Field of the Invention
The present invention relates to vacuum cleaners.
Description of the Related Art
Vacuum cleaners are common household items that are used for a variety of cleaning tasks. Vacuum cleaners are provided in various configurations, which often times are tailored to particular cleaning requirements or methods. For example, upright vacuum cleaners typically join a suction fan, dirt receptacle, and floor cleaning base into a single integrated structure, which is convenient and simple to use, but often is quite heavy. Lighter-weight versions of upright vacuums, typically called “stick” vacuum cleaners, are also known. Other vacuum cleaners are configured as a canister containing the vacuum fan and dirt receptacle, which fluidly connected to a cleaning wand by a flexible hose. Other configurations are known in the art.
While current vacuum cleaners provide various levels of utility, convenience, and flexibility, there still remains a need to advance the state of the art by providing alternative or improved vacuum cleaners.
In one exemplary aspect, there is provided a vacuum cleaner having a vacuum unit and a wand assembly. The vacuum unit has a housing, a power supply, a suction generator located in the housing, a dirt collector operatively associated with the housing, and a vacuum unit inlet in fluid communication with the dirt collector and the suction generator. The wand assembly is attached to and in fluid communication with the vacuum unit inlet. The wand assembly has a rigid portion having a proximal wand end and a distal wand end spaced along a longitudinal axis from the proximal wand end, and the rigid portion is reconfigurable between a first wand condition in which the proximal wand end is rigidly connected to the vacuum unit inlet and the distal wand end is in fluid communication with the vacuum unit inlet, and a second wand condition in which the proximal wand end is movable relative to the vacuum unit inlet and the distal wand end is in fluid communication with the vacuum unit inlet. The flexible portion has a proximal hose end configured to rigidly connect to the vacuum unit inlet with the proximal hose end in fluid communication with the vacuum unit inlet, a distal hose end configured to fit inside the rigid portion and be in fluid communication with the distal wand end, and a flexible hose fluidly connecting the distal hose end to the proximal hose end. The flexible hose is telescopically movable relative to the rigid portion between a first hose condition corresponding to the first wand condition in which the flexible hose is located entirely inside the rigid portion, and a second hose condition corresponding to the second wand condition in which at least a portion of the flexible hose adjacent the proximal hose end extends outside the rigid portion.
In various aspects, the vacuum unit may have a first electrical connector operatively associated with the power supply, and the proximal hose end may have a second electrical connector, and the second electrical connector may be electrically connected to the first electrical connector when the proximal hose end is rigidly connected to the vacuum unit inlet. In this aspect, the rigid portion may have a third electrical connector that is electrically connected to the second electrical connector when the rigid portion is in the first wand condition. However, the third electrical connector also may not be electrically connected to the second electrical connector when the rigid portion is in the second wand condition. The first electrical connector may be operatively associated with the power supply through a user-operable switch.
In other aspects, the proximal hose end may be selectively removable from the vacuum unit inlet. In this aspect, the vacuum cleaner may have an accessory having an accessory connector and an accessory inlet in fluid communication with the accessory connector, and the vacuum cleaner may be reconfigurable between a first accessory condition in which the distal wand end is connected to the accessory connector with the accessory inlet in fluid communication with the vacuum unit inlet, and a second accessory condition in which the proximal hose end is removed from the vacuum unit inlet and the vacuum unit inlet is connected to the accessory connector without the wand assembly and with the accessory inlet in fluid communication with the vacuum unit inlet. The vacuum cleaner also may be further reconfigurable to a third accessory condition in which the rigid portion is removed from the flexible portion and the accessory connector is connected to the distal hose end without the rigid portion and with the accessory inlet in fluid communication with the vacuum unit inlet. The vacuum unit also may have a first electrical connector operatively associated with the power supply, the rigid portion may have a second electrical connector, and the accessory connector may have a third electrical connector, and the second electrical connector may be electrically connected to the first electrical connector when the proximal wand end is in the first wand condition, the third electrical connector may be electrically connected to the second electrical connector when the accessory is in the first accessory condition, and the third electrical connector may be electrically connected to the first electrical connector when the accessory is in the second accessory condition. The vacuum unit also may have a first electrical connector operatively associated with the power supply, the proximal hose end further may have a second electrical connector, the rigid portion may have a third electrical connector, and the accessory connector may have a fourth electrical connector, and the second electrical connector may be electrically connected to the first electrical connector when the proximal hose end is rigidly connected to the vacuum unit inlet, the third electrical connector may be electrically connected to the second electrical connector when the proximal wand end is in the first wand condition, the fourth electrical connector may be electrically connected to the third electrical connector when the accessory is in the first accessory condition, and the fourth electrical connector may be electrically connected to the first electrical connector when the accessory is in the second accessory condition. Also, the second electrical connector may not extend from the proximal hose end to the distal hose end, or the second electrical connector may extend from the proximal hose end to the distal hose end and the vacuum cleaner may be further reconfigurable to a third accessory condition in which the rigid portion is removed from the flexible portion and the accessory connector is connected to the distal hose end without the rigid portion and with the accessory inlet in fluid communication with the vacuum unit inlet and the fourth electrical connector electrically connected to the second electrical connector.
In other aspects, the proximal wand end may be rigidly connected to the vacuum unit by way of the proximal hose end when the rigid portion is in the first wand condition. These aspects also may have a first clasp configured to selectively hold the proximal hose end to the vacuum unit inlet, and a second clasp configured to selectively hold the proximal wand end to the proximal hose end.
In further aspects, the proximal wand end may be rigidly connected directly to the vacuum unit when the rigid portion is in the first wand condition. These aspects may have a first clasp configured to selectively hold the proximal hose end to the vacuum unit inlet, and a second clasp configured to selectively hold the proximal wand end to the vacuum unit inlet.
In other aspects, the distal hose end may be slidable within the rigid portion between a first position in which the distal hose end is adjacent the distal wand end and a second position in which the distal hose end is adjacent the proximate wand end. In these aspects, there may be a clasp configured to selectively prevent the distal hose end from passing through the proximate wand end.
In other aspects, the wand assembly may be selectively removable from the vacuum unit.
In other aspects, the power supply may include at least one of a power cord and a battery.
Other alternatives will be apparent to persons of ordinary skill in the art in view of the present disclosure.
The recitation of this summary of the invention is not intended to limit the claims of this or any related or unrelated application. Other aspects, embodiments, modifications to and features of the claimed invention will be apparent to persons of ordinary skill in view of the disclosures herein.
A better understanding of the exemplary embodiments may be understood by reference to the attached drawings, in which like reference numbers designate like parts. The drawings are exemplary and not intended to limit the claims in any way.
The vacuum unit 102 contains a suction generator 108 that is operatively connected to a dirt collector 110. The suction generator 108 may comprise an impeller connected to an electric motor, as well-known in the art, which may be powered by household mains via a cord 112, by batteries 114, by a combination of a cord 112 and batteries 114 (used alternatively or simultaneously), or by other power sources. Examples of vacuum units are provided in U.S. Pat. Nos. 8,302,251 and 8,595,897, which are incorporated herein by reference. The suction generator 108 is operatively connected to the dirt collector 110. This may be done by positioning a suction inlet of the suction generator 108 in fluid communication with a fluid outlet of the dirt collector 110 to operate the dirt collector 110 under negative pressure, or by positioning the suction generator 108 upstream of the dirt collector 110 to operate the dirt collector 110 under positive pressure.
The dirt collector 110 may comprise any suitable device, such as a bag chamber that contains a filter bag that removes dirt from the air, a dirt cup that contains a screen or filter to remove the dirt from the air, a cyclone that uses one or more cyclonic cleaning stages (and optionally perforated screens or filters) to centrifuge dirt from the air, and combinations of the foregoing and other devices. The dirt collector 110 preferably includes a collecting cup portion that receives the bulk of the separated dirt. The dirt collector 110 may be configured for emptying using any conventional construction. For example the dirt collector 110 may be removable in its entirety from the vacuum unit 102, or only the collecting cup portion may be removable. The dirt collector 110 also may include an openable door to allow emptying without removal from the vacuum unit 102. Other alternatives will be apparent to persons of ordinary skill in the art in view of the present disclosure.
The suction generator 108 and dirt collector 110 are provided in or on a rigid housing 116. The housing 116 may include a hand grip 118 that is shaped and sized to be held by a typical operator's hand. The housing 116 also may include vents and other structures such as tool storage mounts, and the like, as known in the art.
The vacuum unit 102 also includes a vacuum unit inlet 200 (
The particular details of the vacuum unit 102 can vary according to desired specifications, and it will be appreciated that features such as pre- and post-suction generator filters, battery compartments and connectors, charger mounting arrangements, and the like may be added to the vacuum unit 102, as desired. The parts of the vacuum unit 102 also may be rearranged in various orientations, as well known in the art. For example, the dirt collector 110 or suction generator 108 may be placed on the front side of the wand assembly axis, instead of the rear side as shown, or the dirt collector 110 may be located above the suction generator 108 instead of below it. These and other suitable configurations of vacuum units, suction generators and dirt collectors are well-known in the art, and need not be described in detail herein.
In the configuration shown in
As shown in
The base 106 may include a surface agitator 120, such as a rotating brush or the like, that is powered by electrical leads that pass through the wand assembly 104. The base 106 preferably is configured to selectively attach directly to the wand assembly 104, such as shown in
The base 106 also may be removable from the wand assembly 104, while the wand assembly 104 remains attached to the vacuum unit 102. In this configuration, the vacuum cleaner 100 may be operated by directing the open end of the wand assembly 104 to pick up dirt and debris, or one or more different accessories may be attached to the end of the wand assembly 104. These accessories may be powered by electrical leads such as those that power a motor for the agitator 120, or they may be unpowered. For example, the base 106 may be replaced by a bare floor cleaning tool 500 shown in
The wand assembly 104 extends from a proximal wand assembly end 124 that connects to the vacuum unit 102, to a distal wand assembly end 126 that connects to the base 106. As shown in
In this embodiment, the flexible portion 204 includes a rigid proximal hose end 206 that selectively attaches directly to the vacuum unit inlet 200, a rigid distal hose end 208 that slides into the rigid portion 202, and a flexible hose 210 extending between the ends 206, 208. The rigid portion 202 is provided as a hollow wand structure that has a proximal wand end 212 that extends along a longitudinal axis to a distal wand end 214. The proximal wand end 212 slides over the full length of the flexible hose 210 to connect to the rigid proximal hose end 206, and the distal wand end 214 selectively connects to the base connector 122. In this example, the rigid proximal hose end 206 is positioned structurally between the rigid portion 202 and the vacuum unit 102.
A first clasp 600 is provided on the proximal hose end 206 to releasably hold the proximal hose end 206 to the vacuum unit 102. A second clasp 602 is provided on the proximal wand end 212 to releasably hold the proximal wand end 212 to the proximal hose end 206 with the rigid portion 202 fully covering the flexible hose 210. This configuration provides a rigid pathway from the vacuum unit 102 to the distal wand end 214. An operator may grasp the vacuum unit 102 and/or the rigid portion 202 to manipulate the vacuum cleaner 100 as a single rigid unit to pick up debris. A base 106 or other accessory may be attached to the distal wand end 214, or it may be operated without an accessory. The first clasp 600 may be disengaged to completely remove the wand assembly 104 and operate the vacuum unit 102 alone in a “handheld” configuration, as discussed above.
The second clasp 602 may be disengaged, while the first clasp 600 remains engaged, to slide the rigid portion 202 telescopically over the flexible portion 204 to expose some or all of the flexible hose 210, such as shown in
The rigid portion 202 and flexible portion 204 also may be configured to completely remove the rigid portion 202, such as shown in
Any suitable connector arrangement or arrangements may be used to releasably interconnect the vacuum unit 102, rigid portion 202, flexible portion 204, base 106 and accessories. For example, the vacuum unit inlet 200, proximal hose end 206, proximal wand end 212, distal wand end 214, and base connector 122 may comprise simple tapered slip connectors that engage one another by friction. In a more preferred embodiment, the connectors may include releasable catches or the like, to reduce the likelihood of inadvertent release. Examples of connectors that may be used include those shown in U.S. Pat. Nos. 2,660,457; 2,867,833; 4,955,106; 6,108,861; and 7,895,708, which are all incorporated herein by reference.
A first clasp 600 selectively holds the proximal hose end 206 on the vacuum unit inlet 200. In this case, the first clasp 600 comprises a rocker latch that is mounted to the proximal hose end 206 on a pivot 706. The first clasp 600 has, at one end, a hook 708 that fits into a corresponding receptacle 710 on the vacuum unit inlet 200. A spring 712 is provided at the other end of the first clasp 600 to bias the first clasp 600 to rotate about the pivot 706 to hold the hook 708 in the receptacle 710. The first clasp 600 is disengaged by pressing down over the spring 712 to rotate the hook 708 out of the receptacle 710, after which the wand assembly 104 may be removed from the vacuum unit 102. Also, the hook 708 preferably has a tapered face that automatically moves the first clasp 600 to the disengaged position as the proximal hose end 206 is slid towards the vacuum unit 102, so that it is not necessary to manually disengage the first clasp 600 when installing the proximal hose end 206 to the vacuum unit inlet 200.
The proximal hose end 206 also includes a second electrical connector 714. The second electrical connector 714 is provided in one or more insulated passages extending through the first portion 716 of the proximal hose end 206, and is positioned to contact the first electrical connector 702 when the proximal hose end 206 is engaged with the vacuum unit inlet 200. It will be appreciated that the second electrical connector 714 may comprise one or more electrical conduction paths, and the term “electrical connector” is used herein to describe any single or collection of electrical paths (e.g., a single “electrical connector” may have paths for positive and negative power leads, and one or more control signal leads). Any suitable mating electrical connector structures may be used for the first and second electrical connectors 702, 714, and other electrical connectors discussed herein. For example, the first electrical connector 702 may comprise one or more steel pins, and the second electrical connector may comprise one or more corresponding steel sockets that receive the pins. Electrical connectors, conductive materials, wiring, and the like, are known in the art of vacuum cleaners, and suitable embodiments will be readily apparent to persons of ordinary skill in the art in view of this disclosure, and need not be described in detail herein.
The proximal hose end 206 also includes a second portion 718 that extends distally from the first portion 716. The second portion 718 comprises a hollow structure, and it may have smaller inside and outside diameters than the first portion 716. The second portion 718 is configured to engage the proximal wand end 212. In this example, the proximal wand end 212 is shaped and sized to slide over the second portion 718. An seal (not shown) may be provided at this connection. The second portion 718 and the proximal wand end 212 are selectively connected to one another by a second clasp 602. The second clasp 602 may be similar to or different from the first clasp 600. Here, the second clasp 602 is mounted to the proximal wand end 212 on a pivot 720, and includes a hook 722 that engages a receptacle 724 on the second portion 718 of the proximal hose end 206, and a spring 726 to bias the hook 722 into the receptacle 724. The second clasp 602 is structurally and functionally similar to the first clasp 600 and needs no further description herein.
The proximal end of the flexible hose 210 is connected to the second portion 718 of the proximal hose end 206. The flexible hose 210 may comprise any suitable flexible passage, such as a flexible plastic tube having a spiraling metal wire integrated into the tube to bias the tube into a contracted shape. It is preferred for the flexible hose 210 to be a self-collapsing hose that naturally attains the collapsed position (e.g., under bias of an internal wire) when it is not being actively stretched, but this is not strictly required in all embodiments. The flexible hose 210 may be connected to the proximal hose end 206 using any suitable structure, such as an adhesive, a band clamp, friction fittings, mating threads, or the like. Hose structures and techniques and structures for connecting flexible hoses to rigid end connectors are well known in the art, and need not be described herein.
The distal hose end 208 comprises a hollow, rigid cuff that is shaped and sized to fit within the rigid portion 202. The distal end of the flexible hose 210 is connected to the distal hose end 208 by a connection such as described above. The distal hose end 208 preferably is removable from the rigid portion 202, and slidable within the rigid portion 202, but these features are not required in all embodiments. For example, the distal hose end 208 may simply comprise an interior mounting structure located inside the rigid portion 202 (either at the distal wand end 214 or at some location between the proximal wand end 212 and the distal wand end 214) to which the distal end of the flexible hose 210 is permanently connected. In the embodiment of
One or more clasps may be provided to control the movement of the distal hose end 208. For example, the second clasp 602 may be configured to intercept the distal hose end 208 when the distal hose end 208 assumes a position adjacent the proximal wand end 212, such as shown in
A third clasp 728 also may be provided in some embodiments to selectively hold the distal hose end 208 at a location adjacent the distal wand end 214 or at other locations along the length of the wand. Here, the third clasp 728 is mounted to the distal wand end 214 on a pivot, and includes a hook that engages a receptacle on the distal hose end 208, and a spring to bias the hook into the receptacle. The exemplary third clasp 728 is structurally and functionally similar to the second clasp 602 and needs no further description herein. Of course, other types of third clasp 728 may be used instead of the shown device.
As noted above, the proximal wand end 212 is configured to fit over the second portion 718 of the proximal hose end 206. From here, the rigid portion 202 extends to the distal wand end 214 and forms a hollow interior passage to contain the flexible hose 210 and distal hose end 208. The rigid portion 202 also includes a third electrical connector 732 that is contained in an insulated passage extending from the proximal wand end 212 to the distal wand end 214. The third electrical connector 732 preferably comprises a mating connector at each end of the rigid portion 202, and rigid or wire conductors extending between the connectors, but other electricity conducting structures may be used. The third electrical connector 732 is configured at the proximal wand end 212 to engage with the second electrical connector 714 when the proximal wand end 212 is rigidly connected to the proximal hose end 206, such as shown in
The distal wand end 214 is configured to selectively connect to the base connector 122. For example, the distal wand end 214 may be shaped and sized to slide within a corresponding receptacle 734 at the proximal end of the base connector 122. A seal 704 may be provided between the outer surface of the distal wand end 214 and the inner surface of the receptacle to mitigate air leaks at this location. The base connector 122 may include a fourth clasp 736 to hold the wand assembly 104 to the base 106. The exemplary fourth clasp 736 is structurally and functionally similar to the first clasp 600 and needs no further description herein. Of course, other types of fourth clasp 736 may be used instead of the shown device. The base connector 122 also includes a fourth electrical connector 738 contained within one or more insulated passages within the base connector 122. The third electrical connector 732 and fourth electrical connector 738 are configured to engage one another when the distal wand end 214 is connected to the base connector 122. Thus, when the parts are assembled as shown in
In this example, the distal wand end 214 is shaped as a hollow collar that is similar in shape and size to the male connector provided as the vacuum unit inlet 200, and the receptacle 734 on the base connector 122 is similar in shape and size to the first portion 716 of the proximal hose end 206. Thus, the vacuum unit inlet 200 may be removed from the proximal hose end 206 and connected directly to the base connector 122. Thus configured, the base connector 122 forms a fluid connection with the vacuum unit inlet air passage 700, and the first electrical connector 702 also may connect to and form an electrical path with the fourth electrical connector 738. However, this similarly of structure and interchangeability is not required in all embodiments.
The embodiment of
It will be appreciated that the embodiment of
The proximal hose end 206 of this embodiment comprises a hollow collar that slides inside the vacuum unit inlet 200. The proximal hose end 206 may be connected to the vacuum unit inlet 200 by a second clasp 810, such as a hook 812 that is resiliently mounted to the proximal hose end 206 on a cantilevered arm 814, and biased by the arm 814 into a receptacle 816 in the vacuum unit inlet 200. The arm 814 may be flexed by pushing on the hook 812 to displace the hook from the receptacle 816, such as shown in
The first clasp 800 also may include a projection 818 that is configured to pass through an opening 820 and contact the second clasp's hook 812 when the user pushes the first clasp 800 a certain distance. By doing this, the user can disengage the first clasp 800 and the second clasp 810 at the same time in order to remove the entire wand assembly 104 as a single unit. The distance may be selected to be greater than the distance required to disengage the first clasp's hook 804, so that pushing the first clasp 800 a first distance disconnects the rigid portion 202 from the vacuum unit 102, and pushing the first clasp 800 a greater second distance disconnects the rigid portion 202 and the flexible portion 204 from the vacuum unit 102. Alternatively, the first clasp 800 may not engage the second clasp 810, and the second clasp 810 may be accessible only after the rigid portion 202 of the wand assembly 104 is removed from the vacuum unit 102. This example is shown in
This embodiment also does not require a separate electrical connector to pass through the proximal hose end 206. Instead, a first electrical connector 822 is provided in the vacuum unit 102, and this connects directly to a second electrical connector 824 in the rigid portion 202 of the wand assembly 104 when the proximal wand end 212 is connected to the vacuum unit inlet 200.
The distal wand end 214 preferably is configured to engage a base connector 122 to provide fluid and electrical communication to the base 106, and also may be connected to other accessory tools, such as discussed above. Other alternatives will be apparent to persons of ordinary skill in the art in view of the present disclosure.
The embodiment of
The flexible portion 902 has a proximal hose end 912 that is selectively connected to the vacuum unit inlet 200, a distal hose end 914 that slides over the rigid portion 900, and a flexible hose 916 connecting the proximal hose end 912 and the distal hose end 914. Any suitable clasp may be provided to hold the proximal hose end 912 to the vacuum unit inlet 200. An additional clasp may be provided to hold the distal hose end 914 in a particular location on the rigid portion 900, or to prevent the distal hose end 914 from passing over the proximal wand end 904 when the rigid portion 900 is slid out of the flexible portion 902. Persons of ordinary skill in the art will be able to incorporate a suitable clasp in view of the present disclosure.
In this example, the distal hose end 914 is larger than the distal wand end 906. Thus, the distal hose end 914 and distal wand end 906 may be configured to fit into different accessories having different interface sizes. However, accessories may be provided that can alternately receive both the distal hose end 914 and the distal wand end 906, or an adapter may be provided to allow such interchangeability.
The embodiment of
The configuration of
A sliding receptacle 1112 is located within and configured to slide along a predetermined length of the rigid portion 1100. For example, the sliding receptacle 1112 may have an outer profile that closely matches the inner profile of the rigid portion 1100, and may include low-friction surfaces to help smooth its sliding movement. One or more travel stops (not shown), such as a simple protrusion that contacts the sliding receptacle 1112 but not the distal hose end 1110, may be provided to prevent the sliding receptacle 1112 from being removed from the rigid portion 1100 while allowing the distal hose end 1110 to be removed. The sliding receptacle 1112 is configured to receive the distal hose end 1110, and provide fluid communication by way of one or more openings between the distal hose end 1110 and the distal wand end 1104. The sliding receptacle 1112 also may include a clasp or other mechanism (e.g., magnets) to hold the parts in engagement.
A first electrical connector 1114 is provided at the vacuum unit inlet 200. In this case, the first electrical connector 1114 is located within the air passage, but isolated therefrom by a housing to prevent dirt from fouling the electrical connector 1114. A second electrical connector 1116 is located in the flexible portion 1106, and extends from a first terminal at the proximal hose end 1108 to a second terminal at the distal hose end 1110. The second electrical connector 1116 may be incorporated into the coils of the hose 1128, as discussed above. The second electrical connector 1116 electrically connects to the first electrical connector 1114 when the proximal hose end 1108 is attached to the vacuum unit inlet 200.
A third electrical connector 1118 is provided in the sliding receptacle 1112. The third electrical connector 1118 has a first terminal 1120 that electrically connects to the second electrical connector when the distal hose end 1110 engages the sliding receptacle 1112. The third electrical connector 1118 also has a second terminal 1122 that engages a fourth electrical connector 1124 located in the rigid portion 1100 of the wand assembly 104. The second terminal 1122 and the fourth electrical connector 1124 may be provided as sliding electrical contacts that maintain electrical communication with one another regardless of where the sliding receptacle 1112 is located along the length of the rigid portion 1100. Alternatively, the second terminal 1122 may electrically connect to the fourth electrical connector 1124 when the sliding receptacle 1112 is at certain predetermined locations along the length of the rigid portion 1100. The fourth electrical connector 1124 extends to the distal wand end 1104, where it is electrically connected to a fifth electrical connector 1126 located in the base connector 122 or other accessory when the distal wand end 1104 is attached thereto.
The embodiment of
The foregoing embodiments provide a number of examples of device configurations. It will be appreciated that these embodiments may be reconfigured such as by replacing features from one embodiment with those of another, or otherwise changing or modifying the embodiments. For example, in one embodiment, the electrical connectors may be entirely omitted from the wand assembly 104, so that it does not convey any electrical power to accessories. In other embodiments, the locations of the clasps may be reversed—for example, the first clasp 600 in
It will also be understood that references that are incorporated herein by reference are incorporated for all of the teachings of each incorporated reference. Such incorporation is not limited to a particular feature that may be noted in the foregoing description.
The present disclosure describes a number of new, useful and nonobvious features and/or combinations of features that may be used alone or together. It will be also understood that the terms “and” and “or,” as used herein, both mean “and/or.” While certain features and advantages are described herein, it will be appreciated that the described features and advantages may not be present in every embodiment. The embodiments described herein are all exemplary, and are not intended to limit the scope of the inventions. It will be appreciated that the inventions described herein can be modified and adapted in various and equivalent ways, and all such modifications and adaptations are intended to be included in the scope of this disclosure and the appended claims.