This patent application incorporates by reference in their entireties and claims priority to these co-pending patent applications filed on Aug. 22, 2017, including the following: (1) “Deep Module and Fitting Module System and Method for Motion-Based Lane Detection with Multiple Sensors;” and (2) “Post-processing Module System and Method for Motion-Based Lane Detection with Multiple Sensors,” and all with the same inventor(s).
The field of the disclosure is in general related to autonomous vehicles and, in particular, to a method and system for lane detection.
An increasing safety and reducing road accidents, thereby saving lives are one of great interest in the context of Advanced Driver Assistance Systems. Intelligent and autonomous vehicles are promising solutions to enhance road safety, traffic issues and passengers' comfort. Among the complex and challenging tasks of road vehicles is road lane detection or road boundaries detection. Such detection is based on lane detection, which includes the localization of the road, the determination of the relative position between vehicle and road, and the analysis of the vehicle's heading direction. Lane marking, a main component on a highway, instructs an autonomous vehicle to interactively and safely drive on the highway. Even though a differential global positioning system (GPS) has become affordable, the precision of localization may not be desirably stable. Moreover, the control requires a precise location according to lanes in a current view.
Various objects, features, aspects and advantages of the present embodiment will become more apparent from the following detailed description of embodiments of the embodiment, along with the accompanying drawings in which like numerals represent like components.
Embodiments of the present disclosure provide a method of lane detection for a non-transitory computer readable storage medium storing one or more programs. The one or more programs include instructions, which when executed by a computing device, cause the computing device to perform the following steps comprising: generating a ground truth associated with lane markings expressed in god's view; receiving features from at least one of a hit-map image and a fitted lane marking, wherein the hit-map image includes a classification of pixels that hit a lane marking, and the fitted lane marking includes pixels optimized based on the hit-map image; and training a confidence module based on the features and the ground truth, the confidence module configured to determine on-line whether a fitted lane marking is reasonable, using parameters that express a lane marking in an arc.
In an embodiment, generating a ground truth includes: generating a labeled lane marking by annotating a lane marking, using the parameters.
In another embodiment, the method further comprises: training a lane detection algorithm by using the ground truth; and generating a hit-map image for a current view based on the lane detection algorithm.
In still another embodiment, the method further comprises: generating a fitted lane marking based on the hit-map image and a lane template that includes features of a view immediately previous to the current view.
In yet another embodiment, generating a fitted lane marking includes: optimizing, based on priors or constraints, the lane template to obtain a local optimal.
In yet still another embodiment, the method further comprises: determining that a confidence level of the fitted lane marking is reasonable, using the parameters; and outputting the fitted lane marking as a predicted lane marking.
In an embodiment, the method further comprises: comparing the fitted lane marking having a reasonable confidence level against the ground truth; and determining a failure pattern associated with the fitted lane marking when a comparison result indicates that the fitted lane marking fails to match the ground truth.
In yet another embodiment, the method further comprises: determining that a confidence level of the fitted lane is unreasonable, using the parameters; and rejecting the fitted lane marking.
In still another embodiment, the method further comprises: comparing the fitted lane marking having an unreasonable confidence level against the ground truth; and determining a failure pattern associated with the fitted lane marking when a comparison result indicates that the fitted lane marking matches the ground truth.
In still yet another embodiment, the method further comprises: refining the confidence module by adding additional labeled data in training the confidence module.
Embodiments of the present disclosure also provide a system for lane detection. The system includes an internet server that comprises: an I/O port, configured to transmit and receive electrical signals to and from a client device; a memory; one or more processing units; and one or more programs stored in the memory and configured for execution by the one or more processing units, the one or more programs including instructions for: generating a ground truth associated with lane markings expressed in god's view; receiving features from at least one of a hit-map image and a fitted lane marking, wherein the hit-map image includes a classification of pixels that hit a lane marking, and the fitted lane marking includes pixels optimized based on the hit-map image; and training a confidence module based on the features and the ground truth, the confidence module configured to determine on-line whether a fitted lane marking is reasonable, using parameters that express a lane marking in an arc.
It should be noted that the drawing figures may be in simplified form and might not be to precise scale. In reference to the disclosure herein, for purposes of convenience and clarity only, directional terms such as top, bottom, left, right, up, down, over, above, below, beneath, rear, front, distal, and proximal are used with respect to the accompanying drawings. Such directional terms should not be construed to limit the scope of the embodiment in any manner.
The embodiment and its various embodiments can now be better understood by turning to the following detailed description of the embodiments, which are presented as illustrated examples of the embodiment defined in the claims. It is expressly understood that the embodiment as defined by the claims may be broader than the illustrated embodiments described below.
Any alterations and modifications in the described embodiments, and any further applications of principles described in this document are contemplated as would normally occur to one of ordinary skill in the art to which the disclosure relates. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, when an element is referred to as being “connected to” or “coupled to” another element, it may be directly connected to or coupled to the other element, or intervening elements may be present.
In the drawings, the shape and thickness may be exaggerated for clarity and convenience. This description will be directed in particular to elements forming part of, or cooperating more directly with, an apparatus in accordance with the present disclosure. It is to be understood that elements not specifically shown or described may take various forms. Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
In the drawings, the figures are not necessarily drawn to scale, and in some instances the drawings have been exaggerated and/or simplified in places for illustrative purposes. One of ordinary skill in the art will appreciate the many possible applications and variations of the present disclosure based on the following illustrative embodiments of the present disclosure.
The appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be appreciated that the following figures are not drawn to scale; rather, these figures are merely intended for illustration.
It will be understood that singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, relative terms, such as “bottom” and “top,” may be used herein to describe one element's relationship to other elements as illustrated in the Figures.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the present disclosure, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the embodiment. Therefore, it must be understood that the illustrated embodiment has been set forth only for the purposes of example and that it should not be taken as limiting the embodiment as defined by the following claims. For example, notwithstanding the fact that the elements of a claim are set forth below in a certain combination, it must be expressly understood that the embodiment includes other combinations of fewer, more, or different elements, which are disclosed herein even when not initially claimed in such combinations.
The words used in this specification to describe the embodiment and its various embodiments are to be understood not only in the sense of their commonly defined meanings, but to include by special definition in this specification structure, material or acts beyond the scope of the commonly defined meanings. Thus if an element can be understood in the context of this specification as including more than one meaning, then its use in a claim must be understood as being generic to all possible meanings supported by the specification and by the word itself.
The definitions of the words or elements of the following claims therefore include not only the combination of elements which are literally set forth, but all equivalent structure, material or acts for performing substantially the same function in substantially the same way to obtain substantially the same result.
In this sense it is therefore contemplated that an equivalent substitution of two or more elements may be made for any one of the elements in the claims below or that a single element may be substituted for two or more elements in a claim. Although elements may be described above as acting in certain combinations and even initially claimed as such, it is to be expressly understood that one or more elements from a claimed combination can in some cases be excised from the combination and that the claimed combination may be directed to a subcombination or variation of a subcombination.
Reference is now made to the drawings wherein like numerals refer to like parts throughout.
As used herein, the term “wireless” refers to wireless communication to a device or between multiple devices. Wireless devices may be anchored to a location and/or hardwired to a power system, depending on the needs of the business, venue, event or museum. In one embodiment, wireless devices may be enabled to connect to Internet, but do not need to transfer data to and from Internet in order to communicate within the wireless information communication and delivery system.
As used herein, the term “Smart Phone” or “smart phone” or “mobile device(s)” or “cellular phone” or “cellular” or “mobile phone” or the like refers to a wireless communication device, that includes, but not is limited to, an integrated circuit (IC), chip set, chip, system-on-a-chip including low noise amplifier, power amplifier, Application Specific Integrated Circuit (ASIC), digital integrated circuits, a transceiver, receiver, or transmitter, dynamic, static or non-transitory memory device(s), one or more computer processor(s) to process received and transmitted signals, for example, to and from the Internet, other wireless devices, and to provide communication within the wireless information communication and delivery system including send, broadcast, and receive information, signal data, location data, a bus line, an antenna to transmit and receive signals, and power supply such as a rechargeable battery or power storage unit. The chip or IC may be constructed (“fabricated”) on a “die” cut from, for example, a Silicon, Sapphire, Indium Phosphide, or Gallium Arsenide wafer. The IC may be, for example, analogue or digital on a chip or hybrid combination thereof. Furthermore, digital integrated circuits may contain anything from one to thousands or millions of signal invertors, and logic gates, e.g., “and”, “or”, “nand” and “nor gates”, flipflops, multiplexors, etc., on a square area that occupies only a few millimeters. The small size of, for instance, IC's allows these circuits to provide high speed operation, low power dissipation, and reduced manufacturing cost compared with more complicated board-level integration.
As used herein, the terms “wireless”, “wireless data transfer,” “wireless tracking and location system,” “positioning system” and “wireless positioning system” refer without limitation to any wireless system that transfers data or communicates or broadcasts a message, which communication may include location coordinates or other information using one or more devices, e.g., wireless communication devices.
As used herein, the terms “module” or “modules” refer without limitation to any software, software program(s), firmware, or actual hardware or combination thereof that has been added on, downloaded, updated, transferred or originally part of a larger computation or transceiver system that assists in or provides computational ability including, but not limited to, logic functionality to assist in or provide communication broadcasts of commands or messages, which communication may include location coordinates or communications between, among, or to one or more devices, e.g., wireless communication devices.
In some embodiments in accordance with the present disclosure, a non-transitory, i.e., non-volatile, computer readable storage medium is provided. The non-transitory computer readable storage medium is stored with one or more programs. When the program is executed by the processing unit of a computing device, i.e., that are part of a vehicle, the computing device is caused to conduct specific operations set forth below in accordance with some embodiments of the present disclosure.
In some embodiments, as illustrated in
In some embodiments in accordance with the present disclosure, in operation, a client application is transmitted to the computing device upon a request of a user, for example, by a smart phone 76 (see
The learning module 11 is configured to, based on a function or algorithm for lane detection, generate a hit-map image 102 in response to a raw image 101 of a current view. The raw image 101 is provided by sensors mounted on a vehicle, which may include at least one camera, a light detection and ranging (LiDAR) sensor, an inertial measurement unit (IMU) module 161, a global positioning system (GPS) module 162 and a mapping (MAP) module 163. In addition, the raw image 101 in an embodiment may include an RGB image captured by the at least one camera and a point cloud generated by the LiDAR. The lane detection algorithm can be expressed in a set of parameters that describe a relationship between the real time raw image 101 and the hit-map image 102. Also, the lane detection algorithm may be achieved through an off-line machine learning process 23 (
The fitting module 12 is configured to generate a fitted lane marking for the current view in response to the hit-map image 102 from the learning module 11 and a lane template 180 from the processing module 18. In the present embodiment, with the help of the IMU module 161, GPS module 162 and MAP module 163, the lane marking is expressed in god's view, which means that when a car including the system 10 is taken as an origin, the orient of the car is the y-coordinate while the perpendicular direction of the car is the x-coordinate. In an embodiment, the fitting module 12, based on the hit-map image 102, optimizes points in the lane template 180 to obtain a local optimal. The lane template 180 represents an image of a view, having been processed by the processing module 18, immediately previous to the current view. The lane template 180 thus includes features of a previous view, and may include additional features, if any, from the post-processing module 18. Moreover, the lane template 180 is used to enhance the fitting speed and precision of the fitting module 12, which in turn facilitates the precision of a next lane template. During a fitting process, the fitting module 12 may use, but are not limited to, the following priors or constraints of a road:
(1) lane markings on a highway are parallel to each other;
(2) the shape of curvatures of lanes on a highway is a circle;
(3) the curvature of lanes on a highway is smaller than approximately three hundred (300) meters;
(4) the lane spacing between neighboring lanes on a highway ranges between approximately three and four (3-4) meters, for example, approximately 3.75 meters; and
(5) the color at an edge of a lane marking is different from that at other portions of a highway absent from a lane marking.
These and other priors and constraints facilitate the optimization process in the fitting module 12. Moreover, providing a lane template associated with a previous view, as in the present embodiment of
The verification module 15 is configured to determine if a fitting result from the fitting module 12 is reasonable. The verification module 15 includes a filtering module 151 and a confidence module 152. The filtering module 151 is configured to remove incorrect or unreasonable fitted lines of lane markings based on the priors and constraints. The confidence module 152 is configured to determine a confidence level of each fitted lane markings. The confidence of a fitted lane marking facilitates a self-diagnosis in the processing module 18. Function or parameters employed in the confidence module 152 may be achieved through an off-line confidence training process 35 (
The post-processing module 18 is configured to output an image of the current view, and generate a lane template for a next view. The post-processing module 18 includes a parameterizing module 181, an extending module 182 and a motion module 183 for lane markings, all of which facilitate optimization of the lane detection algorithm. The parameterizing module 181 is configured to fit a fitted lane marking into, for example, an arc of a circle, resulting in a predicted image 188. Therefore, the lane detection algorithm includes a set or parameters to express a lane marking in an arc. In addition, the verification module 15 determines, based on the parameters for lane markings, whether a fitted lane marking from the fitting module 12 is reasonable. The predicted image 188 is sent to a control system (not shown) for an upper motion planning.
The extending module 182 is configured to, based on priors and constraints, extend a fitted lane marking. In an embodiment, extending a fitted lane marking includes increasing the number of fitted lane markings in a lane template 180. For example, for a lane template that contains two fitted lane markings for the current view, by adding another two fitted lane markings, the next lane template contains four fitted lane markings for the next view. With the additional information on fitted lane marking, effectively, the fitting speed and precision of the fitting module 12 can be enhanced. Alternatively, the extending module 182 is configured to, based on a high-definition (HD) map, extend a fitted lane marking. The processing module 18 sends a lane template 180 associated with the current view to the fitting module 12 for use in the lane detection of a next view.
The motion module 183 takes advantage of information 160 from the IMU module 161, GPS module 162 and MAP module 163, and generates a lane template 180 based on a processed result from at least one of the parameterizing module 181 and the extending module 182. In an embodiment, the IMU module 161, GPS module 162 and MAP module 163 are configured to provide information on lanes under detection. The motion module 183 is configured to express a lane marking result from at least one of the parameterizing module 181 and the extending module 182 in god's view or a bird-eye's view and, using the information 160 from the IMU module 161, GPS module 162 and MAP module 163, obtain a more precise lane marking, which then serves as a lane template 180 associated with a previous view.
In an embodiment, the GPS module 162 provides geo-location information on at least one of a lane width, the number of lanes and a lane curvature. In addition, the IMU module 161 provides information on a vehicle pose. The pose of a vehicle is essential information for lane detection, in particular in some embodiments the lane detection algorithm according to the present disclosure is built under god's view, which means that a precise vehicle pose and a view-transformation matrix are advantageous. Also, the IMU module 161 provides information of the speed of the vehicle. As a result, the vehicle can move in a detected lane map and a better lane template can be obtained for use in lane detection of a next view. The MAP module 163, which may use the simultaneous localization and mapping (SLAM), facilitates the autonomous car to create a map of its surroundings, and orient the autonomous car itself properly within this map in real time. Effectively, with the information 160 from the IMU module 161, GPS module 162 and MAP module 163, and the lane template 180 from the motion module 183, the running time is reduced and the detection result is improved in the system 10.
The lane detection system 10 makes it possible to utilize multiple sensors including IMU, GPS and MAP and take advantage of the information from these sensors. Some existing approaches, however, since no such algorithm for lane detection is built under god's view, may not achieve the desired effects of the present disclosure. Furthermore, in the system 10, a lot of priors coming from GPS, IMU and an HD map may be used. For example, with the real lane width at a present position available, a more precise lane template can be generated for the next view, which significantly accelerates optimization of the confidence module 152 and the lane detection algorithm. Other priors, such as the curvature of lanes and the number of lanes, also facilitate the optimization process. In some embodiment, the fitting module 12 may be configured to optimize, based on priors including the information from the GPS, the lane template associated with a previous view. Also, the filtering module 151 of the verification module 15 may be configured to rule out, based on priors including the information from the GPS, incorrect fitting lines of the fitted lane marking.
The data collection 21 is to collect data by means of sensors. The sensors may include, for example, a LiDAR, at least one camera, an IMU module, a GPS module and a MAP module. Prior to data collection, data alignment, which includes sensor calibration and time synchronization, is performed. A vehicle is equipped with multiple complementary sensors which require calibration in order to represent sensed information in a common coordinate system. The LiDAR sensor and the cameras are mounted on the roof of the vehicle. LiDAR sensors have become increasingly common in both industrial and robotic applications. LiDAR sensors are particularly desirable for their direct distance measurements and high accuracy. In an embodiment according to the present disclosure, the LIDAR sensor is equipped with many simultaneous rotating beams at varying angles, for example, a 64-beam rotating LiDAR. The multiple-beam LiDAR provides at least an order of magnitude more data than a single-beam LiDAR and enables new applications in mapping, object detection and recognition, scene understanding, and simultaneous localization and mapping (SLAM).
The inertial navigation module in an embodiment according to the present disclosure includes a global navigation satellite system (GNSS)-inertial measurement unit (IMU) module or an IMU-global positioning system (GPS) module. The GNSS satellite signals are used to correct or calibrate a solution from the IMU. The benefits of using GNSS with an IMU are that the IMU may be calibrated by the GNSS signals and that the IMU can provide position and angle updates at a quicker rate than GNSS. For high dynamic vehicles, IMU fills in the gaps between GNSS positions. Additionally, GNSS may lose its signal and the IMU can continue to compute the position and angle during the period of lost GNSS signal. The two systems are complementary and are often employed together. An integrated navigation system consisting of IMU and GPS is usually preferred due to the reduced dependency on GPS-only navigator in an area prone to poor signal reception or affected by multipath. The performance of the integrated system largely depends upon the quality of the IMU and the integration methodology. Considering the restricted use of high grade IMU and their associated price, low-cost IMUs are becoming the preferred choice for civilian navigation purposes. MEMS based inertial sensors have made possible the development of civilian land vehicle navigation as it offers small size and low-cost.
The data alignment among the sensors includes calibrating intrinsic parameters of the camera, and calibrating extrinsic parameters among the camera, the LiDAR and the inertial navigation module. In an embodiment, the intrinsic parameters of each beam are calibrated in advance using a supervised method. Also, LiDAR scans are collected in the form of sweep. A sweep is defined as a scan coverage of the LiDAR sensor rotating from 0 degree to 360 degrees. Moreover, motion distortion within the sweep is corrected assuming that the angular and linear velocity of the LiDAR motion is constant.
It is assumed that the environment is generally static and contains some 3D features, i.e., it is not just smooth ground. In order to achieve an accurate calibration, LiDAR measurements are recorded as the vehicle transitions through a series of known poses. Global pose information is irrelevant, as there is no existing map, so only local pose information is required. Local pose data may be acquired in any number of ways, e.g. from a wheel encoder and IMU, from an integrated GPS/IMU system, or from a GPS system with real-time corrections.
In addition to the calibration and transformation, time synchronization among the LiDAR sensor, cameras and inertial navigation module is achieved. Specifically, time synchronization between the LiDAR sensor and the inertial navigation module, between the inertial navigation module and the cameras, and between the LiDAR sensor and the cameras is achieved.
After data alignment, these sensors are used to collect data in an environment. In an embodiment, images of the environment are captured by the cameras in approximately 30 Hz. LiDAR scans are collected in the form of a sweep in approximately 20 Hz. Vehicle poses, including position and orientation, are collected in an “east north up” (ENU) coordinate by the inertial navigation module in approximately 50 Hz.
In the operation of annotation 22, data collected are labeled with lane markings by, for example, annual annotation. The labeled lane markings or labeled data 201, which indicate whether a lane marking exists, serve as a ground truth for input to the machine learning process 23 using, for example, a convolution neural network (CNN) for a deep module training and to a testing process 24 for a test. The labeled lane markings 201 are used to train a lane detection algorithm during the machine learning process 23, resulting in a set of parameters for use in the learning module 11 for generating hit-map images 102 described and illustrated with reference to
Referring to
Moreover, the confidence training module 35 is configured to determine a failure pattern associated with the fitted lane marking. Through an analysis of failure patterns, features of various failure events may be explored. The failure events may include incorrect or unreasonable fitted lane markings from the fitting module 12. A result of the analysis may thus be used to optimize the confidence module 152 and the lane detection algorithm. The result of the analysis may be indicated automatically or manually.
As a result, for on-line operation, if confidence of a fitted lane marking from the confidence module 152 falls within or beyond a predetermined threshold, the confidence module 152 outputs the fitted lane marking for the prediction of the line(s) or marking(s) of a lane. In contrast, if confidence of a fitted lane marking from the confidence module 152 falls behind the predetermined threshold, the fitted lane marking is rejected. For off-line training, confidence of a fitted lane marking from the confidence module 152 is compared against a ground truth. If the confidence does not match the ground truth, a failure event is recognized and then analyzed to determine a failure pattern so as to refine the confidence module 152.
Referring to
Next, in operation 323, the features are trained in the confidence training module 35 by using labeled data 201.
In operation 325, a failure pattern is determined based on the features and the labeled data 201.
Moreover, in operation 327, a set of parameters for describing confidence of a lane marking is generated. The set of parameters serve as an algorithm for confidence evaluation in the confidence module 152.
Furthermore, by providing additional information on labeled data 201 to the confidence training module 35, the confidence module 152 can be refined or optimized. Also, with the additional information on labeled data 201, the learning module 11 can be refined, and in turn the confidence module 152 can accordingly be refined or optimized through the training process. In addition, since the fitting module 12 can be refined due to the learning module 11 being refined, the confidence module 152 can accordingly be refined or optimized through the training process.
Referring to
Referring to
In operation 52, a lane template associated with a previous view is received. Also referring to
Next, in operation 53, also referring to
In operation 54, confidence of the fitted lane marking is determined, using parameters that express a lane marking in an arc. Also referring to
In operation 55, a predicted lane marking is generated by, for example, the parameterizing module 18 of
In operation 56, a lane template associated with the current view is generated by the motion module 183, using the parameters.
Subsequently, in operation 57, the lane template associated with the current view is fed to the fitting module 12 of
Referring to
Next, in operation 62, a ground truth is generated. Also referring to
In operation 63, a lane detection algorithm is trained in a machine learning process by using the ground truth.
In operation 64, a predicted lane marking generated according to the lane detection algorithm is compared against the ground truth. Then in operation 65, a comparison result determines whether a confidence, determined by a confidence module using parameters that express a lane marking in an arc, of the predicted lane is reasonable.
Subsequently in operation 66, the lane detection algorithm may be refined by, for example, adding additional information on labeled data. Alternatively, in operation 67, the confidence module may be refined by the additional information. In an embodiment, both the lane detection algorithm and the confidence module are refined or optimized.
Referring to
Accordingly, the processor 71 is configured to enable the computer server 72, e.g., Internet server, to perform specific operations disclosed herein. It is to be noted that the operations and techniques described herein may be implemented, at least in part, in hardware, software, firmware, or any combination thereof. For example, various aspects of the described embodiments, e.g., the processor 71, the computer server 72, or the like, may be implemented within one or more processing units, including one or more microprocessing units, digital signal processing units (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components.
The term “processing unit” or “processing circuitry” may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry. A control unit including hardware may also perform one or more of the techniques of the present disclosure.
In some embodiments in accordance with the present disclosure, the computer server 72 is configured to utilize the I/O port 75 communicate with external devices via a network 78, such as a wireless network. In certain embodiments, the I/O port 75 is a network interface component, such as an Ethernet card, an optical transceiver, a radio frequency transceiver, or any other type of device that can send and receive data from the Internet. Examples of network interfaces may include Bluetooth®, 3G and WiFi® radios in mobile computing devices as well as USB. Examples of wireless networks may include WiFi®, Bluetooth®, and 3G. In some embodiments, the internet server 72 is configured to utilize the I/O port 75 to wirelessly communicate with a client device 76, such as a mobile phone, a tablet PC, a portable laptop or any other computing device with internet connectivity. Accordingly, electrical signals are transmitted between the computer server 72 and the client device 76.
In some embodiments in accordance with the present disclosure, the computer server 72 is a virtual server capable of performing any function a regular server has. In certain embodiments, the computer server 72 is another client device of the system 70. In other words, there may not be a centralized host for the system 70, and the client devices 76 in the system are configured to communicate with each other directly. In certain embodiments, such client devices 76 communicate with each other on a peer-to-peer (P2P) basis.
The processor 71 is configured to execute program instructions that include a tool module configured to perform methods as described and illustrated with reference to
In another embodiment, in accordance with the method 50 described and illustrated with reference to
In yet another embodiment, in accordance with the method 60 described and illustrated with reference to
The network interface 73 is configured to access program instructions and data accessed by the program instructions stored remotely through a network (not shown).
The I/O device 75 includes an input device and an output device configured for enabling user interaction with the system 70. In some embodiments, the input device comprises, for example, a keyboard, a mouse, and other devices. Moreover, the output device comprises, for example, a display, a printer, and other devices.
The storage device 77 is configured for storing program instructions and data accessed by the program instructions. In some embodiments, the storage device 77 comprises, for example, a magnetic disk and an optical disk.
The memory 79 is configured to store program instructions to be executed by the processor 71 and data accessed by the program instructions. In some embodiments, the memory 79 comprises a random access memory (RAM) and/or some other volatile storage device and/or read only memory (ROM) and/or some other non-volatile storage device including other programmable read only memory (PROM), erasable programmable read only memory (EPROM), electronically erasable programmable read only memory (EEPROM), flash memory, a hard disk, a solid state drive (SSD), a compact disc ROM (CD-ROM), a floppy disk, a cassette, magnetic media, optical media, or other computer readable media. In certain embodiments, the memory 79 is incorporated into the processor 71.
Thus, specific embodiments and applications have been disclosed. It should be apparent, however, to those skilled in the art that many more modifications besides those already described are possible without departing from the disclosed concepts herein. The embodiment, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Insubstantial changes from the claimed subject matter as viewed by a person with ordinary skill in the art, now known or later devised, are expressly contemplated as being equivalent within the scope of the claims. Therefore, obvious substitutions now or later known to one with ordinary skill in the art are defined to be within the scope of the defined elements. The claims are thus to be understood to include what is specifically illustrated and described above, what is conceptually equivalent, what can be obviously substituted and also what essentially incorporates the essential idea of the embodiment.
Number | Name | Date | Kind |
---|---|---|---|
6084870 | Wooten et al. | Jul 2000 | A |
6263088 | Crabtree et al. | Jul 2001 | B1 |
6594821 | Banning et al. | Jul 2003 | B1 |
6777904 | Degner et al. | Aug 2004 | B1 |
6975923 | Spriggs | Dec 2005 | B2 |
7103460 | Breed | Sep 2006 | B1 |
7689559 | Canright et al. | Mar 2010 | B2 |
7742841 | Sakai et al. | Jun 2010 | B2 |
7783403 | Breed | Aug 2010 | B2 |
7844595 | Canright et al. | Nov 2010 | B2 |
8041111 | Wilensky | Oct 2011 | B1 |
8064643 | Stein et al. | Nov 2011 | B2 |
8082101 | Stein et al. | Dec 2011 | B2 |
8164628 | Stein et al. | Apr 2012 | B2 |
8175376 | Marchesotti et al. | May 2012 | B2 |
8271871 | Marchesotti | Sep 2012 | B2 |
8346480 | Trepagnier et al. | Jan 2013 | B2 |
8378851 | Stein et al. | Feb 2013 | B2 |
8392117 | Dolgov et al. | Mar 2013 | B2 |
8401292 | Park et al. | Mar 2013 | B2 |
8412449 | Trepagnier et al. | Apr 2013 | B2 |
8478072 | Aisaka et al. | Jul 2013 | B2 |
8553088 | Stein et al. | Oct 2013 | B2 |
8706394 | Trepagnier et al. | Apr 2014 | B2 |
8718861 | Montemerlo et al. | May 2014 | B1 |
8788134 | Litkouhi et al. | Jul 2014 | B1 |
8908041 | Stein et al. | Dec 2014 | B2 |
8917169 | Schofield et al. | Dec 2014 | B2 |
8963913 | Baek | Feb 2015 | B2 |
8965621 | Urmson et al. | Feb 2015 | B1 |
8981966 | Stein et al. | Mar 2015 | B2 |
8983708 | Choe et al. | Mar 2015 | B2 |
8993951 | Schofield et al. | Mar 2015 | B2 |
9002632 | Emigh | Apr 2015 | B1 |
9008369 | Schofield et al. | Apr 2015 | B2 |
9025880 | Perazzi et al. | May 2015 | B2 |
9042648 | Wang et al. | May 2015 | B2 |
9081385 | Ferguson et al. | Jul 2015 | B1 |
9088744 | Grauer et al. | Jul 2015 | B2 |
9111444 | Kaganovich | Aug 2015 | B2 |
9117133 | Barnes et al. | Aug 2015 | B2 |
9118816 | Stein et al. | Aug 2015 | B2 |
9120485 | Dolgov | Sep 2015 | B1 |
9122954 | Srebnik et al. | Sep 2015 | B2 |
9134402 | Sebastian et al. | Sep 2015 | B2 |
9145116 | Clarke et al. | Sep 2015 | B2 |
9147255 | Zhang et al. | Sep 2015 | B1 |
9156473 | Clarke et al. | Oct 2015 | B2 |
9176006 | Stein | Nov 2015 | B2 |
9179072 | Stein et al. | Nov 2015 | B2 |
9183447 | Gdalyahu et al. | Nov 2015 | B1 |
9185360 | Stein et al. | Nov 2015 | B2 |
9191634 | Schofield et al. | Nov 2015 | B2 |
9214084 | Grauer et al. | Dec 2015 | B2 |
9219873 | Grauer et al. | Dec 2015 | B2 |
9233659 | Rosenbaum et al. | Jan 2016 | B2 |
9233688 | Clarke et al. | Jan 2016 | B2 |
9248832 | Huberman | Feb 2016 | B2 |
9248835 | Tanzmeister | Feb 2016 | B2 |
9251708 | Rosenbaum et al. | Feb 2016 | B2 |
9277132 | Berberian | Mar 2016 | B2 |
9280711 | Stein | Mar 2016 | B2 |
9282144 | Tebay et al. | Mar 2016 | B2 |
9286522 | Stein et al. | Mar 2016 | B2 |
9297641 | Stein | Mar 2016 | B2 |
9299004 | Lin et al. | Mar 2016 | B2 |
9315192 | Zhu et al. | Apr 2016 | B1 |
9317033 | Ibanez-Guzman et al. | Apr 2016 | B2 |
9317776 | Honda et al. | Apr 2016 | B1 |
9330334 | Lin et al. | May 2016 | B2 |
9342074 | Dolgov et al. | May 2016 | B2 |
9347779 | Lynch | May 2016 | B1 |
9355635 | Gao et al. | May 2016 | B2 |
9365214 | Ben Shalom et al. | Jun 2016 | B2 |
9399397 | Mizutani et al. | Jul 2016 | B2 |
9418549 | Kang et al. | Aug 2016 | B2 |
9428192 | Schofield et al. | Aug 2016 | B2 |
9436880 | Bos et al. | Sep 2016 | B2 |
9438878 | Niebla et al. | Sep 2016 | B2 |
9443163 | Springer | Sep 2016 | B2 |
9446765 | Ben Shalom et al. | Sep 2016 | B2 |
9459515 | Stein | Oct 2016 | B2 |
9466006 | Duan | Oct 2016 | B2 |
9476970 | Fairfield et al. | Oct 2016 | B1 |
9483839 | Kwon et al. | Nov 2016 | B1 |
9490064 | Hirosawa et al. | Nov 2016 | B2 |
9494935 | Okumura et al. | Nov 2016 | B2 |
9507346 | Levinson et al. | Nov 2016 | B1 |
9513634 | Pack et al. | Dec 2016 | B2 |
9531966 | Stein et al. | Dec 2016 | B2 |
9535423 | Debreczeni | Jan 2017 | B1 |
9538113 | Grauer et al. | Jan 2017 | B2 |
9547985 | Tuukkanen | Jan 2017 | B2 |
9549158 | Grauer et al. | Jan 2017 | B2 |
9555803 | Pawlicki et al. | Jan 2017 | B2 |
9568915 | Berntorp et al. | Feb 2017 | B1 |
9587952 | Slusar | Mar 2017 | B1 |
9599712 | Van Der Tempel et al. | Mar 2017 | B2 |
9600889 | Boisson et al. | Mar 2017 | B2 |
9602807 | Crane et al. | Mar 2017 | B2 |
9612123 | Levinson et al. | Apr 2017 | B1 |
9620010 | Grauer et al. | Apr 2017 | B2 |
9625569 | Lange | Apr 2017 | B2 |
9628565 | Stenneth et al. | Apr 2017 | B2 |
9649999 | Amireddy et al. | May 2017 | B1 |
9652860 | Maali et al. | May 2017 | B1 |
9669827 | Ferguson et al. | Jun 2017 | B1 |
9672446 | Vallespi-Gonzalez | Jun 2017 | B1 |
9690290 | Prokhorov | Jun 2017 | B2 |
9701023 | Zhang et al. | Jul 2017 | B2 |
9712754 | Grauer et al. | Jul 2017 | B2 |
9720418 | Stenneth | Aug 2017 | B2 |
9723097 | Harris et al. | Aug 2017 | B2 |
9723099 | Chen et al. | Aug 2017 | B2 |
9723233 | Grauer et al. | Aug 2017 | B2 |
9726754 | Massanell et al. | Aug 2017 | B2 |
9729860 | Cohen et al. | Aug 2017 | B2 |
9738280 | Rayes | Aug 2017 | B2 |
9739609 | Lewis | Aug 2017 | B1 |
9746550 | Nath et al. | Aug 2017 | B2 |
9753128 | Schweizer et al. | Sep 2017 | B2 |
9753141 | Grauer et al. | Sep 2017 | B2 |
9754490 | Kentley et al. | Sep 2017 | B2 |
9760837 | Nowozin et al. | Sep 2017 | B1 |
9766625 | Boroditsky et al. | Sep 2017 | B2 |
9769456 | You et al. | Sep 2017 | B2 |
9773155 | Shotton et al. | Sep 2017 | B2 |
9779276 | Todeschini et al. | Oct 2017 | B2 |
9785149 | Wang et al. | Oct 2017 | B2 |
9805294 | Liu et al. | Oct 2017 | B2 |
9810785 | Grauer et al. | Nov 2017 | B2 |
9823339 | Cohen | Nov 2017 | B2 |
9953236 | Huang et al. | Apr 2018 | B1 |
10147193 | Huang et al. | Dec 2018 | B2 |
10223806 | Luo et al. | Mar 2019 | B1 |
10223807 | Luo et al. | Mar 2019 | B1 |
10410055 | Wang et al. | Sep 2019 | B2 |
20030114980 | Klausner et al. | Jun 2003 | A1 |
20030174773 | Comaniciu et al. | Sep 2003 | A1 |
20040264763 | Mas et al. | Dec 2004 | A1 |
20070183661 | El-Maleh et al. | Aug 2007 | A1 |
20070183662 | Wang et al. | Aug 2007 | A1 |
20070230792 | Shashua et al. | Oct 2007 | A1 |
20070286526 | Abousleman et al. | Dec 2007 | A1 |
20080249667 | Horvitz et al. | Oct 2008 | A1 |
20090040054 | Wang et al. | Feb 2009 | A1 |
20090087029 | Coleman et al. | Apr 2009 | A1 |
20100049397 | Liu et al. | Feb 2010 | A1 |
20100111417 | Ward et al. | May 2010 | A1 |
20100226564 | Marchesotti et al. | Sep 2010 | A1 |
20100281361 | Marchesotti | Nov 2010 | A1 |
20110142283 | Huang et al. | Jun 2011 | A1 |
20110206282 | Aisaka et al. | Aug 2011 | A1 |
20110247031 | Jacoby | Oct 2011 | A1 |
20120041636 | Johnson et al. | Feb 2012 | A1 |
20120105639 | Stein et al. | May 2012 | A1 |
20120140076 | Rosenbaum et al. | Jun 2012 | A1 |
20120274629 | Baek | Nov 2012 | A1 |
20120314070 | Zhang et al. | Dec 2012 | A1 |
20130051613 | Bobbitt et al. | Feb 2013 | A1 |
20130083959 | Owechko et al. | Apr 2013 | A1 |
20130182134 | Grundmann et al. | Jul 2013 | A1 |
20130204465 | Phillips et al. | Aug 2013 | A1 |
20130266187 | Bulan et al. | Oct 2013 | A1 |
20130329052 | Chew | Dec 2013 | A1 |
20140072170 | Zhang et al. | Mar 2014 | A1 |
20140104051 | Breed | Apr 2014 | A1 |
20140142799 | Ferguson et al. | May 2014 | A1 |
20140143839 | Ricci | May 2014 | A1 |
20140145516 | Hirosawa et al. | May 2014 | A1 |
20140198184 | Stein et al. | Jul 2014 | A1 |
20140321704 | Partis | Oct 2014 | A1 |
20140334668 | Saund | Nov 2014 | A1 |
20150062304 | Stein et al. | Mar 2015 | A1 |
20150269438 | Samarasekera et al. | Sep 2015 | A1 |
20150310370 | Burry et al. | Oct 2015 | A1 |
20150353082 | Lee et al. | Dec 2015 | A1 |
20160008988 | Kennedy et al. | Jan 2016 | A1 |
20160026787 | Nairn et al. | Jan 2016 | A1 |
20160037064 | Stein et al. | Feb 2016 | A1 |
20160094774 | Li et al. | Mar 2016 | A1 |
20160118080 | Chen | Apr 2016 | A1 |
20160129907 | Kim et al. | May 2016 | A1 |
20160165157 | Stein et al. | Jun 2016 | A1 |
20160210528 | Duan | Jul 2016 | A1 |
20160275766 | Venetianer et al. | Sep 2016 | A1 |
20160321381 | English et al. | Nov 2016 | A1 |
20160334230 | Ross et al. | Nov 2016 | A1 |
20160342837 | Hong et al. | Nov 2016 | A1 |
20160347322 | Clarke et al. | Dec 2016 | A1 |
20160375907 | Erban | Dec 2016 | A1 |
20170053169 | Cuban et al. | Feb 2017 | A1 |
20170061632 | Lindner et al. | Mar 2017 | A1 |
20170124476 | Levinson et al. | May 2017 | A1 |
20170134631 | Zhao et al. | May 2017 | A1 |
20170177951 | Yang et al. | Jun 2017 | A1 |
20170301104 | Qian et al. | Oct 2017 | A1 |
20170305423 | Green | Oct 2017 | A1 |
20170318407 | Meister et al. | Nov 2017 | A1 |
20180151063 | Pun et al. | May 2018 | A1 |
20180158197 | Dasgupta et al. | Jun 2018 | A1 |
20180260956 | Huang et al. | Sep 2018 | A1 |
20180283892 | Behrendt | Oct 2018 | A1 |
20180373980 | Huval | Dec 2018 | A1 |
20190025853 | Julian | Jan 2019 | A1 |
20190065863 | Luo et al. | Feb 2019 | A1 |
20190066329 | Luo et al. | Feb 2019 | A1 |
20190066330 | Luo et al. | Feb 2019 | A1 |
20190108384 | Wang et al. | Apr 2019 | A1 |
20190132391 | Thomas et al. | May 2019 | A1 |
20190132392 | Liu et al. | May 2019 | A1 |
20190210564 | Han et al. | Jul 2019 | A1 |
20190210613 | Sun et al. | Jul 2019 | A1 |
20190236950 | Li et al. | Aug 2019 | A1 |
20190266420 | Ge et al. | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
106340197 | Jan 2017 | CN |
106781591 | May 2017 | CN |
108010360 | May 2018 | CN |
890470 | Jan 1999 | EP |
1754179 | Feb 2007 | EP |
2448251 | May 2012 | EP |
2463843 | Jun 2012 | EP |
2761249 | Aug 2014 | EP |
2946336 | Nov 2015 | EP |
2993654 | Mar 2016 | EP |
3081419 | Oct 2016 | EP |
100802511 | Feb 2008 | KR |
1991009375 | Jun 1991 | WO |
2005098739 | Oct 2005 | WO |
2005098751 | Oct 2005 | WO |
2005098782 | Oct 2005 | WO |
2010109419 | Sep 2010 | WO |
2013045612 | Apr 2013 | WO |
2014111814 | Jul 2014 | WO |
2014166245 | Oct 2014 | WO |
2014201324 | Dec 2014 | WO |
2015083009 | Jun 2015 | WO |
2015103159 | Jul 2015 | WO |
2015125022 | Aug 2015 | WO |
2015186002 | Dec 2015 | WO |
2016090282 | Jun 2016 | WO |
2016135736 | Sep 2016 | WO |
2017013875 | Jan 2017 | WO |
2017079349 | May 2017 | WO |
2017079460 | May 2017 | WO |
2019040800 | Feb 2019 | WO |
2019084491 | May 2019 | WO |
2019084494 | May 2019 | WO |
2019140277 | Jul 2019 | WO |
2019168986 | Sep 2019 | WO |
Entry |
---|
Aharon Bar Hillel et al., Recent Progress in Road and Lane Detection—A survey. |
C. Yang, Z. Li, R. Cui and B. Xu, “Neural Network-Based Motion Control of an Underactuated Wheeled Inverted Pendulum Model,” in IEEE Transactions on Neural Networks and Learning Systems, vol. 25, No. 11, pp. 2004-2016, Nov. 2014. |
Stephan R. Richter, Vibhav Vineet, Stefan Roth, Vladlen Koltun, “Playing for Data: Ground Truth from Computer Games”, Intel Labs, European Conference on Computer Vision (ECCV), Amsterdam, the Netherlands, 2016. |
Thanos Athanasiadis, Phivos Mylonas, Yannis Avrithis, and Stefanos Kollias, “Semantic Image Segmentation and Object Labeling”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, No. 3, Mar. 2007. |
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele, “The Cityscapes Dataset for Semantic Urban Scene Understanding”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Nevada, 2016. |
Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee, “DESPOT: Online POMDP Planning with Regularization”, Department of Computer Science, National University of Singapore, date unknown. |
Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello. Enet: A deep neural network architecture for real-time semantic segmentation. CoRR, abs/1606.02147, 2016. |
Szeliski, Richard, “Computer Vision: Algorithms and Applications” http://szeliski.org/Book/, 2010. |
Kyoungho Ahn, Hesham Rakha, “The Effects of Route Choice Decisions on Vehicle Energy Consumption and Emissions”, Virginia Tech Transportation Institute, date unknown. |
Office Action Mailed in Chinese Application No. 201810025516.X, dated Sep. 3, 2019. |
Luo, Yi et al. U.S. Appl. No. 15/684,389 Notice of Allowance dated Oct. 9, 2019. |
Carle, Patrick J.F., “Global Rover Localization by Matching Lidar and Orbital 3D Maps.”, IEEE, Anchorage Convention Distraction, pp. 1-6, May 3-8, 2010. (Anchorage Alaska, US), May 3-8, 2019. |
Caselitz, T. et al., “Monocular camera localization in 3D LiDAR maps,” European Conference on Computer Vision (2014) Computer Vision—ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol. 8690. Springer, Cham. |
Mur-Artal, R. et al., “ORB-SLAM: A Versatile and Accurate Monocular SLAM System,” IEEE Transaction on Robotics, Oct. 2015, pp. 1147-1163, vol. 31, No. 5, Spain. |
Sattler, T. et al., “Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization?” CVPR, IEEE, 2017, pp. 1-10. |
Engel J., et al., LSD-SLAM: Large-Scale Direct Monocular SLAM. In: Fleet D., Pajdla T., Schiele B., Tuytelaars T. (eds) Computer Vision—ECCV 2014. ECCV 2014. Lecture Notes in Computer Science, vol. 8690. Springer, Cham. |
Levinson, Jesse et al., Experimental Robotics, Unsupervised Calibration for Multi-Beam Lasers, pp. 179-194, 12th Ed., Oussama Khatib, Vijay Kumar, Gaurav Sukhatme (Eds.) Springer-Verlag Berlin Heidelberg 2014. |
International Application No. PCT/US2019/013322, International Search Report and Written Opinion dated Apr. 2, 2019. |
International Application No. PCT/US19/12934, International Search Report and Written Opinion dated Apr. 29, 2019. |
International Application No. PCT/US18/53795, International Search Report and Written Opinion Dec. 31, 2018. |
International Application No. PCT/US18/57484, International Search Report and Written Opinion dated Jan. 7, 2019. |
International Application No. PCT/US2018/057851, International Search Report and Written Opinion dated Feb. 1, 2019. |
International Application No. PCT/US2019/019839, International Search Reort and Written Opinion dated May 23, 2019. |
International Application No. PCT/US19/25995, International Search Report and Written Opinion dated Jul. 9, 2019. |
Geiger, Andreas et al., “Automatic Camera and Range Sensor Calibration using a single Shot”, Robotics and Automation (ICRA), pp. 1-8, 2012 IEEE International Conference. |
Zhang, Z. et al. A Flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence ( vol. 22 , Issue: 11 , Nov. 2000). |
International Application No. PCT/US2018/047830, International Search Report and Written Opinion dated Apr. 27, 2017. |
Bar-Hillel, Aharon et al. “Recent progress in road and lane detection: a survey.” Machine Vision and Applications 25(2011): 727-745. |
Schindler, Andreas et al. “Generation of high precision digital maps using circular arc splines,” 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, 2012, pp. 246-251. doi: 10.1109/IVS.2012.6232124. |
International Application No. PCT/US2018/047608, International Search Report and Written Opinion dated Dec. 28, 2018. |
Hou, Xiaodi and Zhang, Liqing, “Saliency Detection: A Spectral Residual Approach”, Computer Vision and Pattern Recognition, CVPR'07—IEEE Conference, pp. 1-8, 2007. |
Hou, Xiaodi and Harel, Jonathan and Koch, Christof, “Image Signature: Highlighting Sparse Salient Regions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, No. 1, pp. 194-201, 2012. |
Hou, Xiaodi and Zhang, Liqing, “Dynamic Visual Attention: Searching for Coding Length Increments”, Advances in Veural Information Processing Systems, vol. 21, pp. 681-688, 2008. |
Li, Yin and Hou, Xiaodi and Koch, Christof and Rehg, James M. and Yuille, Alan L., “The Secrets of Salient Object Segmentation”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 280-287, 2014. |
Zhou, Bolei and Hou, Xiaodi and Zhang, Liqing, “A Phase Discrepancy Analysis of Object Motion”, Asian Conference on Computer Vision, pp. 225-238, Springer Berlin Heidelberg, 2010. |
Hou, Xiaodi and Yuille, Alan and Koch, Christof, “Boundary Detection Benchmarking: Beyond F-Measures”, Computer Vision and Pattern Recognition, CVPR'13, vol. 2013, pp. 1-8, IEEE, 2013. |
Hou, Xiaodi and Zhang, Liqing, “Color Conceptualization”, Proceedings of the 15th ACM International Conference on Multimedia, pp. 265-268, ACM, 2007. |
Hou, Xiaodi and Zhang, Liqing, “Thumbnail Generation Based on Global Saliency”, Advances in Cognitive Neurodynamics, ICCN 2007, pp. 999-1003, Springer Netherlands, 2008. |
Hou, Xiaodi and Yuille, Alan and Koch, Christof, “A Meta-Theory of Boundary Detection Benchmarks”, arXiv preprint arXiv:1302.5985, 2013. |
Li, Yanghao and Wang, Naiyan and Shi, Jianping and Liu, Jiaying and Hou, Xiaodi, “Revisiting Batch Normalization for Practical Domain Adaptation”, arXiv preprint arXiv:1603.04779, 2016. |
Li, Yanghao and Wang, Naiyan and Liu, Jiaying and Hou, Xiaodi, “Demystifying Neural Style Transfer”, arXiv preprint arXiv:1701.01036, 2017. |
Hou, Xiaodi and Zhang, Liqing, “A Time-Dependent Model of Information Capacity of Visual Attention”, International—Conference on Neural Information Processing, pp. 127-136, Springer Berlin Heidelberg, 2006. |
Wang, Panqu and Chen, Pengfei and Yuan, Ye and Liu, Ding and Huang, Zehua and Hou, Xiaodi and Cottrell, Garrison, “Understanding Convolution for Semantic Segmentation”, arXiv preprint arXiv:1702.08502, 2017. |
Li, Yanghao and Wang, Naiyan and Liu, Jiaying and Hou, Xiaodi, “Factorized Bilinear Models for Image Recognition”, arXiv preprint arXiv:1611.05709, 2016. |
Hou, Xiaodi, “Computational Modeling and Psychophysics in Low and Mid-Level Vision”, California Institute of Technology, 2014. |
Spinello, Luciano, Triebel, Rudolph, Siegwart, Roland, “Multiclass Multimodal Detection and Tracking in Urban Environments”, Sage Journals, vol. 29 Issue 12, pp. 1498-1515 Article first published online: Oct. 7, 2010; Issue published: Oct. 1, 2010. |
Matthew Barth, Carrie Malcolm, Theodore Younglove, and Nicole Hill, “Recent Validation Efforts for a Comprehensive Modal Emissions Model”, Transportation Research Record 1750, Paper No. 01-0326, College of Engineering, Center or Environmental Research and Technology, University of California, Riverside, CA 92521, date unknown. |
Kyoungho Ahn, Hesham Rakha, “The Effects of Route Choice Decisions on Vehicle Energy Consumption and Emissions”, Virginia Tech Transportation Institute, Blacksburg, VA 24061, date unknown. |
Ramos, Sebastian, Gehrig, Stefan, Pinggera, Peter, Franke, Uwe, Rother, Carsten, “Detecting Unexpected Obstacles for Self-Driving Cars: Fusing Deep Learning and Geometric Modeling”, arXiv:1612.06573v1 [cs.CV] Dec. 20, 2016. |
Schroff, Florian, Dmitry Kalenichenko, James Philbin, (Google), “FaceNet: A Unified Embedding for Face Recognition and Clustering”, CVPR 2015. |
Dai, Jifeng, Kaiming He, Jian Sun, (Microsoft Research), “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, CVPR 2016. |
Huval, Brody, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayampallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue, Fernando Mujica, Adam Coates, Andrew Y. Ng, “An Empirical Evaluation of Deep Learning on Highway Driving”, arXiv:1504.01716v3 [cs.RO] Apr. 17, 2015. |
Tian Li, “Proposal Free Instance Segmentation Based on Instance-aware Metric”, Department of Computer Science, Cranberry-Lemon University, Pittsburgh, PA., date unknown. |
Mohammad Norouzi, David J. Fleet, Ruslan Salakhutdinov, “Hamming Distance Metric Learning”, Departments of Computer Science and Statistics, University of Toronto, date unknown. |
Jain, Suyong Dutt, Grauman, Kristen, “Active Image Segmentation Propagation”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, Jun. 2016. |
MacAodha, Oisin, Campbell, Neill D.F., Kautz, Jan, Brostow, Gabriel J., “Hierarchical Subquery Evaluation for Active Learning on a Graph”, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014. |
Kendall, Alex, Gal, Yarin, “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision”, arXiv:1703.04977v1 [cs.CV] Mar. 15, 2017. |
Wei, Junqing, John M. Dolan, Bakhtiar Litkhouhi, “A Prediction- and Cost Function-Based Algorithm for Robust Autonomous Freeway Driving”, 2010 IEEE Intelligent Vehicles Symposium, University of California, San Diego, CA, USA, Jun. 21-24, 2010. |
Peter Welinder, Steve Branson, Serge Belongie, Pietro Perona, “The Multidimensional Wisdom of Crowds”; http://www.vision.caltech.edu/visipedia/papers/WelinderEtaINIPS10.pdf, 2010. |
Kai Yu, Yang Zhou, Da Li, Zhang Zhang, Kaiqi Huang, “Large-scale Distributed Video Parsing and Evaluation Platform”, Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, China, arXiv:1611.09580v1 [cs.CV] Nov. 29, 2016. |
P. Guarneri, G. Rocca and M. Gobbi, “A Neural-Network-Based Model for the Dynamic Simulation of the Tire/Suspension System While Traversing Road Irregularities,” in IEEE Transactions on Neural Networks, vol. 19, No. 9, pp. 1549-1563, Sep. 2008. |
Number | Date | Country | |
---|---|---|---|
20190063945 A1 | Feb 2019 | US |