In general, the present invention relates to counterbalance systems for windows that prevent open window sashes from closing under the force of their own weight. More particularly, the present invention system relates to counterbalance systems that use coil springs and the mechanisms used to anchor the free ends of the coil springs to the window frame.
There are many types of windows that are used in modern construction. Some windows are designed to open, some are not. Of the windows that are designed to open, some windows have sashes that open vertically and others have sashes that slide open laterally, or rotate outwardly.
Windows that have vertically opening sashes are the most common window used in residential home construction. Vertically opening windows are either single-hung, having one sash that opens, or double-hung, having two sashes that open. In both single-hung and double-hung windows, the same system is used to hold a window sash up once it is opened. If no system is used, gravity causes the sash of the window to close as soon as it is opened and released.
In low quality windows, friction between the window sash and the window frame is relied upon to hold a sash open. Such a system is highly unreliable because the friction relied upon varies as parts wear, expand, contract and are painted. It is for this reason that most single and double-hung windows are manufactured with counterbalance systems.
Early window sash counterbalance systems were simply weights that were attached to the sash. The weights were attached to a sash by a rope or chain that passed over a pulley at the top of the window frame. Such counterbalance systems required window wells in which the weights moved. Accordingly, such windows were difficult to insulate. Additionally, the rough opening needed for the window had to be much larger than the window sashes. Furthermore, window sashes attached to such counterbalance systems could not be tilted for cleaning or otherwise removed from the window frame.
Recognizing the many disadvantages of window well counterbalance systems, windows were manufactured with spring-loaded counterbalance systems. Spring-loaded counterbalance systems relied upon the pulling strength of a spring, rather than a hanging weight, to counterbalance the weight of a window sash. Accordingly, window wells for weights were no longer required.
Some of the most popular counterweight systems for double-hung windows utilize coil springs. Coil springs are flat ribbon springs that are wound into coils. Counterbalancing a window sash with a coil spring is a fairly simple matter. The free end of the coil spring is attached to the window frame while the body of the coil spring is engaged by the sash so it moves with the sash. As the sash moves, the coil spring moves, therein causing the coil spring to wind or unwind.
The part of the coil spring that moves with the sash is often held in a brake shoe or spring carriage that connects to the window sash. This enables the coil spring to both wind and unwind while the coil spring moves with the sash. In the prior art, there are many types of coil springs being used in different counterweight systems. Coil springs from different manufacturers may have free ends with different shaped terminations. Some coil springs have free ends with holes to receive anchor screws. Other coil springs may terminate with T-shaped ends or hooked ends in order to engage some type of specialty spring anchor mount. If a coils spring ever kinks or otherwise needs to be replaced, the exact model coil spring needs to be found so that the coil spring will have the proper length, width, coil diameter and anchor termination to fit the system. This has proven problematic since styles and models of counterbalance systems often change over the years.
Additionally, in many counterbalance systems, the coil springs are held in a spring carriage. The free ends of the coil springs are attached to a spring mount. The spring mount is temporarily attached to the spring carriage to form a single assembly. The single assembly is easy to ship and install into the guide track of a window frame. The spring anchor is separated from the spring carriage as the counterbalance system is being installed. Such prior art systems are exemplified by U.S. Pat. No. 7,735,191 to Tuller and U.S. Pat. No. RE45,328 to Tuller.
One of the problems associated with such prior art systems is that the coil spring merely engages a hook on the anchor mount. The spring will remain engaged with the hook on the anchor mount only for as long as the coil spring remains in tension. Normally, a properly installed coil spring is always in tension. However, as a window wears and the recoil time of a coil spring slows, it becomes possible to open a window sash more rapidly than the coil spring can rewind. This momentarily causes the coil spring to be in compression. This can cause the free end of the coil spring to detach from the anchor mount and rewind into the spring carriage where it becomes inaccessible. The counterbalance system is then inoperable and requires repair.
A need therefore exists in the field of window counterbalance systems for an improved spring anchor mount that is reliable and firmly anchors the free end of a coil spring both when the coil spring is in tension and when it is in compression. A need also exists for an improved spring anchor mount that is easy to install both retroactively and in new window installations. Lastly, a need exists for a versatile coil spring anchor mount that is inexpensive to produce and is capable of engaging the free ends of multiple types of coil springs. These needs are met by the present invention as described and claimed below.
The present invention is an anchor mount system for anchoring a free end of a ribbon coil spring to a guide track of a window. The ribbon coil spring has an opening formed through its structure at a first distance from the free end. This opening and the free end are engaged by the anchor mount.
The anchor mount has a body with a first section and a second section. At least one screw hole is formed through the first section. A first tab protrudes from the second section of the body. The first tab has a first base. Likewise, a second tab protrudes from the second section of the body. The second tab has a second base. Furthermore, the second tab is angled toward said first tab at an inclined angle.
A second distance exists between the first base of the first tab and the second base of the second tab. This second distance is generally equal to the first distance along the ribbon coil spring. This enables the end of the ribbon coil spring to become entrapped between the tabs when engaged with the tabs and manipulated in a certain manner.
For a better understanding of the present invention, reference is made to the following description of exemplary embodiments thereof, considered in conjunction with the accompanying drawings, in which:
Although the spring anchor mount of the present invention can be used to anchor a coil spring in many types of windows and using different window sash counterbalance systems, the spring anchor mount is illustrated in only a few exemplary applications. The exemplary applications show some of the best modes contemplated for the invention. However, the illustrated embodiments are intended to show only examples and should not be considered limitations when interpreting the scope of claims. It will be understood that the present invention spring anchor mount can be used in most any application where it is intended to anchor one end of a flat ribbon coil spring to the guide track of a window.
Referring to
The coil spring 18 is a wound coil of a metal ribbon 20 that is biased into a coiled configuration 22. Accordingly, the coil spring 18 resists being unwound from the coiled configuration 22. The metal ribbon 20 of the coil spring 18 has two ends 24, 26. When the metal ribbon 20 is wound into the shape of the coiled configuration 22, its first end 24 is located on the interior of the coiled configuration 22. The second end of the metal ribbon 20, herein referred to as the free end 26, terminates on the exterior of the coiled configuration 22.
The free end 26 of the metal ribbon 20 terminates with some type of connector configuration 28. The connector configuration 28 is designed to assist in the mounting of the coil spring 18 to the guide track 10, either directly or through the use of a specialized anchor mount, depending on the model of counterbalance system being used.
Referring to
Two screw holes 38, in the form of circular holes and/or slots, are punched or otherwise formed into the first section 34 of the metal blank 32. This can be done either before or after bending. The screw holes 38 are sized to receive mounting screws, as will later be explained. Although two screw holes 38 are shown, it will be understood that one hole or multiple holes can be used. The number of screw holes 38 and the type of screw hole 38 is dictated by the size of the mountings screws to be used and the area available on the first section 34.
Two tabs 40, 42 are formed in the second section 36 of the metal blank 32. The tabs 40, 42 are created by punching two generally U-shaped cuts 44 in the second section 36. This defines three sides of each of the tabs 40, 42. A base 46 on each of the tabs 40, 42 remains attached to the metal blank 32. Each of the tabs 40, 42 are then flared at their bases 46 to orient each of the tabs 40, 42 at an ascending angle of between thirty degrees and sixty degrees. The tabs 40, 42 are formed in opposing directions. In this manner, each of the tabs 40, 42 ascends at opposite intersecting angles. This creates a first distance D1 between the bases of the tabs 40, 42 and a second distance D2 between the tips of the tabs 40, 42.
Referring to
Referring to
Returning to
Referring to
Referring to
In this embodiment, it can also be seen that the first tab 78 can be formed in the end of the bracket body 82. Accordingly, only the second tab 80 need be formed by creating a U-shaped cut 84 in the bracket body 82. A coil spring will engage the two tabs 78, 80 in the same manner as was previously described.
It will be understood that the embodiments of the present invention described and illustrated are merely exemplary and that a person skilled in the art can make many variations to those embodiments. For instance, the size of the anchor mount and the height of the tabs can be varied to accommodate different coil spring designs. All such variations, modifications, and alternate embodiments are intended to be included within the scope of the present invention as defined by the claims.
Number | Name | Date | Kind |
---|---|---|---|
2635282 | Trammell, Sr. | Apr 1953 | A |
2732594 | Adams | Jan 1956 | A |
3160914 | Brienza | Dec 1964 | A |
3478384 | Skolnik | Nov 1969 | A |
4078336 | Prosser | Mar 1978 | A |
4190930 | Prosser | Mar 1980 | A |
5353548 | Westfall | Oct 1994 | A |
5463793 | Westfall | Nov 1995 | A |
5661927 | Polowinczak et al. | Sep 1997 | A |
6745433 | Newman | Jun 2004 | B2 |
6892494 | Malek | May 2005 | B2 |
6990710 | Kunz | Jan 2006 | B2 |
7735191 | Tuller | Jan 2010 | B2 |
RE45328 | Tuller | Jan 2015 | E |
9458655 | deNormand | Oct 2016 | B2 |
20040163209 | Pettit | Aug 2004 | A1 |
20050091791 | Kunz | May 2005 | A1 |
20050229492 | Robertson | Oct 2005 | A1 |
20090119874 | Kellum, III | May 2009 | A1 |
20140208653 | Sofianek | Jul 2014 | A1 |
20140331561 | Baker | Nov 2014 | A1 |
20150368952 | Baker | Dec 2015 | A1 |
20170292303 | Lucci | Oct 2017 | A1 |