This application claims priority to and the benefit of the following application GB 0522899.4 filed Nov. 10, 2005.
The use of plastic or glass tubing as a connecting device for fluids is well known and is used extensively in a wide range of applications such as in the food/beverage and medical fields. The tubing provides a contained method by which fluids are transferred from one point to another; the transfer may be gravity fed or pumped.
In some applications there may be many tubes in close proximity which are indistinguishable from each other as they have similar or identical form. This leads to ambiguity regarding which is the correct tube to use and the likelihood that incorrect connections will be made.
An example of this situation is in hospital operating theatres where tubes (“line sets”) are used to connect fluids in i/v bags to delivery units; the fluid transfer may be pumped or gravity fed. Typically there are a number of line sets used, may be 10 or more, and within the confined and crowded environment of the operating theatre it is a simple error to make an incorrect connection. This can lead to disastrous consequences including the death of a patient. One prior art solution to prevent such potential errors is to use a range of different connector pairs arranged so each connector will only mate with its pair, and with no other connector. Another solution is to use “smart” links for example using electrical wires or optical fibres embedded within the tube walls. Both these solutions require the use of non-standard and expensive parts to replace an item that is used once and then disposed of. What is required is a simple means by which connections can be verified using current line sets.
The primary objective of this invention is to provide a cost-effective and simple methodology to ensure that the correct fluid source is used, either via a gravity fed system or via a pumped arrangement. The invention is based on using pulses of either ultrasound, light or pressure being transmitted along the tube from one end to the other. The pressure pulse can be in the form of a burst of sound or a single impulse. A transmitter provides the source of ultrasound, light or pressure and the receiver detects the ultrasound, light or pressure as appropriate. The transmitter and receiver are clamped around the tube in order to couple the energy into it. The transmitter can be free standing or can be coupled into a pump; the receiver can also be free standing or can be integrated with a pump. In an alternative arrangement a machine readable tag is attached onto the bag to identify the bag contents and can be checked with a reader that communicates with the pump. This reader also houses the transmitter for the continuity check. The pump can then control the operation of the transmitter and the receiver.
Accordingly it is an object of this invention to provide a simple and cost effective method by which the two ends of a tube can identified, therefore ensuring that the correct connection is made and minimising the chances of error. It is another object of this invention to provide a device which can be integrated within the pump controlling fluid delivery, thereby ensuring that the correct fluid is connected to the pump.
It is a further object to provide a means by which the identity of the i/v bag is automatically sent to the pump.
The invention is hereinafter more particularly described by reference to the accompanying drawings, in which:—
As shown in
In the most basic embodiment the transmitter is operated manually with a switch 4 mounted on the transmitter. An indicator 5 on the receiver will only activate if it receives the pulse from the transmitter on the same tube. The indicator may be a light emitting diode or a beeper. The transmitter and receiver can be hinged cylinders that clamp around the tube, and can be removed and re-positioned without removing the tube.
The transmitter may consist of either a pulsed light source or a pulsed pressure or ultrasound source. In its embodiment as a light source a near monochromatic source, such as a semiconductor laser, would be used. The operating wavelength of the light source would be in the near UV, visible and near IR regions of the electromagnetic spectrum. The receiver would use a spiked optical filter with maximum transmission at the transmitter's operating wavelength to reduce the effects of external light sources. The receiver would comprise a solid state light detector (e.g. silicon photo-diode) or similar.
If pressure is used then the transmitter may produce a pressure pulse. Alternatively a pulsed sound source operating at frequencies between 5 Hz and 5,000 Hz may be used. The receiver comprises a suitable microphone, amplifier and control electronics that is in the synchronised detection mode to reduce the potential interference effects of external acoustic noise sources.
In the embodiment using ultrasound, a piezo-electric transducer is used to generate/receive ultrasound, and this is mounted on a clamp-on device to couple ultrasound into the tube. The same device can be used to transmit and receive ultrasound. The tube then acts as an ultrasound waveguide to couple the ultrasound pulse from one end to the other.
The transmitter signal produced may be in the form of a modulated code that can be detected and decoded by the receiver. The code may be pulse, amplitude or frequency modulated using well-known signal processing techniques. The receiver is arranged to only be sensitive to the transmitted code. This arrangement will thus reduce the likelihood of false indication due to noise or interference, or due to cross-talk from a nearby transmitter that is connected to a different tube.
Number | Date | Country | Kind |
---|---|---|---|
0522899.4 | Nov 2005 | GB | national |