The present invention relates to the field of oil and gas wells, and more particularly to vessels or tanks for capturing fluids and gases from a well.
In one embodiment the present invention is directed to a tank system for managing a slurry containing an organic gas. The tank system comprises a first tank body, a flow interrupter, a sand separator, a flare line, and a secondary tank. The first tank body is characterized by an internal first pressure and comprises a main inlet port, a gas outlet port, and a liquid outlet port. The flow interrupter is located within the first tank body proximate the main inlet port. The sand separator is located within the first tank body. The flare line is operatively connected to the gas outlet port. The secondary tank is in communication with the liquid outlet port, wherein the conditions in the batch tank are such that liquid in the secondary tank has less organic gas dissolved in solution than exists at equilibrium at standard temperature and pressure.
In an alternative embodiment the present invention is directed to a tank system for capturing fluids from a well. The system comprises a trailer, a tank body supported on the trailer, a gas buster line, a flare line, a pipe section having a first end connected to the main inlet port, a separator supported on the trailer, and a sand trap supported on the trailer. The tank body comprises a main inlet port proximate a top portion of the tank body and a vent port disposed on a top of the tank body. The gas buster line disposed within the tank body, the line comprising a first pipe section having a length and a diameter and a second pipe section having a length and a diameter. The first pipe section is connected at a first end to the main inlet port and the second pipe section is connected at a first end to a second end of the first pipe section. The length of the second pipe section is greater than the length of the first pipe section and the diameter of the second pipe section is greater than the diameter of the first pipe section. The second pipe section is characterized by a plurality of slots cut in a circumference of the pipe section, the slots allowing fluids in the second pipe section to disperse out of the second pipe section. The flare line is operatively connected to the vent port. The flare line comprises at least one pipe section having an end connected to the vent port, a check valve connected to the at least one pipe section, and an ignition system connected to the at least one pipe section and adapted to burn gases passing through the at least one pipe section. The separator has an inlet port and an outlet port, where the outlet port is operatively connected to a second end of the pipe section connected to the main inlet port. The sand trap has an inlet port and an outlet port, where the outlet port operatively connected to inlet port of the separator.
The present invention is directed to a tank system for handling fluids and gases extracted from a well. The system design allows the operator of an oil or gas well to flow the well into the tank while attempting to eliminate the scope of harmful vapors unburned to the atmosphere. The system includes a pressure rated vessel and incorporates relief valves to maintain the structural integrity of the vessel by reducing by over pressuring or over vacuuming. Gases from the tank are vented through a flare stack with an ignition source to burn gases before release to the atmosphere. The system also incorporates gas separator and sand trap technology to increase functionality.
Turning to the drawings in general and
The three-phase separator 16 is adapted to receive a feed stream from the well at high pressure. The feed stream is referred to as a “brine”, containing gas and liquid portions, and potentially some solid particulates. The phrase “slurry” is also used herein to describe an oil-water mixture, including additional entrained gas, as described below. The three-phase separator 16 comprises a separator tank body 20, a separator inlet port 22, a separator gas outlet port 24, and a separator liquid outlet port 26. The feed stream from the well is received at the separator inlet port 22. An internal pressure of the separator tank body 20 is preferably lower than the pressure of the feed stream. The pressure drop allows gaseous and liquid portions to separate within the separator tank body 20. The gaseous portion typically comprises a volatile organic compound (VOC) such as methane gas, which will be referred to herein simply as “gas”. Gas exits via the separator gas outlet port 24. Gas exiting the separator gas outlet port 24 is directed to a meter 28 and then to a flare 30. Alternatively, the gas may be utilized for sales or further processing.
Liquid exits the three-phase separator 16 at a separator liquid outlet port. As shown in
The batch tank 12 comprises a batch tank body 42, a batch tank inlet port 44, a batch tank gas outlet port 46, a batch tank oil outlet 48, a batch tank water outlet 50, and at least one sand clearout port 52. The batch tank body 42 may further comprise a plurality of pop off valves, manways, and cleanouts to facilitate use. Oil and water enter the batch tank body 42 at the tank inlet port 44. The tank inlet port 44 may comprise separate inlet ports for oil and water, or the inlet port may contain both oil and water. An internal pressure of the batch tank body 42 is preferably lower than the pressure of the separator tank body 20. The pressure drop allows further separation of gas entrained in the oil and water. Gas exits via the batch tank gas outlet port 46. Gas exiting the batch gas outlet port 46 is directed to the meter 28 and then to a flare 56. Alternatively, the gas may be utilized for sales or further processing.
Liquid in the batch tank body 42 may be separated into oil and water using an oil/water separator (
Sand entrained in the oil and water may accumulate at the bottom of the batch tank body 42 due to a sand separator (
Oil and water removed from the batch tank 12 is delivered through one or more liquid transmission lines 54 to heat exchanger 14. Heat exchanger 14 removes heat from the oil and the water. Oil is then deposited in a secondary tank, or oil tank 60. Water is deposited in a secondary tank, or water tank 62. In both cases, the equilibrium conditions (temperature and pressure) inside the oil tank 60 and the water tank 62 are less favorable for entrained gas than ambient temperature and pressure. Gas removed from the oil tank 60 and the water tank 62 is sent to a low pressure flare line 64. Alternatively, the gas may be utilized for sales or further processing.
One skilled in the art will appreciate that oil removed from the oil tank 60 and water removed from the water tank 62 may require further processing before it can be used or disposed of. However, the oil removed after this phase and the water removed after this phase will not vent gas to the atmosphere. The amount of gas dissolved in the oil or water will be lower than at equilibrium at ambient conditions. This undersaturation of gas allows the water and oil to be stored outside of a ventless tank. A second heat exchanger (not shown) may additionally be utilized between the three-phase separator 16 and the batch tank 12 to achieve further cooling of the streams and therefore favorable equilibrium conditions.
With reference now to
The oil-water separator 72 is located at the second end 68 of the batch tank body 42 and separates oil from water using the relative densities and tendency for oil and water to separate. The oil-water separator 72 comprises an internal wall 76 and a spillway 78. The batch tank oil outlet 48 is located such that material enters the outlet from within a perimeter of the internal wall 76 of the oil-water separator 72. As the level of oil and water inside the tank body 42 rises, oil will tend to float on the surface of water. Thus, the oil floating on the water will fall over the spillway 78 and into the oil-water separator 72. The batch tank oil outlet 48 is located within the oil-water separator 72. The batch tank water outlet 50 is located outside the oil-water separator 72 at a level below the boundary between oil and water within the batch tank body 42. The sand separator 73 comprises a baffle system such that sand which enters through the batch tank inlet port 44 may easily enter the sand separator but is less likely to exit the sand separator. The sand separator 73 causes sand to collect proximate the clearout ports 52 described with reference to
The static tree 74 dissipates static electricity caused by frictional forces of the gas over metal surfaces, reducing the possibility of a spark within the tank body 42. The mist collector 75 provides additional contact surface for the gas within the tank both 42, allowing liquid carried by the gas to condense and drip into the liquid in the tank body.
As shown in
With reference now to
The flares 56, 64 for use with the gas streams of the present invention are also shown. The flares 56, 64 comprise a stack 100 and a detonation device 102. The detonation device 102 prevents back-flow of gas from the stack into the various tanks and ignites the gas such that it is flared in the stack 100. As shown, it may be desired for the flares 56, 64 to be located on trailers 104 for ease of transportation.
In operation, the ventless tank system 10 provides a method for separation and storage components from the well 90 without venting volatile organic compounds such as methane gas to the atmosphere. A diagrammatic representation of this method is shown in
The feed stream enters the three phase separator 16 at step 108 through the separator inlet port 22. Gas is separated from the feed and flared at step 110. Liquid is optionally separated into oil and water at step 112 and exits the three phase separator 16 as a slurry stream at step 114. The membrane system 40 operates the separator liquid outlet port 26 at step 116, whether a single port or the separator water outlet port 32 and separator oil outlet port 34 as shown in
Liquid in the batch tank 12 is separated into oil and water by the oil-water separator 72 at step 130. Oil and water are removed from the batch tank at step 132. Heat is removed from the oil and water at the heat exchanger 14 at step 134 such that the equilibrium conditions of the oil and the water are less favorable for entrained dissolved gas than ambient conditions. Oil is placed in the oil tank 60 at step 136 and residual gas removed and flared at step 138. Water is placed in the water tank 62 at step 140 and residual gas removed and flared at step 142. The oil and the water may then be removed and processed at step 144 in a ventless manner. The process ends at step 146.
Various modifications can be made in the design and operation of the present invention without departing from its spirit. Thus, while the principal preferred construction and modes of operation of the invention have been explained in what is now considered to represent its best embodiments, it should be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.
Number | Name | Date | Kind |
---|---|---|---|
2738026 | Glasgow et al. | Mar 1956 | A |
2765045 | Meyers | Oct 1956 | A |
3360903 | Meyer | Jan 1968 | A |
4010012 | Griffin et al. | Mar 1977 | A |
4948393 | Hodson et al. | Aug 1990 | A |
5149344 | Macy | Sep 1992 | A |
5928519 | Homan | Jul 1999 | A |
6537458 | Polderman | Mar 2003 | B1 |
7531099 | Rhodes | May 2009 | B1 |
7654397 | Allouche | Feb 2010 | B2 |
8470080 | Ball et al. | Jun 2013 | B1 |
20090282985 | Whiteley | Nov 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20140130676 A1 | May 2014 | US |