(1) Field of the Invention
The present invention relates to an apparatus, and method for using such an apparatus, for controlling the flowpath area in a gas turbine engine. More specifically, the present invention relates to an apparatus for providing non-linear flowpath area control of a gas turbine engine through the use of vernier duct blocker.
(2) Description of the Related Art
When operating gas turbine engines, it is frequently desirable to control the amount of gas flowing through the secondary flowpath between the outer duct and the inner support structure. One common method of achieving such control is to install an apparatus for adjusting the area through which the gas may flow. Such flow blockers often include a rotatable member with a plurality of openings that can be rotated in order to control the size of an open area through which gas can flow. With reference to
With reference to
It is most desirable for a flow blocker 10 to provide for complete, or nearly complete, blockage of gas flow when necessary while causing little if any blockage when needed. In addition, it is often the case that there are located several flow blockers arranged in series along a central axis 19 of a gas turbine engine. Depending on the flight envelope in which an engine is operating, differing flow blockers will be adjusted to provide for differing opening areas through which gas can flow. Unfortunately, there typically exists a linear relationship between the angular rotation of the rotatably movable ring 11 and the size of the resultant opening through which gas can flow. As a result, in instances wherein one wishes to finely control the area of an opening such that only a small area is provided through which gas can flow, small angular adjustments of the rotatably movable ring 11 result in relatively large differences in the opening area through which gas can flow.
What is therefore needed is a flow blocker 10, and method for so using such a flow blocker, that permits a wide range of adjustable opening sizes through which gas can flow while allowing for fine control of the opening sizes when a small opening size is desired.
Accordingly, it is an object of the present invention to provide an apparatus, and method for using such an apparatus, for controlling the flowpath area in a gas turbine engine. More specifically, the present invention relates to an apparatus for providing non-linear flowpath area control of a gas turbine engine through the use of vernier duct blocker.
In accordance with the present invention, a vernier duct blocker comprises a plurality of vanes each having a width and comprising a forward portion and an aft portion defining a plurality of gas paths each of the plurality of vanes being separated by a plurality of widths, and a rotatably movable ring interposed between the forward portion and the aft portion comprising a plurality of openings each having a width, wherein the width of one of the plurality of vanes differs from the width of another one of the plurality of vanes.
In further accordance with the present invention, a method of controlling gas flow through a gas flowpath comprises the steps of providing a plurality of vanes each having a width and comprising a forward portion and an aft portion defining a plurality of gas paths each of the plurality of vanes being separated by a plurality of widths, providing a rotatably movable ring interposed between the forward portion and the aft portion comprising a plurality of openings each having a width wherein the width of one of the plurality of vanes differs from the width of another one of the plurality of vanes, and rotating the rotatably movable ring about a central axis to at least partially block a flow of a gas through the plurality of gas paths.
a An illustration of a flow blocker known in the art shown in the fully open position.
b An illustration of a flow blocker known in the art shown in a partially closed position.
a An illustration of the vernier duct blocker of the present invention shown in the fully open position.
b An illustration of the vernier duct blocker of the present invention shown in a partially closed position.
It is the teaching of the present invention to provide a vernier duct blocker comprised of varying width vanes and a rotatably movable ring to control the size of the area of duct blockage. A plurality of vanes is circumferentially disposed about a central axis of a gas turbine engine. Each vane is formed of an aft portion and a forward portion. Between the aft portion and the forward portion there is located a rotatably movable ring which contains openings through which gas can flow. Like the prior art, the openings in the rotatably movable ring can be aligned with the spaces between adjacent vanes so that gas can flow predominantly unimpeded between each of the vanes. However, unlike the prior art, the vernier duct blocker of the present invention is formed from vanes whose widths differ one from the other. As a result, the spaces between the vanes vary as opposed to the constant spacing between the vanes of the prior art. Such differing widths of the vanes and spaces between the vanes allows for a non-linear relationship between the rotation of the rotatably movable ring from a fully open position and the total area formed by the openings in the rotatably movable ring between which gas can flow. The widths of the vanes and the spaces between the vanes are chosen to provide this non-linear relationship in a fashion such that very fine control of the opening area is achieved when the duct blocker is operating in a restrictive mode. By restrictive mode, it is meant that the rotatably movable ring is positioned such that the exposed openings in the rotatably movable ring between the vanes is small relative to the sum total of the openings in the rotatably movable ring when positioned in a fully open position.
With reference to
Disposed between forward ring 33 and aft ring 35 is a rotatably movable ring 11 into which is fabricated a plurality of openings 17. The width of individual openings 17 and the distance between such openings 17 are selected such that in at least one position, rotatably movable ring 11 may be rotated into a fully open position as illustrated in
With reference to
With reference to
It is apparent that there has been provided in accordance with the present invention an apparatus for providing non-linear flowpath area control of a gas turbine engine which fully satisfies the objects, means, and advantages set forth previously herein. While the present invention has been described in the context of specific embodiments thereof, other alternatives, modifications, and variations will become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations as fall within the broad scope of the appended claims.
The invention was made with U.S. Government support under contract N00019-02-C-3003 awarded by the U.S. Navy. The U.S. Government has certain rights in the invention.