portion has a length of at least 30% of the housing length. With this portion, the housing can be prepositioned in the venting bore in a centered manner. It is therefore of advantage if the inner cylindrical portion has an outer diameter that is less by 0.2 mm to 0.5 mm than that portion or those portions via which the housing can be anchored in the venting bore by a press fit.
In the case of an embodiment of the housing with multiple cylindrical portions that can be anchored in the venting bore by a press fit, a further portion is respectively provided between these portions, the outer diameter of which is smaller than the outer diameter of the outer portions and in particular corresponds to the outer diameter of the inner portion.
In order to avoid catching of the housing on the periphery of the venting bore on the inner side of the mold at the transitional region from the inner portion to the adjoining outer portion of the housing, these portions are preferably connected to one another by way of a peripheral sloping surface, which runs at an angle of 10° to 60°, in particular at an angle of 15° to 45°, in relation to the longitudinal mid-axis of the venting unit.
The pre-positioning of the housing by inserting the inner portion into the venting bore can be facilitated by a sloping surface which is provided on the outside at the inner end of the inner portion of the housing and which runs at an angle of 10° to 60°, in particular at an angle of 15° to 45°, in relation to the longitudinal mid-axis of the venting unit.
The invention will now be described with reference to the drawings wherein:
In the following detailed description of individual component parts of the venting unit 3, the configuration of these component parts is considered with reference to their installation position in the mold segment 1 or the position in the figures; this concerns for example designations such as outer or upper and inner. The venting unit represented is, by way of example, a venting unit with a diameter of 3.2 mm, therefore a venting unit for vulcanizing molds for car tires. Usually, venting units can have a diameter (diameter adapted to the venting bore) of 2 mm to 5 mm.
The housing 6 that is shown separately in
A further sloping surface 10 with an inward inclination is formed on the outside at the inner end of the housing 6. The sloping surface 10 is a kind of bevel on the edge of the housing and runs at a constant angle α2, which is 10° to 60°, in particular 15° to 45°, in relation to the outer side of the portion 6a or in relation to the longitudinal mid-axis a. The sloping surface 10 is very narrow; its width b2 is of the order of magnitude of 0.15 to 0.20 mm.
On the outer end region, facing the mold segment inner side 1a, the housing 6 is provided on the inside with a widening 11 in the form of a truncated cone, which is adapted to the configuration of the valve disk 4, which, as for example
On the end region of the housing 6 that is opposite from the widening 11 in the form of a truncated cone there is a housing base 12, which has a middle circular opening 13 with a central narrowest opening portion 13a, the inner diameter d4 of which is smaller than the inner diameter d1 of the housing 6 and is surrounded by a narrow ring. Above and below the opening portion 13a, the opening 13 is widened via a respective sloping surface 14, 15. The sloping surface 15 running on the outside of the housing base 12 runs at an angle of α4 of 30° to 60°, in particular of approximately 45°, in relation to the longitudinal mid-axis a. On the inside of the housing, the second sloping surface 14 in the case of the embodiment shown forms a transitional surface with respect to the housing inner wall and runs at an angle α5 of 30° to 70°, in particular of the order of magnitude of 60°, in relation to the longitudinal mid-axis a. The height h1 of the housing base 12 parallel to the longitudinal mid-axis a is of the order of magnitude of 0.4 mm to 0.6 mm.
The valve insert 7 is now described in more detail on the basis of
The second end portion 8c is divided into two in the middle by a slit 17 extending along the longitudinal mid-axis a and reaching into the base portion 8a. The slit 17 allows the two end portion parts 18a, 18b to be pressed together and moved apart, so that the valve shank 8 can be led through the constriction or the opening 13 in the peripheral projection 12 of the housing 6 and can in this way be fastened on the housing 6. Each end portion part 18a, 18b forms a projection, which according to the cylindrical form of the shank is in each case rounded overall. At its widest point, each projection has a collar 19a, which adjoins the base portion 8a via a sloping surface 19b. The sloping surfaces 19b run at an angle β2 of 30° to 60°, in particular of 45°, in relation to the longitudinal mid-axis a, the angle N2 preferably corresponding to the angle α4 of the sloping surface 15 at the opening 13 in the housing base 12 of the housing 6, so that, as
To assemble the venting unit 3, the helical compression spring 9 is positioned over the valve shank 8 and the valve shank 8 is led through the middle opening 13 in the projection 12 of the housing while pressing together the two end portion parts 18a, 18b and in this way is fastened on the housing 6. The sloping surfaces 14 above the opening portion 13a and the sloping surfaces 19c on the valve shank 8 make insertion possible with little expenditure of force.
In the case of the embodiment shown in
On the one hand, an elevation or a number of elevations on the valve disk can have the effect of assisting the movement of the valve disk into its closed position; on the other hand, elevations and/or depressions on the valve disk can have the effect that local depressions or elevations, which are perceived as being visually less disturbing than the impressions of valve disks with a flat surface, are specifically formed on the tread of the tire.
The venting unit 3 can be inserted in a precise and easy way into the portion 2a of the venting bore 2 of the mold segment 1. Since only the outer portion 6a of the housing 6 is pressed into the venting bore 2, the housing 6 is positioned with its thinner portion 6b in the venting bore 2. The sloping surface 10 at the lower end of the portion 6b assists easy insertion into the bore 2. As a result, it is possible also to insert the housing 6 by machine without having a perfect alignment of the device, for example a robot, in relation to the bore. The longer thinner portion 6b has the effect that the housing 6 is pre-adjusted in the bore 2 and is substantially parallel to the axis of the bore when the sloping surface 6c comes into contact with the periphery of the bore. Then the housing 6 is exactly centered and aligned straight, in order that the housing 6 is then introduced parallel to the axis of the bore, without damaging or asymmetrically widening the periphery of the bore. Therefore, not only is a particularly exact positioning of the venting unit 3 in the venting bore 2 made possible, but the expenditure of force is also reduced significantly. In principle, the venting unit 3 may be completely assembled from its parts before it is introduced into the venting bore. However, it is also possible first to introduce the housing 6 into the venting bore 2 and then to position the further parts in the housing 6.
It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102016209910.8 | Jun 2016 | DE | national |
This application is the national stage of PCT/EP2017/060853, filed May 8, 2017, designating the United States and claiming priority from German patent application no. 10 2016 209 910.8, filed Jun. 6, 2016, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/060853 | 5/8/2017 | WO | 00 |