There exist multiple types of light sources currently in use for providing illumination. Such light sources are commonly referred to as lamps. Most of the lamps in use are electrically powered. One of the most common types in use is an incandescent lamp in which a filament of tungsten or other refractory material is heated by the power dissipated in the electrical resistance of the filament when an electrical current is forced through it. Usually, the electrical current is supplied to the filament directly from a power line providing a more or less constant average alternating-current voltage or from a power supply or battery operating at a more or less constant direct-current voltage. Incandescent lamps are designed to operate at voltages typically in the range between a few volts to 250 volts. Much of the dissipated power is radiated as heat in the form of infrared radiation, some of the power converts to heat that leaves the lamp through thermal conduction and convection, and a relatively small portion of the power is radiated as visible light. For an incandescent lamp the power efficiency of the lamp, which is calculated as the ratio of the power radiated as visible light to the total electrical power dissipated in the lamp, is typically about 5 percent or lower.
Another common type of lamp is a discharge lamp, in which electrical current flows through a gas. Excited by the current, the gas emits infrared, visible, and ultraviolet radiation. A fluorescent lamp is a type of discharge lamp in which much of the ultraviolet radiation is converted to visible radiation by a fluorescent coating. Other types of discharge lamps include sodium lamps, carbon arc lamps, mercury arc lamps, neon lamps, xenon lamps, and metal halide lamps. Visible light is radiated with power efficiencies ranging up to the low twenty percent range. Much of the remaining power is dissipated as infrared or ultraviolet radiation, and some may be converted to heat that is carried away through thermal conduction and convection.
Unlike incandescent lamps, discharge lamps generally require ballasts or controlled-current sources for stable operation. The operating voltage of a discharge lamp is frequently in the range of operating voltages of incandescent lamps, but the current through the lamp is much more sensitive to the voltage. Operation directly from an unregulated voltage supply such as a battery or an alternating-current power line may result in malfunction of the lamp due to large variations in current and, hence, power dissipation as the supply voltage varies.
A newer category of light sources distinct from incandescent lamps and discharge lamps is that of solid-state light-emitting devices. Included in this category are, for example, electroluminescent devices, semiconductor lasers, and light-emitting diodes. Unlike incandescent lamps and discharge lamps, solid-state light-emitting devices suitable for illumination emit substantially all of their radiation in the form of visible light, and the amount of power emitted in the form of infrared or ultraviolet radiation is relatively insignificant. Currently, the most efficient of these solid-state light-emitting devices, the light-emitting diodes (LEDs) and the semiconductor lasers, may operate at power efficiencies as high as twenty to forty percent. The electrical power that is not converted to light is converted to heat. Due to the small sizes of practical high-power devices, usually only a small fraction of the heat is removed through convection, and the remainder of the heat is removed through thermal conduction. Relative to incandescent lamps and discharge lamps in general, the efficiency and reliability of solid-state light-emitting devices are more sensitive to temperature. The efficiency drops significantly at high operating temperatures, and the rate at which the light output degrades over time increases by a factor of typically between two and ten for every 10° C. rise in temperature. A heat sink and a thermally conductive path between the light-emitting device and the heat sink are generally provided in order to limit the rise in temperature of the light-emitting device due to the heat generated within it. For example, LEDs are frequently furnished by the manufacturer as surface-mount assemblies that may be soldered to conductors on the top surface of a thin electrically insulating circuit board backed by a sheet of thermally conductive metal such as aluminum or copper. Metalized conductive vias in the insulating circuit board may assist in conducting heat from the conductors on the top to the metal sheet on the back.
The most efficient solid-state light-emitting devices, the LEDs and semiconductor lasers, are generally limited by practical considerations to input power levels of a few watts or lower per device. Each device runs at a voltage typically between two and four volts. For applications such as wide-area illumination that require input power levels of tens to hundreds of watts, it is common practice to include multiple light-emitting devices in an assembly and to electrically connect the multiple light-emitting devices in series. Given a fixed operating current and temperature, the total light output of such a series-connected assembly and the voltage across the assembly are both proportional to the number of light-emitting devices in the assembly.
Most incandescent lamps and discharge lamps are hermetically sealed, since they require the maintenance of a partial vacuum, but solid-state light-emitting devices typically are not hermetically sealed. As a result, special considerations may apply regarding the protection from the environment of an assembly of LEDs or semiconductor lasers and the conductors that interconnect them and carry electrical power to them. In particular, liquids coming into contact with the conductors or the light-emitting devices, especially while electrical power is applied, can result in electrolytic corrosion of the conductors or of the light-emitting devices leading to premature failure of the assembly. Human contact with the conductors or with liquids in contact with the conductors can result in electrical shock. Mechanical stress on one or more conductors, wires, or cables exiting the assembly may result in damage to the assembly, if the conductors, wires, or cables are not sufficiently secured mechanically to the assembly.
If portions of a lamp assembly employing light-emitting devices should intercept and cause to be absorbed some of the light emitted by the light-emitting devices, the photonic power efficiency of the lamp assembly may be reduced. This fact is a consideration influencing the design of various portions of the assembly including any that provide environmental protection or that contribute to the mechanical or electrical connections within the assembly.
High-power light-emitting devices suitable for use in illumination applications can be bright enough to cause eye damage in some circumstances. For some applications eye safety may be a consideration in the design of a lamp assembly.
Unlike incandescent lamps and discharge lamps, which may radiate light in almost all directions, solid-state light-emitting devices usually radiate in some directions but not others. An LED, for example, typically radiates with a Lambertian pattern into the space on one side of a plane. Special considerations may apply, therefore, to the way light-emitting devices are oriented within an assembly or the way an assembly is oriented while the assembly is being applied to provide illumination.
Each solid-state light-emitting device has its own spectral characteristic, which is defined by the distribution of power of the light emitted over the wavelength of the light emitted. For some the spectral characteristics show distributions in which most of the emitted power is confined to a narrow wavelength range. The light from these devices has a highly saturated color, the color depending on the dominant wavelength. Other devices may emit light that is less saturated in color or that is white. These devices have spectral characteristics with broader distributions over wavelength. No one solid-state light-emitting device has yet been devised that has a spectral characteristic broad enough to match that of the sun. When a broad spectral characteristic is desired, the light from multiple light-emitting devices of different spectral characteristics or colors is frequently combined. In applying solid-state light-emitting devices in illumination applications it is generally the practice to blend the light from these multiple devices in a way that prevents observers from perceiving the separate colors of the devices. The light from this source consisting of multiple light-emitting devices of different colors then appears as light of a single uniform spectral characteristic or color.
As is the case for discharge lamps, the electrical current drawn by solid-state light-emitting devices is usually so sensitive to the voltage across them that some form of ballast or current limiting in the power supply is desirable to prevent excessive variations in the power supplied to the devices as a result of normal variations in voltage on the power source. This problem exists with series-connected devices to the same extent that it does with individual devices. Common practices include the use of a resistor electrically in series with the light-emitting devices, use of a ballast inductor in series with an alternating current source supplying power to the light-emitting devices, or use of a switching-mode power converter to drive the light-emitting devices with a regulated current.
In some examples, a lamp assembly may include a circuit board, one or more light-emitting devices, a heat sink, a gasket, a bezel, and one or more fasteners. The circuit board may have an electrically insulating layer of material, a thermally conductive backing layer, and one or more electrically conductive traces disposed on a first major surface of the electrically insulating layer of material, an opposing surface of which may be in thermal contact with a surface of the thermally conductive backing layer. The one or more light-emitting devices may be disposed on the circuit board, in thermal contact with the circuit board, and in electrical contact with at least one of the electrically conductive traces. The heat sink may be composed of thermally conductive material a surface of which is in thermal contact with the thermally conductive backing layer. The gasket may have a first surface and an opposing second surface, the first surface being in mechanical contact with a surface of the circuit board. The bezel may have a surface that is in mechanical contact with the second surface of the gasket. The one or more fasteners may be configured to apply force between the bezel and the heat sink resulting in the application of pressure between the bezel and the gasket, between the gasket and the circuit board, and between the circuit board and the heat sink.
In some examples, a lamp array may include two or more lamp assemblies, one of which supplies illumination with a first spectral characteristic and another of which supplies illumination with a second spectral characteristic different from the first spectral characteristic, and each of which may include two or more light-emitting devices. The lamp array may also include a bearing mount having one or more bearings supporting each lamp assembly in a manner that allows each lamp assembly to be individually oriented rotationally about an axis of rotation. In further examples, the light-emitting devices in each lamp assembly of a lamp array may be arranged in a line having a direction. The lamp assemblies may be positioned such that the direction of the line is substantially the same for all of the lamp assemblies. The lamp assemblies may, in addition, be positioned in two or more rows in each of which the lines in which the light-emitting devices are arranged in the lamp assemblies are collinear and in which every lamp assembly in the same row supplies illumination with the same spectral characteristic, which spectral characteristic is not the same for every row.
In some examples, a supply circuit may include an output terminal for providing current to a load; a drive voltage terminal for receiving an electromotive force for driving current through the load; and a nonlinear resistive element with a first terminal electrically connected to the drive voltage terminal and a second terminal electrically connected to the output terminal, the nonlinear resistive element having a dynamic electrical resistance that varies with the magnitude of the electrical current through the nonlinear resistive element, the resistance tending to rise when the magnitude of the electrical current rises and to fall when the magnitude of the electrical current falls. In further examples, the nonlinear resistive element may include a filament that is heated by electrical current flowing through the filament, and the filament may have a dynamic electrical resistance that increases as the filament rises in temperature. In further examples, the nonlinear resistive element may be an incandescent lamp.
In some examples, a supply circuit may include an output terminal for providing current to a load, a drive voltage terminal for receiving the electromotive force for driving current through the load, a surge-limiting circuit having a first terminal electrically connected to the drive voltage terminal and a second terminal electrically connected to the output terminal; a first alternating-current power terminal for providing alternating current to a circuit; a second alternating-current power terminal for returning alternating current from a circuit; a rectifier with a first alternating-current input terminal electrically connected to the first alternating-current power terminal, a second alternating-current input terminal electrically connected to the second alternating-current power terminal, a first direct-current output terminal electrically connected to the drive voltage terminal, and a second direct-current output terminal electrically connected to the common terminal; a line input terminal for obtaining power from a power line; and a current-impeding circuit having one terminal electrically connected to the line input terminal and another terminal electrically connected to the first alternating-current power terminal. The surge-limiting circuit may be one that is capable of limiting the magnitudes of current surges that may result from temporary excesses in electromotive force between the drive voltage terminal and the common terminal. The current-impeding circuit may be one that is capable of limiting the magnitudes of current surges that may result from surges in the electric potential between the line input terminal and the second alternating-current power terminal, and may include a nonlinear resistive element having a dynamic electrical resistance that varies with the magnitude of the electrical current through the nonlinear resistive element, the resistance tending to rise when the magnitude of the electrical current rises and to fall when the magnitude of the electrical current falls. The current-impeding circuit may be one that causes to flow through the nonlinear resistive element most of the electrical current that flows through the current-impeding circuit from the line input terminal and the first alternating-current power terminal. In further examples, the nonlinear resistive element may include a filament that is heated by electrical current flowing through the filament, and the filament may have a dynamic electrical resistance that increases as the filament rises in temperature. In further examples, the nonlinear resistive element may be an incandescent lamp.
A versatile sealed LED lamp assembly disclosed in the present application will become better understood through review of the following detailed description in conjunction with the drawings. The detailed description and drawings provide examples of the various embodiments described herein. Those skilled in the art will understand that the disclosed examples may be varied, modified, and altered without departing from the scope of the disclosed structures. Many variations are contemplated for different applications and design considerations; however, for the sake of brevity, not every contemplated variation is individually described in the following detailed description.
An embodiment of an LED lamp assembly is now described in more detail with reference to
One or more of the electrical connection points 102 may consist of electrically conductive pads on the same surface of LED 100 as thermal pad 103, as shown in
A thermal pad 103 may also act as an electrical connection point 102. In addition, two or more electrical connection points 102 may act as thermal pads 103.
An LED chip 101 may be in the form of a single die or an array of two or more dice. A lens 104 may consist of a single element or multiple elements. For example, lens 104 may include an element on each die of an array of dice.
Thermal connection pad 204 on circuit board assembly 200 may extend over an area of circuit board 201 larger than the area of thermal pad 103 and may be composed of a material such as copper or aluminum that has high thermal conductivity, so that heat from thermal pad 103 on LED 100 may be spread out over a comparatively large area on circuit board 201. Thermal connection pad 204 may be electrically connected through portion 205 of patterned conducting layer 202 to an electrical connection pad 203, as shown in
Patterned conducting layer 202 on printed circuit 201 may include terminals 206 for electrically connecting the circuitry on circuit board 201 to a cable 207. Individual wires 208 from cable 207 may be soldered or otherwise electrically connected to terminals 206.
Patterned conducting layer 202 may provide electrical connections between LEDs and between LEDs and terminals. For example, in
The connection of LEDs 100 in
As shown in the
The sealing rings 408 may provide a raised flat surface against which an elastomer or an adhesive may form a water-tight seal. The spacings between the outer sides 409 of sealing rings 408 and the edges 406 and 407 may reduce the possibility of electrical shorting between sealing rings 408 and other conductive materials such as backing layer 402 and may thereby reduce the likelihood of occurrence of electrolytic corrosion in the presence of water. The spacings between the inner sides 410 of sealing rings 408 and other portions of patterned conducting layer 202 may reduce the possibility of electrical shorting or leakage between sealing rings 408 and portions of patterned conducting layer 202 that may be supporting significant electrical potentials. These spacings may therefore reduce an electric shock hazard and may reduce the likelihood of electrolytic corrosion.
In a preferred embodiment of circuit board 201 the patterned conducting layer 202 consists of copper metal with a thickness of approximately 0.0014 inches, the insulating layer 401 consists of an epoxy-based composite material approximately 100 micrometers thick having a thermal conductivity of approximately 2 watt/meter-kelvin, and a backing layer 402 consists of 6061-T6 aluminum approximately 1 millimeter thick.
As is common in circuit board manufacture circuit board 201 may be covered with a soldermask layer (not shown) with openings over certain portions of circuit board 201 such as at electrical connection pads 203, thermal connection pads 204, and terminals 206. In some embodiments the soldermask may be omitted over sealing rings 408 or may be omitted altogether. The soldermask layer may be composed of a material that is reflective of light at the wavelengths to be emitted by the LEDs 100.
As is also common in circuit board manufacture circuit board 201 may include a silkscreen layer. A silkscreen layer is typically an ink layer used for creating labels. In a preferred embodiment the silkscreen layer may also be used to create a light-reflecting background 500 around each LED 100 on circuit board assembly 400, as shown in
The mounting area 601 may be sized and shaped to accommodate circuit board 201, and the heat sink mounting holes 603 may have positions matching the positions of mounting holes 405 in circuit board 201.
In a preferred embodiment heat sink 600 may be fabricated from 5052 aluminum sheet approximately 0.050 inches thick.
In a preferred embodiment gasket 700 consists of a flat sheet of silicone rubber white in color and 0.045 inches thick. A blank sheet may be punched to form the holes and the edges, or the patterned sheet may be fabricated through molding or other methods.
In a preferred embodiment bezel 800 may be fabricated from 6061-T6 sheet aluminum and may be approximately 0.125 inches thick.
Further, as shown in
For the purpose of binding all of the parts together with a compressive force, fasteners 901 may be inserted through the mounting holes, including bezel mounting holes 803, fastener clearance holes 702, mounting holes 405, and heat sink mounting holes 603, as shown in
In a preferred embodiment bezel back side surface 805 may extend beyond the edge 1103 of gasket aperture 701 creating an overhung region 1107, as shown in
It will be seen presently that the structure revealed in
The portion of the light in ray 1200 that is not reflected into ray 1203 may follow ray 1204 to the surface 1108 of potting compound 1100. Once again, a fraction of the light in ray 1204 may be reflected, as indicated by ray 1205. If the medium on the outside 1106 of lamp subassembly 900 is air with a refractive index of approximately 1.0, the fraction of the light from ray 1204 that is reflected into ray 1205 may be minimized if the value of rp is as close to unity as possible. In a preferred embodiment rp is approximately 1.4, which is among the lowest values available in a practical transparent elastomer. A large fraction of the light from ray 1204 may emerge from potting compound 1100 to the outside 1106 as shown by ray 1206. In a preferred embodiment the surface 1108 of potting compound 1100 is substantially parallel to the surface of LED chip 101. If a light ray 1204 is substantially normal to potting compound surface 1108, the transmitted ray 1206 will be substantially normal to this surface, as is well known in the field of optics. In the example shown, light ray 1204, like light ray 1200, will be substantially normal to the primary emission surface 1202 of LED chip 101 and hence to potting compound surface 1108 if the ratio of rp to r1 is close to unity. This result follows from the well-known fact that there is very little refraction at interfaces between materials with nearly identical refractive indices.
Ray 1201 is an example of a direction of emission of light at a moderate angle to the normal to primary emission surface 1202. If the ratio of rp to rl is close to unity, the light in ray 1201 that passes through the interface between LED lens 104 and potting compound 1100 will be refracted only slightly, as shown by ray 1207 and may strike potting compound surface 1108 at a moderate angle to its normal. Light from ray 1207 that is transmitted to the outside 1106 may emerge along ray 1208. If the outside medium is air, the light in ray 1208 will emerge into a medium of lower refractive index than that of the medium from which the light in ray 1207 was incident. The angle of ray 1208 to the normal to potting compound surface 1108 will be greater than the angle of the incident ray 1207 to the same normal, as is well known in the field of optics. The rays shown in
For the example in
Ray 1301 is an example of a light path at an angle to the normal to primary emission surface 1202 that leads to a transmitted ray 1307 that directly strikes an edge 1101 of light window 801. If edge 1101 is highly reflective, much of the light from ray 1307 may be reflected into directions such as that of ray 1308 in which the light may escape to the outside 1106 as shown by ray 1309.
Ray 1302 is an example of a light path at an angle to the normal to primary emission surface 1202 that leads to a transmitted ray 1310 that strikes an edge 1103 of gasket aperture 701. If gasket 700 is highly reflective, much of the light from ray 1310 may be reflected into directions such as that of ray 1311, which may strike, for example, portion 1104 of circuit board 201 that may be occupied by light-reflecting background 500. If light-reflecting background 500 is highly reflective, much of the light from ray 1311 may be reflected into directions such as that of ray 1312 in which the light may escape to the outside 1106 as shown by ray 1313.
It may be observed that rays 1211, 1306, 1309, and 1313 are examples of indirect rays. That is, these rays come from reflected light and not from light transmitted directly from primary emission surface 1202. Because the points at which the light in these rays are reflected are generally distant from primary emission surface 1202, the light of such rays will generally not be focused on the same portions of the retina of an observer's eye as may the light of direct rays. The fact that some of the light emitted by LED 100 becomes indirect thus may reduce the peak intensity of light on the retina of the observer's eye and may reduce the likelihood of damage to the retina.
It may also be observed from the several examples of light paths discussed that scattered light may impinge on any of the surfaces of objects bounding potting compound 1100. These surfaces include edges 1101 of light window 801, portion 1102 of bezel back side surface 805, edges 1103 of gasket aperture 701, and portion 1104 of circuit board 201. These surfaces may be made highly reflective so that little of the scattered light will be absorbed and most of the scattered light will make its way to the outside 1106. The reflective surfaces may be white, in which case the reflection is diffusive, or they may be specularly reflective, or they may have reflective properties that are partially diffusive and partially specular. In a preferred embodiment gasket 700 may be composed of a white material, portion 1104 of circuit board 201 may be entirely occupied by a light-reflecting background 500 that is composed of white silkscreen ink, and bezel 800 may be composed of polished or bright-dipped aluminum that may be coated to enhance reflection.
Proper choice of the various geometric factors combined with proper choice of the diffusivity or specularity of the reflection from various surfaces may enhance the amount of light reaching the outside 1106. The geometric factors may include the size and shape of light window 801, the shape of the edges of light window 801 including the angle of the bevel on a beveled edge 802, the size and shape of gasket aperture 701, and the height and shape of surface 1108 of potting compound 1100. The choice of diffusivity or specularity applies as discussed previously, but the most critical aspect may be the finish on a beveled edge 802. One preferred embodiment may have a polished aluminum finish, another may have a bright-dipped aluminum finish, and another may have a white coating such as paint, a plasma-sprayed coating, a powder-sprayed coating, or a coating of white silicone rubber. In a particular preferred embodiment a white silicone compound containing a pigment in the form of a powder of such a substance or substances as barium sulfate, titanium dioxide, alumina, or magnesia may be applied in liquid form to beveled edge 802 to produce a highly-reflective white coating. An adhesion-promoting primer may be applied prior to application of the white silicone compound. The white silicone compound may be partially or fully cured prior to the casting of potting compound 1100, the choice of degree of cure being made to assure strong adhesion of potting compound 1100 to the white silicone compound.
The potting compound 1100 may be cast as follows. An amount of catalyzed liquid silicone precursor may be poured into the cavity 1109 surrounding each LED 100. The amount may be adjusted so that the final level of the surface 1108 of the potting compound 1100 reaches a height that has been determined to result in a high degree of light extraction. The potting compound 1100 may then be cured to form the silicone rubber. A silicone compound that cures to a textured finish may be utilized to achieve extra diffusion of the light, if such extra diffusion should be desired for safety or other reasons. Alternatively, the surface 1108 of potting compound 1100 may be molded during cure to achieve a shape of or finish to surface 1108 that results in a high degree of light extraction and/or improves safety.
It should be noted that there are numerous other materials of which potting compound 1100 may be composed, including without limitation various plastics or glasses or multi-layer composites, and that there are numerous other methods by which potting compound 1100 may be formed, including without limitation vacuum deposition, spray deposition, or injection molding.
Some heat may also flow from circuit board 201 through gasket 700 into bezel 800 where additional convection may carry heat into the surrounding air 1400.
It may be observed that patterned conducting layer 202, backing layer 402, and heat sink 600 may act as heat spreading layers that increase the area over which heat may flow through less thermally conducting layers or interfaces including electrically insulating layer 401, the interface between backing layer 402 and heat sink 600, and the convective interface between heat sink 600 and the surrounding air 1400. To enhance the heat spreading and thereby reduce the overall thermal resistance from LED 100 to air it may be desirable that the heat spreading layers be composed of high-thermal-conductivity materials with a maximum thickness consistent with cost and other constraints. In a preferred embodiment patterned conducting layer 202 may be composed of copper approximately 0.0014 inches thick, backing layer 402 may be composed of 6061-T6 aluminum alloy approximately 1 millimeter thick, and heat sink 600 may be composed of 5052 aluminum alloy approximately 0.050 inches thick.
Referring to
In a preferred embodiment thorough curing of any thixotropic sealant 1503, terminal encapsulant 1602, and potting compound 1100 may be accomplished in one operation in which entire lamp subassembly 900 is heated to an elevated temperature in the range of approximately 100 to approximately 150 degrees centigrade for a period of time recommended by the manufacturer of the materials to be cured.
To ensure electrical safety it may be desirable to connect exposed metal parts of lamp subassembly 900 to electrical ground through a wire 208c that may be a part of cable 207.
Solder lug 1703 may be replaced by a crimp lug or by any of a number of other devices capable of connecting a wire to a fastener or to heat sink 600.
End axle 1801 may have an engagement extension 1911 shaped to allow an inner portion 1912 of engagement extension 1911 to fit within semi-enclosed space 605 shown in
It will be clear to persons engaged in the art of mechanical engineering that attachment structures 607 and catches 1914 may take many forms besides those shown in the figures. As previously mentioned, attachment structures 607 may take the form of louvers, bumps, indentations, or other structures for facilitating attachment of parts, and catches 1914 may take the form of louvers, bumps, indentations, or other structures for engaging attachment structures 607. Moreover, attachment structures 607 may be incorporated into the bezel or another part connected to lamp subassembly 900 and need not be incorporated into heat sink 600, and these attachment structures may be engaged by catches 1914 appended, built-in, or attached to end axle 1801.
Included as part of an outer portion 1913 of engagement extension 1911 may be a cover 1916. When end axle 1801 is attached to lamp subassembly 900 as shown in
Engagement extension 1911 and catches 1914 may be designed to restrain end axle 1801 when attached to lamp subassembly 900 in an orientation such that axis 1902 is substantially parallel to the centroid of lamp subassembly 900 and such that the axes 1902 of end axles attached to each of the two ends 1700 of lamp subassembly 900 are substantially coincident. Hole 1904 may be designed such that a cable 207, which may include one or more wires 208 such as 208a and 208b emerging from one or more gaps 704 at an end of lamp subassembly 900 and may include one or more wires 208 such as 208c attached to a grounding point on lamp subassembly 900, may enter hole 1904 at inner end 1910 and emerge from hole 1904 at outer end 1903 when end axle 1801 is attached to lamp subassembly 900.
At some point along its length the cross section of hole 1904 may be flattened or otherwise deviated from circular symmetry and restricted in size in order to prevent cable 207 from being able to rotate relative to end axle 1801. For example, the cross section 1918 of hole 1904 at outer end 1903, as shown in
It may be desirable, also, that the cross section of hole 1904 be narrow enough at some point along its length to prevent a widened portion of cable 207 from being pulled through the hole. Cable 207 may be widened by way of tying a knot in one or more wires of the cable, applying around the cable a tight-fitting cable tie or clamp, molding a strain relief or additional insulation around the cable, or applying other means or a combination of these means. A widened portion of hole 1904 may be provided to allow space for a widened portion of cable 207. Channel 1906 is an example of such a widened portion. In a preferred embodiment two wires in cable 207 may be tied in an overhand knot that will fit within channel 1906 but that will not fit through the narrow portion of hole 1904 represented by cross section 1918. An externally-applied tension on cable 207 may be resisted by the force of the narrow portion of hole 1904 against the knot. If there is slack in cable 207 beyond the knot, there may be very little tension in the part of cable 207 that enters lamp subassembly 900. The potential for damage to lamp assembly 1800 due to externally-applied tension on cable 207 may therefore be reduced.
In a preferred embodiment the design of end axle 1801 may be such that in the completed lamp assembly 1800 axis 1902 of end axle 1801 passes approximately through the center of mass of lamp assembly 1800 so that gravity will exert little or no torque about axis 1902.
End axle 1801 may have an end portion 1919 shaped, as shown by example in
Two end axles 1801, one at each end of lamp assembly 1800, need not be identical to each other and need not have all of the features described. One may have a hole 1904 while the other may not. One may have a knob 1920 while the other may not. One may have a cover 1916 while the other may not. They may also differ in shape and size or in the type of catch 1914 used. One end axle 1801 may be entirely omitted.
While particular embodiments of a lamp assembly 1800 have been described, there are numerous other examples that may be contemplated. Light-emitting devices of other types may be used in place of LEDs (100). These other types of light-emitting devices may include incandescent lamps, discharge lamps, electroluminescent devices, or semiconductor lasers, for example. Heat sink 600 may be flat or may be bent into any of numerous shapes, and portions of heat sink 600 may act as reflecting surfaces that affect the distribution or direction of light emission from lamp assembly 1800, for example. Gasket 700 may be composed of an elastic material or an inelastic material and may be fluorescent, transparent, translucent, or opaque, for example. Gasket 700 may be devoid of apertures 701, fastener clearance holes 702, clearance holes, and or gaps 704. Bezel 800 may be composed of a material such as glass or plastic and may be transparent or fluorescent, for example. Bezel 800 may be devoid of light windows 801, mounting holes 803, and/or terminal windows 804. Portions of gasket 700 or of bezel 800 may act as lenses that affect the distribution or direction of light emission from lamp assembly 1800, for example.
In more general terms, a lamp assembly may comprise: a circuit board having an electrically insulating layer of material, a thermally conductive backing layer, and one or more electrically conductive traces disposed on a first major surface of the electrically insulating layer of material an opposing surface of which is in thermal contact with a surface of the thermally conductive backing layer; one or more light-emitting devices disposed on the circuit board, in thermal contact with the circuit board, and in electrical contact with at least one of the electrically conductive traces; a heat sink composed of thermally conductive material a surface of which is in thermal contact with the thermally conductive backing layer; a gasket having a first surface and an opposing second surface, the first surface being in mechanical contact with a surface of the circuit board; a bezel a surface of which is in mechanical contact with the second surface of the gasket; and one or more fasteners configured to apply force between the bezel and the heat sink resulting in the application of pressure between the bezel and the gasket, between the gasket and the circuit board, and between the circuit board and the heat sink.
In further examples, the one or more fasteners may include a screw or a rivet that either passes through or engages the bezel and either passes through or engages the heat sink, and/or the one or more fasteners may include a clamp or a clamping mechanism.
In further examples, the one or more electrically conductive traces may include a first electrically conductive trace in proximity to an edge of the circuit board, the presence of which first electrically conductive trace results in a raised portion of the circuit board, which raised portion is in contact with the gasket. In further examples of this case, the first electrically conductive trace may be continuous along and spaced from the edge, and may form a border that separates a portion of the circuit board near the edge from a portion of the circuit board distal from the edge; and/or the first electrically conductive trace may be not electrically connected to a light-emitting device, and in some examples may be not electrically connected to any other electrical conductor.
In further examples, the lamp assembly may comprise an electrically conductive wire a first end of which is electrically connected to the circuit board and a second end of which is distal to the circuit board, the gasket, and the bezel. In further examples of this case, a gap may extend through the gasket, through which gap the electrically conductive wire passes; and, in some examples, the circuit board, the bezel and the gasket may form a tunnel through which the electrically conductive wire passes, wherein space in the tunnel not occupied by the electrically conductive wire is filled with a sealant to prevent flow of fluids through the tunnel, wherein, in some examples, the sealant may be a silicone rubber material, and/or the bezel and the circuit board may exert sufficient pressure from opposing sides on the electrically conductive wire extending through the gap to resist movement of the electrically conductive wire through the gap.
In further examples, the gasket may be composed of a material that is reflective of light, its reflectivity being at least fifty percent.
In further examples the gasket may be composed of a silicone rubber compound, which in some examples may contain particles that reflect light and cause the silicone rubber compound to reflect light, its reflectivity being at least fifty percent.
In further examples, a portion of the surface of the circuit board may be coated with a coating substance that is reflective of light, its reflectivity being at least fifty percent; wherein, in some examples, the coating substance may include a white or silver-colored soldermask material, and/or the coating substance may include a white or silver-colored silkscreen ink.
In further examples, the bezel may include a window configured to allow light emitted by a light-emitting device to escape from the lamp assembly; wherein, in some examples, the edges of the window may be beveled in a manner that reduces the amount of emitted light striking the bezel, and/or the window may be filled with a transparent material in such a way that fluids may not flow through the window to reach the light-emitting device or the circuit board. In the latter case, in further examples, the transparent material may make optical contact to the light-emitting device and may have an index of refraction between that of the surrounding atmosphere and that of the surface of the light-emitting device from which light is emitted; and/or the transparent material may be clear silicone rubber; and/or the beveled surface may be reflective of light, its reflectivity being at least fifty percent, and the angle of the bevel may be between 20 and 80 degrees with respect to the normal to the major plane of the window; and/or the surface of the transparent material that is distal to the light-emitting device may have a shape that through refraction distributes the light emerging from the lamp assembly over a wide range of angles, and wherein, in further examples, the surface of the transparent material that is distal to the light-emitting device may have a shape that is flat, concave, meniscus-shaped, or multi-faceted; and/or a portion of the transparent material may contain light-scattering elements such as particles or bubbles.
In further examples, the lamp assembly further comprising an electrically conductive wire a first end of which is electrically connected to the circuit board and a second end of which is distal to the circuit board, the gasket, and the bezel may further comprise an end axle mechanically attached to the heat sink and/or the bezel, the end axle including a shaft portion capable of being rotated in a bearing. In further examples of the latter case, the end axle may include a passageway along the axis of the shaft portion, through which passageway the electrically conductive wire passes; and/or the end axle may include a knob on an end distal to the bezel and the heat sink, which knob may facilitate rotation by hand of the lamp about the axis of the shaft portion; and/or the end axle may include a first widened portion at a first end of the shaft portion, which first widened portion may extend beyond the radius of the shaft portion in a direction normal to the axis of the shaft portion. In the latter case, in some examples, the end axle may include a second widened portion at a second end of the shaft portion, which second widened portion may extend beyond the radius of the shaft portion in a direction normal to the axis of the shaft portion.
In a preferred embodiment as shown in
In the example shown in
The light from lamp assemblies 1800a, 1800b, and 1800c may directly illuminate surface 2301 and observer 2302 with a yellow-white light and may cast a distinct shadow 2303 just as does the sun on a clear day.
The light from lamp assemblies 1800d and 1800e may illuminate a diffusely reflective surface 2300 situated some distance above lamp array 2100. The light reflected by surface 2300 may be sky blue in color. This light may illuminate surface 2301 and observer 2302. This type of illumination is termed “indirect lighting” by those skilled in the art of illumination. If diffusely reflective surface 2300 is sufficiently distant from lamp array 2100, the indirect lighting may mimic the diffuse lighting from a clear blue sky on a sunny day. Shadow 2303 may be illuminated with this sky-blue light, just as shadows in sunlight are illuminated with sky-blue light from the sky.
It will be understood to those engaged in the art of optics that the principles illustrated in
In more general terms, a lamp array may comprise: two or more lamp assemblies, one of which supplies illumination with a first spectral characteristic and another of which supplies illumination with a second spectral characteristic different from the first spectral characteristic, each of which lamp assemblies includes two or more light-emitting devices, and a bearing mount having one or more bearings supporting each lamp assembly in a manner that allows each lamp assembly to be individually oriented rotationally about an axis of rotation.
In further examples, the light-emitting devices in each lamp assembly may be arranged in a line having a direction. In this case, in further examples, the lamp assemblies may be positioned such that the direction of the line is substantially the same for all of the lamp assemblies. In this latter case, in further examples, the lamp assemblies may be positioned in two or more rows in each of which the lines in which the light-emitting devices are arranged in the lamp assemblies are collinear and in which every lamp assembly in the same row supplies illumination with the same spectral characteristic. In this latter case, in further examples, the rows may all be substantially in the same plane and may be spaced between two inches and twelve inches apart, and/or the spectral characteristic of the lamp assemblies in each row may result in light of a distinct color, with the color of the light from a first row being substantially red, the color of the light from a second row being substantially red-orange or orange, the color of the light from a third row being substantially green, the color of the light from a fourth row being substantially cyan, and the color of the light from a fifth row being substantially blue or blue-violet.
If LED string 2503 is to be run off of DC power, supply circuit 2500 may include a rectifier 2505 to convert AC power at mains voltage Vm to DC power. Supply circuit 2500 may also include a capacitor 2506 across the DC output of rectifier 2505 for the purpose of reducing the amount of AC ripple on voltage Vs and consequently the amount of ripple in the current I that flows through LED string 2503. Capacitor 2506 may also increase the degree of protection against power surges on the mains 2507, since capacitor 2506 may store moderate amounts of surge energy with just a minor increase in voltage Vs. Supply circuit 2500 may include a resistor 2508 in series with the mains 2507 to limit the peak of the charging current into capacitor 2506 to a level that will not damage rectifier 2505. Supply circuit 2500 may also include an inductor 2509 in series with the mains 2507 to reflect energy from fast-transient surges back into the mains 2507 and possibly also to improve the power factor of the circuit.
Incandescent lamp 2501 may provide some surge protection by virtue of its current regulating properties. In addition, incandescent lamp 2501 can act as a replaceable fuse that can further protect LEDs 100 from burnout due to lengthy surges or overvoltage conditions at the mains 2507.
In a preferred embodiment running off a mains voltage Vm of nominally 120 VAC with an LED string 2503 consisting of twenty LEDs all connected in series that are intended to be run at a current I of approximately 0.3 amperes, incandescent lamp 2501 may be a standard 60-watt, 120-volt light bulb. The resistance of such a light bulb's filament 2504 at room temperature may be typically 18 ohms, and with a supply voltage Vs of 120 V there may occur an initial surge of current I of up to 9 amperes through LED string 2503, which may typically present an output voltage drop Vo between 40 and 80 volts. Once filament 2504 warms up to its steady-state temperature, the resistance of incandescent lamp 2501 may typically reach approximately 200 ohms, and current I will typically settle to about 0.3 amperes.
If current I must be DC, then in a preferred embodiment optional rectifier 2505 consisting of a full-wave diode bridge may be added. Capacitor 2506 with a capacitance of 250 microfarads may be added to store surge energy and to reduce the ripple on supply voltage Vs to approximately 10 volts peak-to-peak, and optional resistor 2508 with a resistance of 2 ohms may be added to reduce the peak charging current through rectifier 2505 to under 100 amperes. Inductor 2509 with an inductance of 0.3 millihenries may be added to protect against fast-transient surges of up to approximately 6000 volts lasting for up to 20 microseconds. Inductor 2509 may be constructed as a coil of wire, and the wire size in this coil may be chosen such that the coil has resistance 2 ohms. The coil may thus function as both inductor 2509 and resistor 2508 simultaneously. The coil may or may not include a magnetic core.
The DC supply subcircuit 2510 consisting of inductor 2509, rectifier 2505, and capacitor 2506, with the optional addition of resistor 2508, as shown enclosed in dashed lines in
An advantage of input-conditioned supply circuit 2600 is that incandescent lamp 2601 may act as a fuse or limiter that may protect against shorts in any of the remaining components of the circuit. In addition, incandescent lamp 2601, being a resistor, can perform in input-conditioned supply circuit 2600 the same function as does resistor 2508 in supply circuit 2500, limiting current surges through rectifier 2603 that may occur during the initial charging of a capacitor 2605. Input-conditioned supply circuit 2600 also may have the advantage of a more favorable power factor than that of supply circuit 2500 in cases in which a rectifier 2505 and 2603 and capacitor 2506 and 2605 are included in the respective circuits 2500 and 2600.
In a preferred embodiment of input-conditioned supply circuit 2600 operating with a mains voltage Vm of nominally 120 VAC supplying a current I of approximately 0.3 amperes to a lamp assembly 1800 with 20 LEDs 100 connected in series to form LED string 2604, incandescent lamp 2601 may be a standard 60-watt, 120-volt light bulb. If current I must be DC, then in a preferred embodiment optional rectifier 2603 consisting of a full-wave diode bridge may be added. Capacitor 2605 with a capacitance of 250 microfarads may be added to store surge energy and to reduce the ripple on supply voltage Vs to approximately 10 volts peak-to-peak, and optional resistor 2606 with a resistance of 80 ohms may be added to reduce the peak discharge current through LED string 2604 to under 2 amperes. Inductor 2607 with an inductance of 0.3 millihenries may be added to protect against fast-transient surges of up to approximately 6000 volts lasting for up to 20 microseconds. Inductor 2607 may be constructed as a coil of wire. The coil may or may not include a magnetic core.
In input-conditioned supply circuit 2600 a resistor 2606 large enough to limit surges in current I to a level below the absolute maximum peak current rating for the LEDs 100 may dissipate a large amount of power during normal operation and significantly reduce the efficiency of the system. To remedy this situation resistor 2606 may be replaced with a current limiter. A current limiter is a circuit that drops very little voltage when the current through the circuit is lower than a certain limit and will drop as much as the entire supply voltage when the current reaches the set limit.
When current I through current limiter 2700 is below the limit current, the voltage drop across feedback resistor 2702 is too low to turn on control transistor 2703. Current flowing through bias resistor 2705 flows through the base-emitter junction of blocking transistor 2701 turning it on. If the resistance of bias resistor 2705 is low enough, only a small voltage drop is required across resistor 2705 to turn blocking transistor 2701 on to the point at which only a small voltage drop between the collector and the emitter of blocking transistor 2701 is required to carry the remainder of current I through this transistor. Meanwhile, the voltage drop across feedback resistor 2702 is lower than the base-emitter turn-on voltage of control transistor 2703. Therefore, the total voltage drop between input terminal 2706 and output terminal 2704, which is the sum of the collector-to-emitter voltage of blocking transistor 2701 and the voltage drop across feedback resistor 2702, may be small.
When current I through current limiter 2700 is at the limit current, the voltage drop across feedback resistor 2702 is high enough to turn on control transistor 2703 so that nearly all of the current through bias resistor 2705 may flow through the collector to the emitter of control transistor 2703 with a voltage drop from the collector to the emitter that is at or below the base-emitter turn-on voltage of blocking transistor 2701. In this case blocking transistor 2701 will not turn on any more than necessary to allow enough current through feedback resistor 2702 to produce a voltage drop across feedback resistor 2702 sufficient to turn on control transistor 2703.
Though in some applications it may not be necessary, capacitor 2707 may be included to prevent blocking transistors 2701 from turning on and passing high current due to charging currents in the collector-base capacitances of blocking transistor 2701 and currents through bias resistor 2705 occurring before control transistor 2703 has had time to turn on. Capacitor 2707 may delay and slow the turn-on of blocking transistor 2701 until deleterious transients have passed.
For current limiter 2700 to be effective as a current limiter, blocking transistor 2701 may require a collector-emitter breakdown voltage, at a collector current equal to the limit current, in excess of the highest voltage difference that may exist between input node 2706 and output node 2704. Blocking transistor 2701 may also have to withstand sufficiently high instantaneous power dissipation levels without undergoing second breakdown. If a single blocking transistor 2701 is not capable of handling sufficient instantaneous power levels, one or more auxiliary blocking transistors 2708 may be added to current limiter 2700 as shown in
An additional requirement is that control transistor 2703 be capable of handling a peak collector current at least as high as the maximum current that may flow through resistor 2705. This maximum current may be approximately equal to the maximum voltage difference between input node 2706 and output node 2704 under current limiting conditions divided by the resistance of resistor 2705.
Though blocking transistor 2701, auxiliary blocking transistors 2708, and control transistor 2703 are shown as NPN bipolar junction transistors in
In a preferred embodiment current limiter 2700 may be inserted into the described preferred embodiment of input-conditioned supply supply circuit 2600 in place of resistor 2606 with input node 2706 connected to the positive terminal of capacitor 2605 and output node 2704 connected to LED string 2604. A blocking transistor 2701 and one similar auxiliary blocking transistor 2708 of the NPN bipolar junction type may be used, each with a collector-emitter breakdown voltage rating in excess of 150 volts at a collector current of 0.25 amperes and in excess of 200 volts in the off state. The forward current transfer ratio of blocking transistor 2701 and auxiliary blocking transistor 2708 may be in excess of 50. Feedback resistor 2702 and auxiliary feedback resistor 2709 may each have a resistance value of 2.2 ohms and a continuous power dissipation rating of 0.25 watts. Bias resistor 2705 may have a resistance value of 220 ohms and a continuous power dissipation rating of 0.25 watts. Control transistor 2703 of the NPN bipolar junction type may have a collector current rating in excess of 3 amperes and a maximum power dissipation capability of at least 1 watt. Capacitor 2707 may have a capacitance value of 100 microfarads and a working voltage rating of 10 volts. The capacitance value of capacitor 2605 in input-conditioned supply supply circuit 2600 may be changed to 720 microfarads, and its maximum ripple current rating may exceed 0.3 amperes.
Supply circuit 2500 may benefit from insertion of a current limiter, as well. The high level of current I occurring prior to the heating of filament 2504 may damage LEDs 100. Inserting a current limiter in series with incandescent lamp 2501 in supply circuit 2500 may prevent current I from exceeding the absolute maximum current rating for LEDs 100.
A supply circuit of type 2500 or 2600, with or without the inclusion of a current limiter, may be operated off of a dimmer, such as a triac dimmer in series with the mains 2507 or 2602 respectively. Input-conditioned supply circuit 2600 may put less peak current stress on the dimmer than would supply circuit 2500.
Though examples have been described in which an incandescent lamp 2501 or 2601 is used in helping to control current to a load of LEDs 100, it will be clear to those skilled in the art that a nonlinear-resistance device other than an incandescent lamp may be utilized in place of incandescent lamp 2501 or 2601, and a load comprised of elements other than LEDs may benefit from the use of a supply circuit of type 2500 or 2600. Nonlinear-resistance devices that show increasing resistance with increasing current magnitude may include electrolytic cells or may include certain semiconductor devices or circuits incorporating semiconductor devices, for example. Loads other than LEDs may include discharge lamps, batteries, or electroplating tanks, for example.
In more general terms, a supply circuit may comprise: an output terminal for providing current to a load; a drive voltage terminal for receiving an electromotive force for driving current through a load; and a nonlinear resistive element with a first terminal electrically connected to the drive voltage terminal and a second terminal electrically connected to the output terminal, the nonlinear resistive element having a dynamic electrical resistance that varies with the magnitude of the electrical current through the nonlinear resistive element, the resistance tending to rise when the magnitude of the electrical current rises and to fall when the magnitude of the electrical current falls.
In further examples, the nonlinear resistive element may include a filament that is heated by electrical current flowing through the filament, which filament has a dynamic electrical resistance that increases as the filament rises in temperature and wherein, in some further examples, the nonlinear resistive element may be an incandescent lamp.
In further examples, the supply circuit may further comprise: a first alternating-current power terminal for providing alternating current to a circuit; a second alternating-current power terminal for returning alternating current from a circuit; a common terminal for returning current from a load; and a rectifier with a first alternating-current input terminal electrically connected to the first alternating-current power terminal, a second alternating-current input terminal electrically connected to the second alternating-current power terminal, a first direct-current output terminal electrically connected to the drive voltage terminal, and a second direct-current output terminal electrically connected to the common terminal. In this case, in further examples, the supply circuit may further comprise a filter capacitor one terminal of which is electrically connected to the drive voltage terminal and the other terminal of which is electrically connected to the common terminal; and/or may further comprise a line input terminal for receiving power from a power line, and a current-impeding circuit for limiting the magnitudes of current surges that may result from surges in voltage on a power line, the current-impeding circuit having a first terminal electrically connected to the line input terminal and a second terminal electrically connected to the first alternating-current power terminal. In the latter case, in further examples, the current-impeding circuit may include as an element a resistor, an inductor, a capacitor, a current limiter, or a series combination of two or more of these elements.
In the last case mentioned, in further examples, the current limiter may include: a current limiter input terminal; a current limiter output terminal; a current limiter control terminal; a current limiter feedback terminal; a blocking transistor having a control electrode electrically connected to the current limiter control terminal, an inverting electrode electrically connected to the current limiter input terminal, and a non-inverting electrode electrically connected to the current limiter feedback terminal; a control transistor having a control electrode electrically connected to the current limiter feedback terminal, an inverting electrode electrically connected to the current limiter control terminal, and a non-inverting electrode electrically connected to the current limiter output terminal; a feedback resistor having one terminal electrically connected to the current limiter feedback terminal and another terminal electrically connected to the current limiter output terminal; and a bias resistor having one terminal electrically connected to the current limiter input terminal and another terminal electrically connected to the current limiter control terminal. In addition, in further examples, the supply circuit may further comprise a capacitor having one terminal electrically connected to the current limiter control terminal and another terminal electrically connected to the current limiter output terminal; and/or the blocking transistor and the control transistor may each be one of an NPN bipolar junction transistor or an N-channel field effect transistor; and/or the blocking transistor and the control transistor may each be one of a PNP bipolar junction transistor or a P-channel field effect transistor; and/or the supply circuit may further comprise one or more auxiliary blocking circuits, each of which auxiliary blocking circuits is comprised of an auxiliary feedback terminal, an auxiliary blocking transistor having a control electrode electrically connected to the current limiter control terminal plus an inverting electrode electrically connected to the current limiter input terminal plus a non-inverting electrode electrically connected to the auxiliary blocking circuit's auxiliary feedback terminal, and an auxiliary feedback resistor having one terminal electrically connected to the auxiliary blocking circuit's auxiliary feedback terminal and another terminal electrically connected to the current limiter output terminal. In this latter case, in further examples, the auxiliary blocking transistor in each auxiliary blocking circuit may be substantially identical in characteristics to the blocking transistor, and the auxiliary feedback resistor in each auxiliary blocking circuit may be substantially identical in characteristics to the feedback resistor.
Alternatively, a supply circuit may comprise: an output terminal for providing current to a load; a common terminal for returning current from a load; a drive voltage terminal for receiving the electromotive force for driving current through a load; a surge-limiting circuit having a first terminal electrically connected to the drive voltage terminal and having a second terminal electrically connected to the output terminal, which surge-limiting circuit is capable of limiting the magnitudes of current surges that may result from temporary excesses in electromotive force between the drive voltage terminal and the common terminal; a first alternating-current power terminal for providing alternating current to a circuit; a second alternating-current power terminal for returning alternating current from a circuit; a rectifier with a first alternating-current input terminal electrically connected to the first alternating-current power terminal, a second alternating-current input terminal electrically connected to the second alternating-current power terminal, a first direct-current output terminal electrically connected to the drive voltage terminal, and a second direct-current output terminal electrically connected to the common terminal; a line input terminal for obtaining power from a power line; and a current-impeding circuit having one terminal electrically connected to the line input terminal and another terminal electrically connected to the first alternating-current power terminal, which current-impeding circuit is capable of limiting the magnitudes of current surges that may result from surges in the electric potential between the line input terminal and the second alternating-current power terminal, and which current-impeding circuit includes a nonlinear resistive element having a dynamic electrical resistance that varies with the magnitude of the electrical current through the nonlinear resistive element, the resistance tending to rise when the magnitude of the electrical current rises and to fall when the magnitude of the electrical current falls, and which current-impeding circuit causes to flow through the nonlinear resistive element most of the electrical current that flows through the current-impeding circuit from the line input terminal to the first alternating-current power terminal.
In further examples of this alternative supply circuit, the nonlinear resistive element may include a filament that is heated by electrical current flowing through the filament, which filament has a dynamic electrical resistance that increases as the filament rises in temperature. In this case, in further examples, the nonlinear resistive element may be an incandescent lamp.
In further examples of this alternative supply circuit, the supply circuit may further comprise a filter capacitor one terminal of which is electrically connected to the drive voltage terminal and the other terminal of which is electrically connected to the common terminal.
In further examples of this alternative supply circuit, the surge-limiting circuit may include as an element a resistor, an inductor, or a current limiter, or a series combination of two or more of these elements.
In the last case mentioned, in further examples, the current limiter may include: a current limiter input terminal; a current limiter output terminal; a current limiter control terminal; a current limiter feedback terminal; a blocking transistor having a control electrode electrically connected to the current limiter control terminal, an inverting electrode electrically connected to the current limiter input terminal, and a non-inverting electrode electrically connected to the current limiter feedback terminal; a control transistor having a control electrode electrically connected to the current limiter feedback terminal, an inverting electrode electrically connected to the current limiter control terminal, and a non-inverting electrode electrically connected to the current limiter output terminal; a feedback resistor having one terminal electrically connected to the current limiter feedback terminal and another terminal electrically connected to the current limiter output terminal; and a bias resistor having one terminal electrically connected to the current limiter input terminal and another terminal electrically connected to the current limiter control terminal. In addition, in further examples, the supply circuit may further comprise a capacitor having one terminal electrically connected to the current limiter control terminal and another terminal electrically connected to the current limiter output terminal; and/or the blocking transistor and the control transistor may each be one of an NPN bipolar junction transistor or an N-channel field effect transistor; and/or the blocking transistor and the control transistor may each be one of a PNP bipolar junction transistor or a P-channel field effect transistor; and/or the supply circuit may further comprise one or more auxiliary blocking circuits, each of which auxiliary blocking circuits is comprised of an auxiliary feedback terminal, an auxiliary blocking transistor having a control electrode electrically connected to the current limiter control terminal plus an inverting electrode electrically connected to the current limiter input terminal plus a non-inverting electrode electrically connected to the auxiliary blocking circuit's auxiliary feedback terminal, and an auxiliary feedback resistor having one terminal electrically connected to the auxiliary blocking circuit's auxiliary feedback terminal and another terminal electrically connected to the current limiter output terminal. In this latter case, in further examples, the auxiliary blocking transistor in each auxiliary blocking circuit may be substantially identical in characteristics to the blocking transistor, and the auxiliary feedback resistor in each auxiliary blocking circuit may be substantially identical in characteristics to the feedback resistor.
Accordingly, while embodiments have been particularly shown and described, many variations may be made therein. Other combinations of features, functions, elements, and/or properties may be used. Such variations, whether they are directed to different combinations or directed to the same combinations, whether different, broader, narrower, or equal in scope, are also included.
The methods and apparatus described in the present disclosure are applicable to lighting and other industries utilizing solid-state light-emitting devices such as LEDs for illumination.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/045236 | 8/11/2010 | WO | 00 | 1/26/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/019856 | 2/17/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3432726 | Meyer et al. | Mar 1969 | A |
5871274 | Lee et al. | Feb 1999 | A |
6161910 | Reisenauer et al. | Dec 2000 | A |
6436517 | Zahn | Aug 2002 | B1 |
20020059721 | Crudo et al. | May 2002 | A1 |
20030130379 | Panz et al. | Jul 2003 | A1 |
20030222282 | Fjelstad et al. | Dec 2003 | A1 |
20040095777 | Trenchard et al. | May 2004 | A1 |
20040119082 | Sugawara | Jun 2004 | A1 |
20040212318 | Hamamoto et al. | Oct 2004 | A1 |
20040233671 | Staufert | Nov 2004 | A1 |
20050045897 | Chou et al. | Mar 2005 | A1 |
20050174065 | Janning | Aug 2005 | A1 |
20060171147 | Day | Aug 2006 | A1 |
20060187653 | Olsson | Aug 2006 | A1 |
20060255960 | Uken et al. | Nov 2006 | A1 |
20060265921 | Korall et al. | Nov 2006 | A1 |
20070007898 | Bruning | Jan 2007 | A1 |
20080238649 | Arszman et al. | Oct 2008 | A1 |
20090034255 | Li | Feb 2009 | A1 |
20090059610 | Marshall et al. | Mar 2009 | A1 |
20090091914 | Nobayashi | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
201130491 | Oct 2008 | CN |
Number | Date | Country | |
---|---|---|---|
20120127707 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
61233417 | Aug 2009 | US |