The present invention relates generally to Light Emitting Diodes (LEDs), and more particularly, to a method of and apparatus for extracting heat from LEDs. Even more particularly, the present invention is directed to conducting heat away from high brightness LEDs.
As LEDs have progressed over the past ten years and have become capable of handling more power than their early predecessor indicator LEDs, one area that becomes critical to the proper operation and longevity of the LED is thermal management. As stated in the document “Thermal Design Using Luxeon Power Light Sources” (Application Brief AB05) by Lumileds LLC, which is hereby incorporated by reference herein in its entirety (hereinafter “Thermal Design”), the manufacturer of the Luxeon High Brightness LED: “Proper thermal design is imperative to keep the LED emitter package below its rated temperature.”
It is well known and a published fact that high brightness and high power LEDs need to be connected to an external heat sink for operation over extended periods of time. As stated by Lumileds in document “Luxeon Reliability” (Application Brief AB25), which is hereby incorporated by reference in its entirety:
As used herein, the term “HB LED” means LEDs of all types, light emitting polymers, and semiconductor dies that produce light in response to current that needs to be connected to a heat sink for optimal operation. Additional benefits of utilizing a heat sink include operation in higher ambient temperatures and the promotion of an extended life of the HB LED.
New methods designed to reduce thermal overstress failures of HB LEDs that are available include the utilization of aluminum substrates. Presently in the industry today, the use of Metal Core Printed Circuit Boards (MCPCB) or products based on this technology such as T-Clad™ by Bergquist Company offers a means of extracting the heat from High Brightness LEDs. Essentially, an MCPCB is a PCB (Printed Circuit Board) that utilizes an aluminum plate as a body as opposed to FR4, polyimide and other PCB and flexible circuit materials.
The process of installing an LED on an MCPCB is as follows. The LED must be glued to the MCPCB via a thermally conductive adhesive that is electrically neutral. The surface of the LED is glued typically to a copper pad on the dielectric layer of the MCPCB. Looking at the layers included in the MCPCB on the surface is the copper pad, below that is a dielectric layer, below the dielectric is the aluminum substrate. Once the LED is glued in place, the LED leads are soldered to the MCPCB. In some cases the LED is not glued in place, rather the LED's leads when soldered attach the LED to the board.
The use of MCPCBs in LED applications is very expensive. Besides the high price, MCPCBs are on a limited basis being offered by only several manufacturers. The uses of MCPCBs also do not promote the best cooling of the HB LED device. Since in most cases it is required to mount the aluminum substrate to an additional heat sink, a third junction is created (see page 4 of “Thermal Design”), which increases the thermal impedance of the assembly, thus in the long run, the life and performance of the HB LED.
It is also known that the base of most HB LEDs used for heat sinking is not electrically neutral. Therefore, consideration must be taken to electrically isolate this electrically conductive area. The MCPCB technology offers the solution of inserting a dielectric layer between the LED and the aluminum substrate. While this dielectric layer boasts decent thermal conductivity, it also plays a negative effect in the extraction of heat from the HB LED. Heat must transfer from the HB LED die, to the HB LED, to the thermally conductive adhesive holding the HB LED slug to the MCPCB assembly, through the copper pad that the HB LED is mounted to, through the dielectric layer, through the aluminum substrate, and finally to an external heat sink which will dissipate the heat into the ambient air. At each point, there is increased thermal resistance, thus the extraction of heat could be drastically improved.
Looking to the future as HB LEDs become more powerful and package size is not drastically increased, the extraction of heat from the HB LED will become more and more critical. As an example, present HB LEDs offer a thermal resistance of approximately 15 degrees Celsius per watt at the area where the die attach combines with die and material to contact with the die attach, as seen on page 4 of “Thermal Design”. While a one watt LED sees internally a minor rise in temperature 15° C.) a 5 watt HB LED experiences a 75° C. rise internally inside the part (at the junction as described above), therefore leaving very little head room for the remainder of the thermal design as the LEDs have a maximum junction temperature typically in the area of 120–130° C. In order to heat sink a device such as a 5 watt HB LED, a minimum amount of thermal junctions will be required in order to assure proper extraction of heat from the HB LED.
It is, therefore, an aspect of the present invention to overcome the problems with MCPCB technology.
It is another aspect of the present invention to provide a fixture capable of providing sufficient heat transfer for high brightness LEDs.
These and other aspects of the present invention are achieved by a lighting system including a body with a plurality of through holes and a face, a plurality of rods with an end connected to the body, a circuit board with holes aligned in the body, and a plurality of LEDs each extending through the circuit board and the LEDs each fastened to the body.
The foregoing aspects of the present invention are also achieved by a lighting fixture including a body with a plurality of through holes and a face, a plurality of rods and a hollow center tube to connect the body and the electronic housing.
Still other aspects and advantages of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein the preferred embodiments of the invention are shown and described, simply by way of illustration of the best mode contemplated of carrying out the invention. As will be realized, the invention is capable of other and different embodiments, and it several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings are to be regarded as illustrative in nature, and not as restrictive.
The present invention is illustrated by way of example, and not by limitation, in the figures of the accompanying drawings, wherein elements having the same reference numeral designations represent like elements throughout and wherein:
An apparatus for effectively transferring heat away from high brightness LEDs according to the present invention is described. In the following detailed description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be readily apparent, however, that the present invention may be practiced without the specific details. In other instances, well-known structures and devices are shown in block diagram form in order to unnecessarily obscure the present invention.
Referring first to
The present invention is designed to overcome the problems with MCPCB technology, which includes conductive solid body 32, typically copper or aluminum, typically having rods extending therefrom. This conductive solid body 36 is fastened in place by a body 32 constructed of typically plastic/Delrin® that the copper rods 36 may be pressed or installed into. This body 32 may be conductive or non-conductive. Each LED 100 is mounted to a standard printed circuit board (PCB) or flexible circuit board (see
The solid body 36 of the copper rod is designed to extract the heat away from the LED 100 and into the surrounding air or another material. As materials such as copper and aluminum boast high thermal conductance, the heat is drawn from the LED 100, thus promoting a lower junction temperature. Generally, the power of the LED 100 and desired rise of the junction temperature are related to the length and diameter of the solid body 34. Generally, the longer the solid body 34 is the lower the junction temperature. In some cases, an assembly will include multiple LEDs which further complicate the thermal model of the system. In order to enhance the thermal characteristics of the solid bodies, one or many spaced thin copper, aluminum or other conductive material plates or fins 38, 40, 42 may be pressed over the rods 36 as illustrated in
Referring to
Referring to
Referring to
Referring to
An alternative embodiment is depicted in
As mentioned above, and as depicted in
Advantageously, through the use of the invention described herein, when compared to the standard technology of the MCPCB, the number of thermal junctions is drastically decreased.
It will be readily seen by one of ordinary skill in the art that the present invention fulfills all of the objects set forth above. After reading the foregoing specification, one of ordinary skill will be able to affect various changes, substitutions of equivalents and various other aspects of the invention as broadly disclosed herein. It is therefore intended that the protection granted hereon be limited only by the definition contained in the appended claims and equivalents thereof.
The present invention claims priority from Provisional Application No. 60/481,387 filed on Sep. 17, 2003, entitled “VERSATILE THERMALLY ADVANCED LED FIXTURE”.
Number | Name | Date | Kind |
---|---|---|---|
6541800 | Barnett et al. | Apr 2003 | B2 |
6799864 | Bohler et al. | Oct 2004 | B2 |
6897486 | Loh | May 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050083698 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
60481387 | Sep 2003 | US |