This application relates to verification of signal processing software, and in particular to using graphical Intelligent Points to produce verification timelines.
Several categories of software require very careful verification. In some cases the verification is mandated by government agencies, with strict requirements and procedures. This is typical, but not limited, to aircraft flight code and critical medical equipment code. For instance, the Federal Aviation Administration requires that software used in aeronautical applications be tested according with DO 178B standards.
Software that is critical to flight operations (Class A) is tested with extreme care. Usually this software belongs to a special category of coding, which can be generally described as signal processing. In other words, the software receives input signals from a variety of real-world sources, such as a pilot adjusting a control yoke, rudder pedals, and/or throttle controls, altimeter, attitude indicator, airspeed indicator, magnetic compass, or other flight instrumentation, analog to digital converters (A/D), etc., and continuously processes such signals at a steady rate, fixed frames or whenever necessary. The software produces output signals in the form of commands or warnings, via Digital to Analog converters (D/A).
The user, by himself or herself or possibly jointly with the manufacturer of the is actual hardware, often referred to as a Black Box, that runs the software prepares a set of clearly defined and understandable specifications and requirements, which define the processes inside the Black Box. In the verification process, a set of test cases and test procedures are independently prepared in order to verify that the Black Box performs properly. That is, the Black Box does everything it is required to do, and only what it is required to do.
In the past, a typical approach to verification has been to list the requirements to an “atomic” level, the smallest possible testable unit, such as an AND or OR logic gate, write test cases that apply combinations of Boolean values to the input of the element under test, and state what results should be expected. Such test cases are translated into test procedures. The test procedures are then run to collect actual results, and compare the actual results with the expected results. A common methodology for such procedures is to force values into the code, referred to as stabbing, and extract output values from some intermediate place in the code process.
Regardless of the methodology or completeness of testing, the method discussed above only proves that the Black Box has the correct collection of elements, not that the elements are correctly connected. In other words, the verification process discussed above does not prove that the Black Box works properly end-to-end. It, therefore, does not prove that the Black Box, as a whole, will behave as intended.
Another shortcoming of this verification testing approach occurs everywhere that timing is involved, such as the verification that a timer expires as required. A simple verification at the desired expiration time does not preclude the Black Box from generating unexpected values at any or all of the intermediate, unverified times. Other issues of partial verification occur in the verification process of certain components or groups of components. These partial verification problems, which can be potentially very dangerous, can include: overlapping of data structures stored in memory but cannot be accessed; or “memory leaks”; incorrect connections between components, known as “stitching”; incorrect order of execution, such as loop-backs. None of these types of faults, and potentially others, would be detected.
Currently, verification has started to move from test cases that test component-by-component, or function-by-function to Black Box level verification. This level includes verification by test procedures that enter “real world” inputs into the Black Box which then generates real world outputs. The inputs are generated for each “run” of the program, or for each “frame”, to exactly mimicking the real application. In other words, the inputs are presented to the Black Box during the verification process exactly as they are presented in reality. Expected outputs are then produced for each run or frame, which are then compared to the collected actual outputs. This “continuous” method of verification is far superior to any other method, provided that the test procedures are able to exercise and verify each component and requirement of the Black Box.
However, the generation of such test procedures at the Black Box level is difficult for several reasons. Mainly, the variables used for inputs to a component, or block, may not be the same as the Black Box level real world inputs, and the outputs from the component, or block, may not be real world outputs from the Black Box. Therefore, the inputs to the element under test must be “demoted” to real world inputs, and the outputs from the element under test must be “promoted” to real world outputs. In other words, the verification process requires the test engineer to generate one test procedure for each targeted component, diagram, or block of components. The test procedure must be of a duration that addresses all timing issues, achieves the desired inputs using a combination of real world input values, and also generates real world outputs that are representative, in a detectable, unique way, of the targeted component outputs. The test procedure is complete when all the aspects of the targeted component are tested under the specified guidelines, such as modified condition/decision coverage, exhaustive, etc.
In the above environment, one way to generate independent expected outputs is to provide and run an alternative code in the Black Box. This is often referred as a “model,” but it could be just an alternative instantiation of the code, such as code independently produced by another team. Of course, it is desirable that the expected results are produced using a different compiler, a different hardware platform, and a different operating system than the Black Box.
Usually, one of the first problems encountered is reconcile differences between the expected results and the actual results. In a complex system, with thousand of components, this is a difficult task. A currently available method of performing reconciliation use the debugging features of two compilers in an integrated design environment (IDE), for example, compiling the model code side-by-side with the Black Box code. This method allows only “forward” debugging, meaning that both compilers must be stopped at the same point in the respective codes so that the user can look at values held by variables and data structures. The user then move to the next break point and again looks at values held by variables and data structures, and so on. The reconciliation process is difficult and may take very long time. Reconciliation is particularly long and difficult if the model is written using visual techniques, such as Simulink®, and/or if the input data to the Black Box cannot be provided faster than real time—it is normally provided much slower than real time. (Simulink® is a registered trademark of MathWorks, Inc., of 3 Apple Hill Drive, Natick, Mass. 01760.) The user may wait 10 minutes between break points, the point at which he may be able to investigate mismatching values, just to learn that the process must be started anew.
In a preferred example embodiment, signal timelines (vectors) for verification of signal processing software and/or model code are condensed to provide a small amount of information that is easy to understand and manage. The information is stored as “Intelligent Points,” and contain attributes that describe how to generate appropriate signals. The condensed information can then be automatically expanded to complete timelines. The Intelligent Points can be specified by the test engineer graphically, or in other ways.
An environment in which it is useful, but not necessary, to apply an example embodied technique is where a layer of code is wrapped around the executable signal processing code, so that at each execution frame, the values assumed by each variable at each frame are saved. Such an environment allows the test engineer to apply changes to the Intelligent Points, select a point or points in time, for example, by moving the mouse on a timeline by using a slider, and inspect the values assumed by one or more selected variables in response to the changes.
More particularly, in an example signal processing verification environment, a test engineer must verify test code against the operations of a Black Box. One way to generate independent expected outputs is to provide an alternative code for the code running in the Black Box. This alternative code is often referred as a model, but it can simply be an alternative instantiation of the code, independently produced by another team. It is useful for the expected results to be produced using a different compiler, a different hardware platform, and a different operating system than those used by the Black Box.
In the verification environment, a complete and correct set of Test Procedures must be generated according to some agreed-upon testing standards. Generation is typically achieved by forcing values for the Real World input variables that correctly exercise, and thus verify, the components targeted by the test procedure. The number of test procedures used for verification purposes can be one or many. One, or a few, test procedures may be complex and long in duration, while many others may be simple and short in duration. In either scenario, generation of a large number of files is difficult to manage. Regardless of the number of test procedures, a preferred example embodiment easily optimizes the information of a set of test procedures required to verify a set of requirements, and, therefore, the file size, and ease of understanding.
The following scenario is offered only as a descriptive example and it should be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. Consider a Black Box with a multitude of input, intermediate, and output variables running at fixed intervals of 10 milliseconds. Intermediate variables are those within the box that are not accessible from outside. That is the Black Box performs 100 runs per second, where each run processes inputs and produces outputs. Assuming a set of standard requirements for timer verification, and a time constant of 10 seconds, the complete test procedure has a duration of approximately 40 seconds, and, therefore, needs to produce 4,000 steps (100×40 steps) or input variables.
An example embodiment of the present disclosure obviates the need to create values for all the input variables, 4,000 input values in the above example. Instead, what input variable values are necessary to toggle the timer, and at what time they need to be toggled are determined. The determined information, which can include a time and value for each variable that changes to generate the desired input to the element under test is only a few bytes. While the choice of such “points” is not trivial, and may require complex analysis, if done correctly it can perform complete verification akin to creating all the input steps. The choice of points can be computer-aided.
By adding attributes to a selected point of change for input variable values, an “Intelligent Point” is created. The additional attributes can instruct the system on how is to handle input variable values between two selected points, which may include instructing the system to linearly interpolate from two points, or hold the value between two points, or inject a frequency via a periodic waveform such as, a sine wave, square wave, triangular wave, or a variable frequency with varying frequency and amplitude parameters, and/or Boolean variables for an exhaustive logic test, to fulfill any signal processing requirement. The resulting information needed to describe an Intelligent
Point is may include value, time, point type, and a few parameters for the type as necessary, is very small as compared to information needed to specify the signal at every point along a timeline.
As such, an example embodied method for storing a complex Test Procedure that stores a list of the Real World input variables, which require modifications in order to achieve the verification of the target component, and the Intelligent Points associated with them. Even if the list of variables includes information on how to display such variables, the condensed Test Procedure so is still small and much more understandable to a user or test engineer than the complete timeline offered for verification.
A test engineer may use any number of techniques, including graphical user interfaces, to select the appropriate variables and points for specific component verification.
An example embodied method of process verification can proceed as follows:
1) Select appropriate variables and appropriate points (and point attributes) to verify the target component(s).
2) According to the intelligent points, automatically generate a complete timeline for the selected variables, and, eventually, all of the input variables that require explicit values, i.e., those that are not nominal.
3) Evaluate expected results for the output variables that unequivocally represent the outputs of the targeted components, using the independent instantiation of the software or model.
4) Feed the generated timeline into the “Black Box” and collect actual results.
5) Compare the expected results and actual results for each variable at each step (10 milliseconds, in the above example).
Once the meaningful input and output variables are selected and the Intelligent Points are appropriately set, the resulting small amount of information needed to specify the combination can be stored in a simple, easy to understand file. The rest of the verification process can easily and completely be automated, up to the determination of which results match, and therefore pass, and which results do not match, or within a threshold tolerance, and therefore fail.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The foregoing will be apparent from the following more particular description of example embodiments, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the embodiments.
A description of example embodiments follows.
High Level Description of the Model-Based Verification Application
The Model-Based Verification Application 100 is made of several components.
Model Core: The Model Core 105 provides many of the features of the Model-Based Verification Application 100, such as generating input signal timelines using Intelligent Points, all graphical rendering and displaying of signals and corresponding signal processing components or blocks of connected components (also referred to hereafter as the “diagrams”), debugging capabilities, file name and file input/output (I/O) services.
UNITSCD: The UNITSCD (Specification Control Drawings) 110 is a code unit where all the information pertaining to the diagrams is stored. The information can include the devices, ASCII names of variables, the positions of flags, and constants on the diagram visual representations.
VARSANDBODIES: The VARSANDBODIES 115 enables the functionality of each diagram. It also enables the functionality of the complete Black Box under test by connecting together or “stitching” two or more of the diagrams that make up the Black Box. Typically, the VARSANDBODIES 115 is made up of calls to a library of components with standard behavior, or in some cases custom behavior. The library components can include, but are not limited to, Boolean logic gates, such as, OR gates, AND gates, and NOT gates, and other signal processing functions, such as delay timers, and various filters. The VARSANDBODIES 115 also provides all the variables of the Black Box in static memory.
This structure allows this same Model Core 105 to be re-used in different projects. New custom components can be added to the library of components as necessary. Using minimal additional resources, the custom components can be carried on as legacy elements in projects that do not use them.
The UNITSCD 110 and VARSANDBODIES 115 code units are typically new and unique for each project. Thus, they typically are developed for a specific project, and cannot be re-used in a different project. These code units can be considered to belong to a customer of the user. The VARSANDBODIES 115 needs to be compiled for performance, while the UNITSCD 110 is a database-like set of information.
Other (External) Model Components:
ALIAS Table: Alias Table 120 is a computer file, such as an Excel® file that contains information regarding names of variables used in the actual code, i.e., the code under test. (Excel is a registered trademark of Microsoft Corporation, One Microsoft Way, Redmond, Wash. 98052.) Such information can further include minimum and/or maximum limitations for values, granularity or decimation/digitalization properties, diagram stitching information, and other names in use. Information regarding other variable names in use is especially useful when there is redundancy, and/or inconsistency in the signal naming scheme among and between model code and actual code.
It should be understood by those of skill in the art that the mention of Excel® files throughout this document is due only to the convenience of using the Excel® format as a presentation layer, and not for any other features of Excel®. All specific file formats such as Excel, Visio, Simulink, Subversion, etc. referred to in this document can be in other formats, such as Comma Separated Values (.csv) or any other suitable form.
Diagram Bitmaps: Diagram Bitmaps 125 are a visual representation of the diagrams. The Diagram Bitmaps 125 can be a screen shot, or scan, of a diagram. While visual representations can be generated from the file that stores the diagram in native format, such as Visio®, Simulink®, or similar tool, it is preferred to use a bitmap file, because there are no possible errors in the interpretation of the native-mode files. In other words, what you see is what you get with bitmap files. (Visio is a registered trademark of Assistance Technique Et Etude De Materiels Electroniques Societe Anonyme, France, Burospace Bâtiment 26 Route de Gizy; F-91570 Bievres, France; and Simulink is a registered trademark of MathWorks Inc., 3 Apple Hill Drive, Natick, Mass. 01760.) This preferred visual representation allows for an excellent independent interpretation and analysis of the diagram.
CMOD Files: CMOD Files 130 are computer files, such as Excel® files, that contain visual information, and environment or harness parameters about a specific test. The CMOD Files 130 contain only the “Intelligent Points” that allow the creation of complete test files in conjunction with the Model 101a/b.
Test Cases: The Test Cases 135 are a collection of computer files, such as Excel® files, which are related to a single diagram. In an example embodiment the columns represent all the input variables and output variables of the related diagram, and each row represents the inputs, and expected outputs, for each and every processing step. In other words, the Test Case 135 files contain all of the I/O variables, input values, and expected output values for each step of time along a timeline.
Test Procedures: Test Procedures 140 are a collection of files, such as Excel® files, which have columns representing Real World input values and output values. The input values contain all the initial condition values for variables. That is, Test Procedure 140 files contain all the Real World values that set the stage for the test, including the values for all the variables that have non-nominal values—even if they do not change during the test. The Real World output variables represented are a set of manually selected variables pertinent to a specific test. Each row represents input values and expected output values, for every time step. Each Test Procedure 140 is a companion to a Test Case 135, in the sense that the Test Procedure 140 will faithfully generate the Test Case 135 data for the related diagram, when the Real World input values traverse the diagram. In other words, when the Real World input values are completely processed according to a Test Procedure 140, the Test Case 135 data will be generated for the associated diagram.
Hardware (Rig): The Hardware (or Rig) 145 is the actual physical equipment against which the Model 101 is verified. Test Procedures 140 are submitted to the Hardware 145 to produce Actual Results, which are then fed back to the Model 101 and/or stored in record-keeping or version control systems 155, such as Subversion® or ClearCase®. (Subversion is a registered trademark of CollabNet, Inc., 8000 Marina Blvd., Suite 600, Brisbane, Calif. 94005; and ClearCase is a registered trademark of Atria Software, Inc., 24 Prime Park Way, Natick, Mass. 01760.)
Intelligent Points Setup and Manual Review Process:
The purpose of the Model-Based Verification Application 100 is to ascertain that each block in the Back Box, such as one or more selected components or diagrams, produces the intended functionality. The verification process is a complex function that depends on device type, signal type, required verification procedures, and several other parameters. Verification must sometimes also comply with applicable standards 170, such as DO178 as applied to flight code, and perhaps other custom requirements.
In a preferred example embodiment, each device can be verified by specifying a combination of Intelligent Points 175 (also referred to herein as “IntelliPoints”). An Intelligent Point is a command for a variable to assume a value, or a signal type, from one point in time until the point in time of the next Intelligent Point 175. In other words, an Intelligent Point 175 dictates the signal type for an input variable, and therefore input values, for a period of processing time along a time line. The simplest form of input variable signal is a linear interpolation between the two points, but other signal can be created in accordance with the selected attributes of the Intelligent Point 175 .
While the number of Intelligent Points 175 in a particular Model 101 may vary depending on many considedrations, normally a very small set of Intelligent Points 175 is sufficient for a particular verification. For example, a method for verification of a DelayOn device requires only four Intelligent Points 175 to generate the Boolean input values necessary to verify Persistency and Expiration tests. However, the Intelligent Points 175 must be carefully and appropriately set in time. For other variables more points may be required to promote the output signal to a visible Real World signal, using a promotion process.
The selecting or setting of Intelligent Points 175 can be achieved via a trial-and-error manual process, aided by the Model's 101 recalculation of all signals when a point is moved. Useful to selecting of Intelligent Points 175 is a real-time recalculation, which allows the user to graphically see the implications on all signals when an Intelligent Point 175 is modified in time, value or signal type, or another Intelligent Point 175 is added.
The combination of Intelligent Points 175 and real-time recalculation with graphical-aided feedback enables the Model-Based Verification Application 100 to verify the Black Box components. Without this combination, the Black Box verification of a complex system would exceed reasonable human resources.
User Interface:
Virtual Input Variable
The stitched Model 101 consumes all the Real World input variables and produces all the Real World output variables. However, the list of all the input variables can be impractical to maintain in some projects, therefore the Model 101 resorts to Intelligent Points 175 for Virtual Real World input variables. Here, for Virtual Real World input variables, it is intended as a variable that does not exist as a real world input variable, that may have a similar name to a Real World input variable, and has the purpose of setting a number of Real World input variables to the desired value or values, according to rules.
For example, the setting of a variable carried by a triple-redundant ARINC bus typically requires setting the value of 12 input variables; 3 values for each of the following: Data, Activity, Parity, and Sign/Status Matrix (SSM). A Virtual Real World input variable would set all 12 variables so that the internal variable selected after the redundancy process assumes the same value as the Virtual Real World input variable.
In another example, an input variable can assume a value in degrees inside the Black Box, or even inside a particular diagram, but has a real world input variable value in radians, or Sines and Cosines, the Virtual Real World input variable is set in degrees, and the Model 101 adjusts the input values to Sines and Cosines accordingly.
The Virtual Variable can be set to any value, but the Model 101 limits the Real World input values according to the specified minimum and maximum values in the Alias table 120 (shown in
Ranges for Variables
In the real world, physical hardware, variable values are carried to the Black Box model via communications channels or buses. Usually, a bus or channel has a width in bits.
For example, if the variable is generated by a 10-bit analog-to-digital converter (A/D), the bus may also have a 10-bit width. Assuming, as an example, a 10-bit A/D is connected to a sensor that measures Vertical Speed Accelerations (VSA) in gravitational-force (Gs). Further assuming that the aircraft in which the VSA is installed is designed to operate between −3 and +7 Gs, and that the device will disintegrate if the acceleration exceeds the range between −6 and +14 Gs. The sensor is capable of providing data values between -20.48 and +20.44 Gs.
The example assumed will be able to accomodate 1024 discrete values. Further assuming that one bit is used for the sign, and that −20.48 G would correspond to −512 and +20.44 G would correspond to 511. It is useful to introduce a scale to convert from the raw input data signal to a more meaningful, and floating point, value. In this case, the scale would be 1/25. (Range of values÷Number of discrete values for the range=(20.44−(−20.84))/(1024−1)=1/25.) This would also implicitly dictate that the signal is received in minimum increments (granules, decimation, or digitization units) of 0.04 Gs.
In the above example, the Alias table 120 would carry the information about is range and granularity for this variable. The Model 101 would use the Alias table 120 to create input values only in accordance with the range and granularity. Although the variable input can assume values from −20.48 to +20.44 Gs, in 0.04 increments, the values outside of the range between −6 and +14 Gs are meaningless, because, in the real world the VSA sensor would be destroyed. It would useful that a project have a limiting layer of code that ensures that all input variable values are meaningful operational values.
Demo Project
In the following discussion of several drawings, it is assumed that the specifications are for a Demo project.
s
Therefore, the model therefore enables the selective visualization of output variables, allowing a user to immediately determine if a Real World output is a viable function, such as a linear transfer function, or the best possible approximation, of the selected diagram output.
This can be achieved through a process called promotion, in which a signal is promoted towards the output. It is useful to unequivocally represented a signal that is the output variable of a diagram, but is an intermediate variable, i.e., a non-Real World output of the Black Box. This can be accomplished by navigating to diagrams downstream of the diagram under test (i.e., signal processing functions that occur later in the Model 101 process) and selecting suitable variables that represent the original signal as the output. Here, the diagram under test is diagram 301a (shown in
An example embodiment of a disclosed method can ultimately result in a CMOD file 130 (
Verification of a Diagram with Timer on Boolean Logic
In an example embodiment, the Test Cases generated using appropriately selected IntelliPoint verify all the relevant and necessary variables at all signal processing frames. The Test Procedures compare expected results, those produces by the Model, and actual results, those produced by the Black Box, for all the variables at each and every frame, leaving no uncertainties regarding random, unexpected variable values or wrong stitching between diagrams.
The IntelliPoints are similar to fractals in that IntelliPoints expand to a lengthy and complex Test Case and Test Procedure files. This expansion process is relatively simple and the Test Cases and Test Procedures are automatically generated by the Model. While the Test Case and Test Procedure files are lengthy and complex, at the same time, the IntelliPoints are humanly understandable and settable, with the aid of the backward and forward timeline traversal debugging and visualization features of the Model.
An example embodiment of the method has been proven successful in a project with 200 complex diagrams and 6,000 variables, while still providing reasonably approximate real time feedback when moving IntelliPoints. In the test case, the 500
CMOD files, having an average of 20 IntelliPoints each, produced four giga bytes (4 GB) of Excel® Test Cases and Test Procedures in about 6 hours of batch processing on a medium-powered PC. The complete verification process produces only IntelliPoints that verify the desired specifications for all components. With this method, each Intelligent Point only requires a few minutes of user attention. This is particularly useful to save time in the event that the requirements change; the user needs only to add or modify a few Intelligent Points, after which the system can re-compute all expected results for all diagrams.
The batch process that re-computes output variable values at all times is particularly useful because a change in requirements, or a change in a diagram, can significantly alter the expected results, and is very difficult to predict. Then, the batch process may produce then correct verification, which perhaps is incomplete. The verification of a component is complete only when the component is fully exercised according to specification. However, an incomplete verification is still useful if the expected results match the actual results. The completion of the verification may be achieved in steps, for example, by adding Intelligent Points, to the existing Test Cases and Test Procedures.
The above described forward and reverse timeline traversal debugging technique is more than simply moving a mouse back and forth on a timeline. It is a complex balance of programming resources allocation. It provides the user with the perception that all the variables in all the diagrams are immediately recalculated for any change to is the Intelligent Points and other parameters, and that all the values are immediately available at the time frame where the mouse is positioned on the timeline. This perception of real-time availability is useful to enable the interactive interface allowing the user to easily and quickly set IntelliPoints for verification. Test Case is manually generated, and the generation process is aided by the real-time feedback of the expected results, immediately available to the user to explore for each device and each variable at any time interval along the timeline.
Consider the typical software code to be verified, such as a control law for avionics, or medical applications, while appearing very complex, it is usually designed to run at a duty cycle of 40 percent or less on an inexpensive microchip, which perform digital signal processing in computational “frames” of a few milliseconds. Rarely there are complex, non linear, mathematical algorithms needed. And if such complex algorithms are needed, they are highly optimized. Furthermore, rarely does a single test case required more than a 30 second timeline to prove that one aspect of the design is verified. However, many test cases may be required—normally a few per diagram. In other words, if the model of the program under test, produced by an independent interpretation of the requirements diagrams, is compiled on a relatively fast PC in “C” or Pascal, with virtually no memory constraints, the Test Case that would take microchip CPU time of 12 seconds (40% of 30 seconds), takes only a few seconds to run on the PC. This is an acceptable real time-response for the test engineer that changes a meaningful parameter—but it is not acceptable for looking at the changing values of variables when a mouse is moved on the timeline. When the engineer explores the possibilities of changing signals, the response time of the program must be much quicker. The above described forward and reverse timeline traversal debugging technique stores all the values for a complete timeline run within a few seconds, but allows the user to select a time, for example by using mouse movement or using arrow keys, and immediately—within milliseconds—see the values for all the variables.
The manual generation of Test Cases, aided through the use of timeline views of the signals, is not possible if the model program is written in an interpretative or semi-interpretative language. Experience with a large project provided that an environment such as PYTHON® has a greater than 10x response time, and SIMULINK® has a greater than 100x response time compared to a streamlined, compiled PASCAL rendition in which all variables are in static memory. (PYTHON is a registered trademark of Python Software Foundation Corporation, P.O. Box 37 Wolfeboro Falls, N.H. 03896-0037.)
After establishing that the Model code runs in a few seconds or less, two other features are useful in providing the perception of immediacy in displaying of data to the Test Case designer.
The first feature is the fact that the program tracks which diagram the user is viewing. The user can only look at one diagram at a time. Thus, when the user changes a diagram tab, a two second time for recalculation is acceptable. When the program tracks the diagram under test and the information associated with it, such as the position the flags on the diagram, the Model Core only needs to lift the values of the variables the user can see from static memory, at end of each computational frame. This can be done without disturbing the model code execution or adding cycles to it. The data is quickly accessed and copied from the variable's values, at each computational frame, are stored sequentially in memory, for immediate access, with access via frame number. This allows the corresponding values to be immediately displayed when the engineer selects any time corresponding to a computational frame. While it is true that all the data could be saved at each frame, it would require many gigabytes of memory for a large project, and the program would be slow for a variety of other reasons, such as memory paging.
Therefore, all the data related to all the I/O variables that the user can actually “see” on the timeline, and only those I/O variables, appropriately organized in meaningful groups, are stored in a memory array for each frame of execution along the timeline. The data related to the I/O variables that the user can see may include either the flag over the variable name in the diagram bitmap or the variable plotted with appropriate bias and colors.
After the data has been stored, when the user moves the mouse on the timeline plot, the model core only displays all the variables that the user can see on the diagram under being viewed. Since this process typically takes a very short time for a reasonable diagram, for example, less than 100 milliseconds after the mouse settles, the user perceives that the program responds immediately.
Also useful is the fact that the user does not have to type the variable names; the values of all the variables that can be seen are immediately reported. The user needs only to select the time (i.e. processing frame) with a single mouse motion—for any frame in the timeline—moving the cross-hair on the canvas.
Sometimes diagrams pre-consume variables that are produced later during the computational chain. In other words, a variable assumes two different values during a single computational frame, such as when an output signal is fed back to some input. In an example embodiment, pre-consumption is solved by storing the value of the intermediate, non-Real World I/O variables at the time when the diagram under test is executed, in the order of execution chain, and not at the end of the computational frame. This feature can also be bypassed, if the need arises.
The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/416,152, filed on Nov. 22, 2010, U.S. Provisional Application No. 61/416,153, filed on Nov. 22, 2010, U.S. Provisional Application No. 61/458,406, filed on Nov. 23, 2010, U.S. Provisional Application No. 61/458,410, filed on Nov. 23, 2010 and U.S. Provisional Application No. 61/481,973, filed on May 3, 2011. The entire contents of the referenced applications are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61416152 | Nov 2010 | US | |
61416153 | Nov 2010 | US | |
61458406 | Nov 2010 | US | |
61458410 | Nov 2010 | US | |
61481973 | May 2011 | US |