The present invention relates to medical devices and methods. More specifically, the invention relates to vertebral body replacements and methods of spanning a space formed upon removal of an intervertebral disc.
Back pain takes an enormous toll on the health and productivity of people around the world. According to the American Academy of Orthopedic Surgeons, approximately 80 percent of Americans will experience back pain at some time in their life. In the year 2000, approximately 26 million visits were made to physicians' offices due to back problems in the United States. On any one day, it is estimated that 5% of the working population in America is disabled by back pain.
One common cause of back pain is injury, degeneration and/or dysfunction of one or more intervertebral discs. Intervertebral discs are the soft tissue structures located between each of the thirty-three vertebral bones that make up the vertebral (spinal) column. Essentially, the discs allow the vertebrae to move relative to one another. The vertebral column and discs are vital anatomical structures, in that they form a central axis that supports the head and torso, allow for movement of the back, and protect the spinal cord, which passes through the vertebrae in proximity to the discs.
Another form of spinal injury involves injury or deformity of the vertebra themselves. When one or more vertebrae is fracture or deformed by tumor or other causes and results in pain and discomfort, surgery is often required. Traditionally, surgical procedures for vertebral replacement have involved removal of the vertebra and fusion of the two vertebrae above and below the missing vertebra. It is necessary to replace the removed vertebra to maintain spacing of adjacent vertebrae. Oftentimes, pins, rods, screws, cages and/or the like are inserted between the vertebrae to act as support structures to hold the vertebrae and graft material in place while they permanently fuse together. These vertebral body replacement procedures generally focus on rigidly fusing the adjacent vertebrae and preventing motion.
However, it would be desirable to achieve immobilization of the vertebrae adjacent a removed vertebral body and maintain spacing between the adjacent vertebrae without the complete rigidity of traditional interbody fusion.
Another problem associated with the typical vertebral body replacement procedure is the subsidence of the cage into the vertebral body. The typical vertebral body replacement cage is formed with a large percentage of open space to allow the bone to grow through and form the bridging bone which immobilizes the vertebrae. However, the large amount of open space means that the load on each segment of the cage is significantly higher than if the cage surface area was larger. This results in the cage subsiding or sinking into the bone over time and allows the space between the vertebrae to collapse.
Therefore, a need exists for improved vertebral body replacement and method for spanning a space and maintaining spacing between two vertebrae after removal of an intervertebral body. Such improved method and intervertebral body replacement would avoid the need for growth of bridging bone between the remaining vertebrae.
Embodiments of the present invention provide a vertebral body replacement with compliance or shock absorption and methods of spanning a space formed upon removal of vertebral body.
In accordance with one of numerous aspects of the present invention, a vertebral body replacement for replacing at least one vertebral body between remaining upper and lower vertebral bodies, the vertebral body replacement comprises a first end plate having an upper surface configured to engage against a surface of the upper remaining vertebral body, and a lower surface opposite the upper surface spanning the first end plate, a second end plate having a lower surface configured to engage against a surface of the lower remaining vertebral body, and a compliant connector section between the first end plate lower surface and the second end plate lower surface, the compliant connector section comprising at least one helical cut configured and arranged to permit limited motion between the first end plate and the second end plate.
In accordance with another aspect of the invention, a method of replacing at least one vertebral body comprises removing said at least one vertebral body between two remaining vertebral bodies, placing a vertebral body replacement between said two remaining vertebral bodies, the vertebral body replacement comprising first and second end plates and a compliant connector section between the first and second end plates, the compliant connector section having at least one helical cut and configured and arranged to limit motion to less than 10 degrees between said remaining vertebral bodies, and maintaining the space between the two remaining vertebral bodies with the vertebral body replacement.
Various embodiments of the present invention generally provide for a vertebral body replacement having upper and lower plates or surfaces connected by a central connector portion which provides some limited amount of axial compliance and/or rotational motion between the upper and lower plates or surfaces. The compliant vertebral body replacement according to the present invention can maintain disc height and prevent subsidence with a large surface area while improving outcomes by allowing some limited motion and providing improved fixation. The compliance of the vertebral body replacement also functions to reduce loading on the interface between the bone and vertebral body replacement.
One example of a vertebral body replacement 10 for replacement of a vertebral body and maintaining disc height between two adjacent vertebral discs is shown in
Although the body 10 has been shown as generally oblong in cross section, other shapes may be used, including circular, oval, elliptical, or rectangular. Although the connector section 32 has been illustrated in
The upper plate 20 and the lower plate or plate section 30, and connector 32, may be constructed from any suitable metal, alloy or combination of metals or alloys, such as but not limited to cobalt chrome alloys, titanium (such as grade 5 titanium), titanium based alloys, tantalum, nickel titanium alloys, stainless steel, and/or the like. They may also be formed of ceramics, biologically compatible polymers including PEEK, UHMWPE (ultra high molecular weight polyethylene) or fiber reinforced polymers. However, when polymer is used for the body 10, the contacting surfaces 24 may be coated or otherwise covered with metal for fixation. The upper plate 20 and the lower plate or plate section 30, and connector 32, may be formed of a one piece construction or may be formed of more than one piece, such as different materials coupled together. When the body 10 is formed of multiple materials, these materials are fixed together to form a unitary one piece spacer without separately moving parts.
Different materials may be used for different parts of the body 10 to optimize imaging characteristics. For example, the upper plate 20 and the lower plate or plate section 30 may be formed of titanium, while the connector 32 is formed of cobalt chromium alloy for improved imaging of the plates. Cobalt chrome molybdenum alloys, when used for the plates 20, 30 may be treated with aluminum oxide blasting followed by a titanium plasma spray to improve bone integration. Other materials and coatings can also be used such as titanium coated with titanium nitride, aluminum oxide blasting, HA (hydroxylapatite) coating, micro HA coating, and/or bone integration promoting coatings. Any other suitable metals or combinations of metals may be used as well as ceramic or polymer materials, and combinations thereof. Any suitable technique may be used to couple materials together, such as snap fitting, slip fitting, lamination, interference fitting, use of adhesives, welding and/or the like.
In some embodiments, the outer surface 24 is planar. Oftentimes, the outer surface 24 will include one or more surface features and/or materials to enhance attachment of the body 10 to vertebral bone. For example, as shown in
The outer surfaces 24 may also carry one or more upstanding fins 50, 52 which also extend laterally in an anterior-posterior direction. The fins 50, 52 are configured to be placed in slots in the vertebral bodies. Preferably, the fins 50, 52 each have a height greater than a width and have a lateral length greater than the height. In one embodiment, the fins 50, 52 are pierced by transverse holes 54 for bone ingrowth. The transverse holes 54 may be formed in any shape and may extend partially or all the way through the fins 50, 52. In alternative embodiments, the fins 50, 52 may be rotated away from the anterior-posterior axis, such as in a lateral-lateral orientation, a posterolateral-anterolateral orientation, or the like.
The fins 50, 52 provide improved attachment to the bone and prevent rotation of the plates 20, 30 in the bone. In some embodiments, the fins 50, 52 may extend from the surface 24 at an angle other than 90°. For example, on one or more of the plates 20, 22 where multiple fins 52 are attached to the surface 24, the fins may be canted away from one another with the bases slightly closer together than their edges at an angle such as about 80-88 degrees. The fins 50, 52 may have any other suitable configuration including various numbers angles and curvatures, in various embodiments. In some embodiments, the fins 50, 52 may be omitted altogether. The embodiment of
The body 10 has been shown with the fins 50, 52 as the primary fixation feature; however, the fins may also be augmented or replaced with one or more screws extending through the plates and into the bone. For example in the body 10 of
Some limited holes may also be provided in the plate to allow bone ingrowth. However, if the outer surfaces 24 have holes therein, the holes advantageously cover less than 40 percent of the outer surface 24 which contacts the bone to prevent subsidence of the plates into the vertebral bodies. Preferably the holes will cover less than 25 percent, and more preferably less than 10 percent of the outer bone contacting surfaces. At the option of the surgeon, when the small holes are present in the plates 20, 30, bone graft can be placed in the holes to allow bone to grow through the plates. The embodiments illustrated in
The vertebral body replacement 10 shown herein is configured for placement in the vertebral column from an anterior approach. It should be understood that other approaches can be used, and the particular shape of the vertebral body replacement would be modified depending on the approach. For example, for a lateral approach, the vertebral body replacement may be formed in a more elongated, kidney bean, or banana shape with a transversely oriented fin.
As shown in
In the vertebral body replacement 10 of
Optionally, a variable stiffness shock absorbing connector 32 (
The cuts 70 also advantageously include a stress relief 74 at the end of the cuts which increases the fatigue life of the device by reducing the stress concentration at the ends of the slots.
In the exemplary embodiments illustrated herein, a shock absorbing connector 32 includes either one or more planar cuts 70 (
In each of the shock absorbing connectors described herein, the interconnected sections within the connector and the plate(s) are designed for minimal or no motion between contacting parts to prevent particulate generation. However, since the plates and connectors are made entirely of hard materials such as metals, some minimal rubbing contact may be accommodated. In the exemplary embodiments illustrated in figures herein, a rotational interlock 80 is provided between the lower surface of the end plate 20 and the adjoining upper surface of the connector section 32 of the end plate 30. With reference to
Further optionally, as illustrated in
When implanted between vertebrae, the shock absorbing connector 32 can resiliently absorb shocks transmitted vertically between upper and lower vertebrae of the patient's spinal column. This shock absorption is related to the material properties, design, and dimensions of the connector. In general, an increased number and width of the cuts 70 will increase absorption of shocks, with more elastic, or springy compression between the vertebrae.
Preferably the connector 32 is made of metal such as titanium, cobalt chromium alloy, stainless steel, tantalum, nickel titanium or a combination thereof. These materials also can be designed to provide a device which is deformable in the elastic region of the stress/strain curve and will not plastically deform during compression.
In the embodiments illustrated herein, the number, pitch, lead, lead angle, handedness, and total vertical length of each of the spiral cuts or slots 70, as well as the combination of multiple cuts if provided, can be varied to change the amount of compliance of the connector 32. When a load is applied to the upper and lower plates 20, 30, the connector 32 will compress with each of the cuts 70 closing and the total amount of compression possible depending on the number, arrangement, and height of the cuts. The cuts 70 form spiral coils 74 between the ends of the cut, which function like springs to allow the connector 32 to be compressed. The cuts 70 may be modified to be non-uniform to provide preferential deflection in one or more bending directions. Preferential deflection is useful to provide increased anterior-posterior compliance and less lateral compliance, or the other way around.
According to one embodiment of the invention, the cuts 70 in the shock absorbing connector 32 according to any of the embodiments described herein may be manufactured by wire EDM (electrical discharge machining), molding, laser cutting, or the like. A number of cuts 70 can vary from 1 to about 50, preferably about 6 to about 20, for a vertebral body replacement. A width of the lateral cuts 70 in the direction of the height of the body 10 is about 0.01 mm to about 2 mm, preferably about 0.05 to about 1 mm.
In one embodiment of the present invention, for a cervical application, the maximum deformation of the shock absorbing body is about 0.5 to about 4 mm, and is preferably about 1 to about 2 mm. For a lumbar application, the maximum deformation of the shock absorbing body is about 1 to about 6 mm, and is preferably about 1 to about 3 mm.
Although motion between the plates 20, 30 of the body 10 has been described herein as provided by cuts 70, it should be understood that this motion can be provided in a number of other known manners, such as use of resilient materials, or movable joints as long as the motion is limited to the small amount of motion allowable in a patient requiring a fusion procedure including compliance or vertical motion between the plates of up to about 6 mm, rotation between the plates of less than 10 degrees, and translation between the plates of up to about 1 mm.
The body 10 can be provided in different sizes, with different plate sizes, angles between plates, lordosis angles, and heights for different patients or applications. In addition, the shock absorbing connector section 32 can be provided in different compliances for different patients. In addition, the compliance and/or height of the body 10 can be adjustable, such as by rotating an adjustment screw before or after implantation, and/or bonding portions of one or more of the portions of a coil 74. The body 10 preferably is sized to provide substantial coverage of the vertebral surfaces. For example, in an anterior procedure, the plates 20, 30 are preferably sized to cover at least 50 percent of the vertebral surface. In posterior or lateral procedures, the coverage of the vertebral surface may be somewhat smaller due to the small size of the access area, i.e., the posterior or lateral spacers may cover about 40 percent or more of the vertebral surface with a one or two part spacer.
Turning now to
According to one exemplary method adhering to principles of the present invention, a patient in need of a vertebral body replacement is prepped and surgical access is made to the particular vertebral body to be removed. Access to the surgical site is generally made anteriorly through the abdominal cavity for a lumbar procedure. One or more target vertebral body or bodies is removed in one of numerous manners known to those of ordinary skill in the art, between upper and lower remaining vertebral bodies in the patient's spine, and a vertebral body replacement 10, embodying principles of the present invention, is selected based on the measurement of the spacing for proper spinal alignment. The vertebral body replacement 10 is assembled and implanted in the space created by removal of the original vertebral body or bodies. Optionally, one or more spacers 90 are assembled into the body 10, prior to installation of the body 10 into the patient, and/or the vertical length of the body 10 is adjusted to better fit in the space. Further optionally, when the body 10 includes one or more cavities 86, additional material is inserted into the cavity, prior to implantation of the body, to tailor the rigidity of the body 10, or for other purposes.
While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed. Hence, the scope of the present invention should be limited solely by the appended claims.
This application claims priority under 35 U.S.C. §119 to U.S. Provisional Application No. 60/981,665 filed Oct. 22, 2007, entitled “Method and Spacer Device for Spanning Space Formed Upon Removal of an Intervertebral Disc,” the full disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3867728 | Stubstad et al. | Feb 1975 | A |
4309777 | Patil | Jan 1982 | A |
4531917 | Linkow et al. | Jul 1985 | A |
4566466 | Ripple et al. | Jan 1986 | A |
4619660 | Christiansen et al. | Oct 1986 | A |
4673407 | Martin | Jun 1987 | A |
4759766 | Buttner-Janz et al. | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4834757 | Brantigan | May 1989 | A |
4863477 | Monson | Sep 1989 | A |
4904261 | Dove et al. | Feb 1990 | A |
4917704 | Frey et al. | Apr 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
4997432 | Keller | Mar 1991 | A |
5035716 | Downey | Jul 1991 | A |
5057108 | Shetty et al. | Oct 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5122130 | Keller | Jun 1992 | A |
5192327 | Brantigan | Mar 1993 | A |
5195526 | Michelson | Mar 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5282861 | Kaplan | Feb 1994 | A |
5306308 | Gross et al. | Apr 1994 | A |
5314477 | Marnay | May 1994 | A |
5320644 | Baumgartner | Jun 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5394457 | Leibinger et al. | Feb 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5415704 | Davidson | May 1995 | A |
5423816 | Lin | Jun 1995 | A |
5458642 | Beer et al. | Oct 1995 | A |
5462575 | Del Corso | Oct 1995 | A |
5484437 | Michelson | Jan 1996 | A |
5489307 | Kuslich et al. | Feb 1996 | A |
5505732 | Michelson | Apr 1996 | A |
5507816 | Bullivant | Apr 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5556431 | Buttner-Janz | Sep 1996 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5709683 | Bagby | Jan 1998 | A |
5728159 | Stroever et al. | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5776198 | Rabbe et al. | Jul 1998 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5797917 | Boyd et al. | Aug 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5865848 | Baker | Feb 1999 | A |
5888226 | Rogozinski | Mar 1999 | A |
5895428 | Berry | Apr 1999 | A |
5899901 | Middleton | May 1999 | A |
5899911 | Carter | May 1999 | A |
5928284 | Mehdizadeh | Jul 1999 | A |
5989251 | Nichols | Nov 1999 | A |
5989291 | Ralph et al. | Nov 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6019792 | Cauthen | Feb 2000 | A |
6022376 | Assell et al. | Feb 2000 | A |
6039761 | Li et al. | Mar 2000 | A |
6039763 | Shelokov | Mar 2000 | A |
6080155 | Michelson | Jun 2000 | A |
6083228 | Michelson | Jul 2000 | A |
6086613 | Camino et al. | Jul 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6106557 | Robioneck et al. | Aug 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6136031 | Middleton | Oct 2000 | A |
6139551 | Michelson et al. | Oct 2000 | A |
6139579 | Steffee et al. | Oct 2000 | A |
6143033 | Paul et al. | Nov 2000 | A |
6146421 | Gordon et al. | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6159211 | Boriani et al. | Dec 2000 | A |
6159214 | Michelson | Dec 2000 | A |
6162252 | Kuras et al. | Dec 2000 | A |
6174311 | Branch et al. | Jan 2001 | B1 |
6176881 | Schar et al. | Jan 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6224595 | Michelson | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6231609 | Mehdizadeh | May 2001 | B1 |
6235030 | Zuckerman et al. | May 2001 | B1 |
6261296 | Aebi et al. | Jul 2001 | B1 |
6264695 | Stoy | Jul 2001 | B1 |
6290726 | Pope et al. | Sep 2001 | B1 |
6296664 | Middleton | Oct 2001 | B1 |
6315797 | Middleton | Nov 2001 | B1 |
6322567 | Mittelstadt et al. | Nov 2001 | B1 |
6336941 | Subba Rao et al. | Jan 2002 | B1 |
6348071 | Steffee et al. | Feb 2002 | B1 |
6368350 | Erickson et al. | Apr 2002 | B1 |
6368351 | Glenn et al. | Apr 2002 | B1 |
6375681 | Truscott | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6395032 | Gauchet | May 2002 | B1 |
6402785 | Zdeblick et al. | Jun 2002 | B1 |
6409766 | Brett | Jun 2002 | B1 |
6413278 | Marchosky | Jul 2002 | B1 |
6416551 | Keller | Jul 2002 | B1 |
6436098 | Michelson | Aug 2002 | B1 |
6440139 | Michelson | Aug 2002 | B2 |
6447544 | Michelson | Sep 2002 | B1 |
6478800 | Fraser et al. | Nov 2002 | B1 |
6517544 | Michelson | Feb 2003 | B1 |
6517580 | Ramadan et al. | Feb 2003 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6520996 | Manasas et al. | Feb 2003 | B1 |
6527804 | Gauchet et al. | Mar 2003 | B1 |
6533817 | Norton et al. | Mar 2003 | B1 |
6537279 | Michelson | Mar 2003 | B1 |
6554863 | Paul et al. | Apr 2003 | B2 |
6562047 | Ralph et al. | May 2003 | B2 |
6562074 | Gerbec et al. | May 2003 | B2 |
6565574 | Michelson | May 2003 | B2 |
6579321 | Gordon et al. | Jun 2003 | B1 |
6582466 | Gauchet | Jun 2003 | B1 |
6582468 | Gauchet | Jun 2003 | B1 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6599294 | Fuss et al. | Jul 2003 | B2 |
6607558 | Karus | Aug 2003 | B2 |
6607559 | Ralph et al. | Aug 2003 | B2 |
6610092 | Ralph et al. | Aug 2003 | B2 |
6623525 | Ralph et al. | Sep 2003 | B2 |
6645248 | Casutt | Nov 2003 | B2 |
6648895 | Burkus et al. | Nov 2003 | B2 |
6652533 | O'Neil | Nov 2003 | B2 |
6660038 | Boyer, II et al. | Dec 2003 | B2 |
6666866 | Mertz et al. | Dec 2003 | B2 |
6669731 | Ralph et al. | Dec 2003 | B2 |
6669732 | Serhan et al. | Dec 2003 | B2 |
6673113 | Ralph et al. | Jan 2004 | B2 |
6682562 | Viart et al. | Jan 2004 | B2 |
6689132 | Biscup | Feb 2004 | B2 |
6706068 | Ferree | Mar 2004 | B2 |
6709439 | Rogers et al. | Mar 2004 | B2 |
6712819 | Zucherman et al. | Mar 2004 | B2 |
6712825 | Aebi et al. | Mar 2004 | B2 |
6719794 | Gerber et al. | Apr 2004 | B2 |
6723097 | Fraser et al. | Apr 2004 | B2 |
6726720 | Ross et al. | Apr 2004 | B2 |
6726721 | Stoy et al. | Apr 2004 | B2 |
6733532 | Gauchet et al. | May 2004 | B1 |
6740118 | Eisermann et al. | May 2004 | B2 |
6740119 | Ralph et al. | May 2004 | B2 |
6752832 | Neumann | Jun 2004 | B2 |
6755841 | Fraser et al. | Jun 2004 | B2 |
6764512 | Keller | Jul 2004 | B2 |
6764515 | Ralph et al. | Jul 2004 | B2 |
6770095 | Grinberg et al. | Aug 2004 | B2 |
6790233 | Brodke et al. | Sep 2004 | B2 |
6793678 | Hawkins | Sep 2004 | B2 |
6814737 | Cauthan | Nov 2004 | B2 |
6821298 | Jackson | Nov 2004 | B1 |
6827740 | Michelson | Dec 2004 | B1 |
6830570 | Frey et al. | Dec 2004 | B1 |
6835206 | Jackson | Dec 2004 | B2 |
6846328 | Cauthen | Jan 2005 | B2 |
6852126 | Ahlgren | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6875213 | Michelson | Apr 2005 | B2 |
6896680 | Michelson | May 2005 | B2 |
6899735 | Coates et al. | May 2005 | B2 |
6936071 | Marnay et al. | Aug 2005 | B1 |
6936132 | Topolnitsky | Aug 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6966929 | Mitchell | Nov 2005 | B2 |
6966931 | Huang | Nov 2005 | B2 |
6986788 | Paul et al. | Jan 2006 | B2 |
6989011 | Paul et al. | Jan 2006 | B2 |
6994727 | Khandkar et al. | Feb 2006 | B2 |
7011684 | Eckman | Mar 2006 | B2 |
7022138 | Mashburn | Apr 2006 | B2 |
7025787 | Bryan et al. | Apr 2006 | B2 |
7044983 | Cheng | May 2006 | B1 |
7056344 | Huppert et al. | Jun 2006 | B2 |
7060073 | Frey et al. | Jun 2006 | B2 |
7066958 | Ferree | Jun 2006 | B2 |
7081120 | Li et al. | Jul 2006 | B2 |
7083651 | Diaz et al. | Aug 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7115132 | Errico et al. | Oct 2006 | B2 |
7118580 | Beyersdorff et al. | Oct 2006 | B1 |
7147665 | Bryan et al. | Dec 2006 | B1 |
7153325 | Kim et al. | Dec 2006 | B2 |
7169182 | Errico et al. | Jan 2007 | B2 |
7179294 | Eisermann et al. | Feb 2007 | B2 |
7182784 | Evans et al. | Feb 2007 | B2 |
7198644 | Schultz et al. | Apr 2007 | B2 |
7207991 | Michelson | Apr 2007 | B2 |
7214244 | Zubok et al. | May 2007 | B2 |
7217291 | Zucherman et al. | May 2007 | B2 |
7235082 | Bartish et al. | Jun 2007 | B2 |
7235101 | Berry et al. | Jun 2007 | B2 |
7235103 | Rivin | Jun 2007 | B2 |
7250060 | Trieu | Jul 2007 | B2 |
7255714 | Malek | Aug 2007 | B2 |
7261739 | Ralph et al. | Aug 2007 | B2 |
7267688 | Ferree | Sep 2007 | B2 |
7270679 | Istephanous et al. | Sep 2007 | B2 |
7270682 | Frigg et al. | Sep 2007 | B2 |
7303582 | Brady | Dec 2007 | B2 |
7303583 | Schär et al. | Dec 2007 | B1 |
7309358 | Berry et al. | Dec 2007 | B2 |
7318839 | Malberg et al. | Jan 2008 | B2 |
7326250 | Beaurain et al. | Feb 2008 | B2 |
7331995 | Eisermann et al. | Feb 2008 | B2 |
7429270 | Baumgartner et al. | Sep 2008 | B2 |
7442211 | de Villiers et al. | Oct 2008 | B2 |
7452380 | Zubok et al. | Nov 2008 | B2 |
7491241 | Errico et al. | Feb 2009 | B2 |
7494508 | Zeegers | Feb 2009 | B2 |
7517363 | Rogers et al. | Apr 2009 | B2 |
7531001 | de Villiers et al. | May 2009 | B2 |
7549995 | Schultz et al. | Jun 2009 | B2 |
7563284 | Coppes et al. | Jul 2009 | B2 |
7563286 | Gerber et al. | Jul 2009 | B2 |
7575598 | Albert et al. | Aug 2009 | B2 |
7578848 | Albert et al. | Aug 2009 | B2 |
7585324 | Albert et al. | Sep 2009 | B2 |
7585326 | de Villiers et al. | Sep 2009 | B2 |
7615078 | White et al. | Nov 2009 | B2 |
7635368 | Errico et al. | Dec 2009 | B2 |
7637913 | de Villiers et al. | Dec 2009 | B2 |
7655045 | Richelsoph | Feb 2010 | B2 |
7708776 | Blain et al. | May 2010 | B1 |
7708777 | O'Neil et al. | May 2010 | B2 |
7731753 | Reo et al. | Jun 2010 | B2 |
7731754 | de Villiers et al. | Jun 2010 | B2 |
7749272 | Robie et al. | Jul 2010 | B2 |
7763055 | Foley | Jul 2010 | B2 |
7819922 | Sweeney | Oct 2010 | B2 |
8142505 | Tauber | Mar 2012 | B2 |
20010016773 | Serhan et al. | Aug 2001 | A1 |
20010029377 | Aebi et al. | Oct 2001 | A1 |
20010051829 | Middleton | Dec 2001 | A1 |
20020022845 | Zdeblick et al. | Feb 2002 | A1 |
20020035400 | Bryan et al. | Mar 2002 | A1 |
20020045904 | Fuss et al. | Apr 2002 | A1 |
20020068936 | Burkus et al. | Jun 2002 | A1 |
20020091392 | Michelson | Jul 2002 | A1 |
20020116009 | Fraser et al. | Aug 2002 | A1 |
20020123753 | Michelson | Sep 2002 | A1 |
20020128715 | Bryan et al. | Sep 2002 | A1 |
20020165550 | Frey et al. | Nov 2002 | A1 |
20020177897 | Michelson | Nov 2002 | A1 |
20020198532 | Michelson | Dec 2002 | A1 |
20030009224 | Kuras | Jan 2003 | A1 |
20030014116 | Ralph et al. | Jan 2003 | A1 |
20030023245 | Ralph et al. | Jan 2003 | A1 |
20030028249 | Baccelli et al. | Feb 2003 | A1 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20030045884 | Robie et al. | Mar 2003 | A1 |
20030045939 | Casutt | Mar 2003 | A1 |
20030074076 | Ferree | Apr 2003 | A1 |
20030083747 | Winterbottom et al. | May 2003 | A1 |
20030100951 | Serhan et al. | May 2003 | A1 |
20030125739 | Bagga | Jul 2003 | A1 |
20030130662 | Michelson | Jul 2003 | A1 |
20030135277 | Bryan et al. | Jul 2003 | A1 |
20030139812 | Garcia et al. | Jul 2003 | A1 |
20030187448 | Michelson | Oct 2003 | A1 |
20030191536 | Ferree | Oct 2003 | A1 |
20030195517 | Michelson | Oct 2003 | A1 |
20030195631 | Ferree | Oct 2003 | A1 |
20030199982 | Bryan | Oct 2003 | A1 |
20030199983 | Michelson | Oct 2003 | A1 |
20030204261 | Eisermann et al. | Oct 2003 | A1 |
20030208271 | Kuras | Nov 2003 | A1 |
20030229358 | Errico et al. | Dec 2003 | A1 |
20030233145 | Landry et al. | Dec 2003 | A1 |
20040002761 | Rogers et al. | Jan 2004 | A1 |
20040024407 | Ralph | Feb 2004 | A1 |
20040024410 | Olson et al. | Feb 2004 | A1 |
20040030391 | Ferree | Feb 2004 | A1 |
20040034426 | Errico et al. | Feb 2004 | A1 |
20040054411 | Kelly et al. | Mar 2004 | A1 |
20040059318 | Zhang et al. | Mar 2004 | A1 |
20040073307 | Keller | Apr 2004 | A1 |
20040073311 | Feree | Apr 2004 | A1 |
20040073312 | Eisermann et al. | Apr 2004 | A1 |
20040093087 | Ferree et al. | May 2004 | A1 |
20040097928 | Zdeblick et al. | May 2004 | A1 |
20040098131 | Bryan et al. | May 2004 | A1 |
20040117021 | Biedermann et al. | Jun 2004 | A1 |
20040143270 | Zucherman et al. | Jul 2004 | A1 |
20040143332 | Krueger et al. | Jul 2004 | A1 |
20040143334 | Ferree | Jul 2004 | A1 |
20040167626 | Geremakis et al. | Aug 2004 | A1 |
20040176843 | Zubok et al. | Sep 2004 | A1 |
20040186569 | Berry | Sep 2004 | A1 |
20040215342 | Suddaby | Oct 2004 | A1 |
20040225295 | Zubok et al. | Nov 2004 | A1 |
20040225365 | Eisermann et al. | Nov 2004 | A1 |
20040230307 | Eisermann et al. | Nov 2004 | A1 |
20040236426 | Ralph et al. | Nov 2004 | A1 |
20040243238 | Arin et al. | Dec 2004 | A1 |
20040254644 | Taylor | Dec 2004 | A1 |
20050015094 | Keller | Jan 2005 | A1 |
20050015095 | Keller | Jan 2005 | A1 |
20050015152 | Sweeney | Jan 2005 | A1 |
20050021145 | de Villiers et al. | Jan 2005 | A1 |
20050021146 | de Villiers et al. | Jan 2005 | A1 |
20050027360 | Webb et al. | Feb 2005 | A1 |
20050038515 | Kunzler | Feb 2005 | A1 |
20050043800 | Paul et al. | Feb 2005 | A1 |
20050085917 | Marnay et al. | Apr 2005 | A1 |
20050107881 | Alleyne et al. | May 2005 | A1 |
20050113842 | Bertagnoli et al. | May 2005 | A1 |
20050113928 | Cragg | May 2005 | A1 |
20050143824 | Richelsoph et al. | Jun 2005 | A1 |
20050149189 | Mokhtar et al. | Jul 2005 | A1 |
20050154463 | Trieu | Jul 2005 | A1 |
20050165408 | Puno et al. | Jul 2005 | A1 |
20050171604 | Michalow | Aug 2005 | A1 |
20050187634 | Berry | Aug 2005 | A1 |
20050192586 | Zuckerman et al. | Sep 2005 | A1 |
20050192670 | Zubok et al. | Sep 2005 | A1 |
20050197706 | Hovorka et al. | Sep 2005 | A1 |
20050216081 | Taylor | Sep 2005 | A1 |
20050216084 | Fleischmann et al. | Sep 2005 | A1 |
20050234553 | Gordon | Oct 2005 | A1 |
20050251260 | Gerber et al. | Nov 2005 | A1 |
20050251261 | Peterman | Nov 2005 | A1 |
20050261772 | Filippi et al. | Nov 2005 | A1 |
20050267580 | Suddaby | Dec 2005 | A1 |
20050267581 | Marnay et al. | Dec 2005 | A1 |
20060004377 | Keller | Jan 2006 | A1 |
20060004453 | Bartish et al. | Jan 2006 | A1 |
20060015183 | Gilbert et al. | Jan 2006 | A1 |
20060020342 | Ferree et al. | Jan 2006 | A1 |
20060025862 | Villiers et al. | Feb 2006 | A1 |
20060030862 | de Villiers et al. | Feb 2006 | A1 |
20060036325 | Paul et al. | Feb 2006 | A1 |
20060041313 | Allard et al. | Feb 2006 | A1 |
20060041314 | Millard | Feb 2006 | A1 |
20060052870 | Feree | Mar 2006 | A1 |
20060064169 | Feree et al. | Mar 2006 | A1 |
20060069439 | Zucherman et al. | Mar 2006 | A1 |
20060116768 | Krueger et al. | Jun 2006 | A1 |
20060136061 | Navarro et al. | Jun 2006 | A1 |
20060142858 | Colleran | Jun 2006 | A1 |
20060142862 | Diaz et al. | Jun 2006 | A1 |
20060155378 | Eckman | Jul 2006 | A1 |
20060167549 | Mathys et al. | Jul 2006 | A1 |
20060178744 | de Villiers et al. | Aug 2006 | A1 |
20060178746 | Bartish, Jr. et al. | Aug 2006 | A1 |
20060195097 | Evans et al. | Aug 2006 | A1 |
20060200239 | Rothman et al. | Sep 2006 | A1 |
20060200240 | Rothman et al. | Sep 2006 | A1 |
20060224241 | Butler et al. | Oct 2006 | A1 |
20060235426 | Lim et al. | Oct 2006 | A1 |
20060235525 | Gil et al. | Oct 2006 | A1 |
20060235527 | Buettner-Janz et al. | Oct 2006 | A1 |
20060241641 | Albans et al. | Oct 2006 | A1 |
20060241766 | Felton et al. | Oct 2006 | A1 |
20060259144 | Trieu | Nov 2006 | A1 |
20060259146 | Navarro et al. | Nov 2006 | A1 |
20060265068 | Schwab | Nov 2006 | A1 |
20060265077 | Zwirkoski | Nov 2006 | A1 |
20060276902 | Zipnick et al. | Dec 2006 | A1 |
20060287728 | Mokhtar et al. | Dec 2006 | A1 |
20060293752 | Moumene et al. | Dec 2006 | A1 |
20060293753 | Thramann | Dec 2006 | A1 |
20060293754 | de Villiers et al. | Dec 2006 | A1 |
20070010826 | Rhoda et al. | Jan 2007 | A1 |
20070021837 | Ashman et al. | Jan 2007 | A1 |
20070032875 | Blacklock et al. | Feb 2007 | A1 |
20070067035 | Falahee | Mar 2007 | A1 |
20070067036 | Hudgins et al. | Mar 2007 | A1 |
20070073398 | Fabian et al. | Mar 2007 | A1 |
20070093898 | Schwab et al. | Apr 2007 | A1 |
20070100453 | Parsons et al. | May 2007 | A1 |
20070100454 | Burgess et al. | May 2007 | A1 |
20070100456 | Dooris et al. | May 2007 | A1 |
20070123903 | Raymond et al. | May 2007 | A1 |
20070123904 | Stad et al. | May 2007 | A1 |
20070135923 | Peterman et al. | Jun 2007 | A1 |
20070162133 | Doubler et al. | Jul 2007 | A1 |
20070168033 | Kim et al. | Jul 2007 | A1 |
20070168036 | Ainsworth et al. | Jul 2007 | A1 |
20070179615 | Heinz et al. | Aug 2007 | A1 |
20070213821 | Kwak et al. | Sep 2007 | A1 |
20070233077 | Khalili | Oct 2007 | A1 |
20070233247 | Schwab | Oct 2007 | A1 |
20070233248 | Schwab et al. | Oct 2007 | A1 |
20070233251 | Abdou | Oct 2007 | A1 |
20070270970 | Trieu | Nov 2007 | A1 |
20070282449 | de Villiers et al. | Dec 2007 | A1 |
20070299521 | Glenn et al. | Dec 2007 | A1 |
20080015698 | Marino et al. | Jan 2008 | A1 |
20080015701 | Garcia et al. | Jan 2008 | A1 |
20080021557 | Trieu | Jan 2008 | A1 |
20080051900 | de Villiers et al. | Feb 2008 | A1 |
20080051901 | de Villiers et al. | Feb 2008 | A1 |
20080125864 | de Villiers et al. | May 2008 | A1 |
20080125865 | Abdelgany | May 2008 | A1 |
20080133011 | de Villiers et al. | Jun 2008 | A1 |
20080154301 | de Villiers et al. | Jun 2008 | A1 |
20080154382 | de Villiers et al. | Jun 2008 | A1 |
20080161926 | Melkent et al. | Jul 2008 | A1 |
20080215155 | de Villiers et al. | Sep 2008 | A1 |
20080221696 | de Villiers et al. | Sep 2008 | A1 |
20080228274 | de Villiers et al. | Sep 2008 | A1 |
20080228277 | de Villiers et al. | Sep 2008 | A1 |
20080294259 | de Villiers et al. | Nov 2008 | A1 |
20090043391 | de Villiers et al. | Feb 2009 | A1 |
20090048674 | Zubok et al. | Feb 2009 | A1 |
20090048677 | McLeod et al. | Feb 2009 | A1 |
20090076614 | Arramon | Mar 2009 | A1 |
20090105833 | Hovda et al. | Apr 2009 | A1 |
20090105834 | Hovda et al. | Apr 2009 | A1 |
20090192617 | Arramon et al. | Jul 2009 | A1 |
20090205188 | de Villiers et al. | Aug 2009 | A1 |
20090210060 | de Villiers et al. | Aug 2009 | A1 |
20090222101 | de Villiers et al. | Sep 2009 | A1 |
20090276051 | Arramon et al. | Nov 2009 | A1 |
20090326656 | de Villiers et al. | Dec 2009 | A1 |
20100004746 | Arramon | Jan 2010 | A1 |
20100016972 | Jansen et al. | Jan 2010 | A1 |
20100016973 | de Villiers et al. | Jan 2010 | A1 |
20100030335 | Arramon | Feb 2010 | A1 |
20100049040 | de Villiers et al. | Feb 2010 | A1 |
20100069976 | de Villiers et al. | Mar 2010 | A1 |
20100076558 | de Villiers et al. | Mar 2010 | A1 |
20100087868 | Barr et al. | Apr 2010 | A1 |
20100100141 | de Villiers et al. | Apr 2010 | A1 |
20100179419 | de Villiers et al. | Jul 2010 | A1 |
20100268344 | de Villiers et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
3023353 | Apr 1981 | DE |
10035182 | Feb 2002 | DE |
0333990 | Sep 1989 | EP |
0333990 | May 1990 | EP |
0560140 | Sep 1993 | EP |
0560141 | Sep 1993 | EP |
0591712 | Apr 1994 | EP |
0820740 | Jan 1998 | EP |
1142544 | Oct 2001 | EP |
1153582 | Nov 2001 | EP |
1153582 | Nov 2001 | EP |
1250898 | Oct 2002 | EP |
1306064 | May 2003 | EP |
1344493 | Sep 2003 | EP |
1344506 | Sep 2003 | EP |
1344507 | Sep 2003 | EP |
1344508 | Sep 2003 | EP |
1417940 | May 2004 | EP |
1570813 | Sep 2005 | EP |
2803741 | Jul 2001 | FR |
61122859 | Jun 1986 | JP |
63164948 | Jul 1988 | JP |
WO 9920209 | Apr 1999 | WO |
WO 9930651 | Jun 1999 | WO |
WO 0004851 | Feb 2000 | WO |
WO 0035384 | Jun 2000 | WO |
WO 0042954 | Jul 2000 | WO |
WO 0042954 | Nov 2000 | WO |
WO 0101893 | Jan 2001 | WO |
WO 0115637 | Mar 2001 | WO |
WO 0168003 | Sep 2001 | WO |
WO 0211650 | Feb 2002 | WO |
WO 0211650 | Sep 2003 | WO |
WO 2004000170 | Dec 2003 | WO |
WO 2004000171 | Dec 2003 | WO |
WO 2004026187 | Apr 2004 | WO |
WO 2004054477 | Jul 2004 | WO |
WO 2005004756 | Jan 2005 | WO |
WO 2005004756 | May 2005 | WO |
WO 2005053580 | Jun 2005 | WO |
WO 2005072662 | Aug 2005 | WO |
WO 2005112834 | Dec 2005 | WO |
WO 2005112834 | May 2006 | WO |
WO 2006119092 | Nov 2006 | WO |
WO 2006119092 | Dec 2006 | WO |
WO 2007121320 | Oct 2007 | WO |
WO 2007121320 | Jun 2008 | WO |
20039312 | Nov 2003 | ZA |
Entry |
---|
International Search Report and Written Opinion of PCT Application No. PCT/US08/80800, dated Dec. 16, 2008, 11 pages total. |
Buttner-Janz, The Development of.the Artificial Disc. Introduction, pp. 1-18, Library of Congress Catalogue No. 92-75582, ISBN 0-9635430-0-8 (1989). |
Hellier, et al. Wear Studies for Development of an Intervertebral Disc Prosthesis. Spine, vol. 17 No. 6 Supplement pp. 86-96 (1992). |
International search report and written opinion dated Dec. 19, 2008 for PCT/US2008/080798. |
International search report and written opinion dated Dec. 29, 2008 for PCT/US2008/080804. |
Lee, et al. Impact Response of the Intervertebral Disc in a Finite-Element Model. Spine. 2000; 25(19):2431-2439. |
Lehuec, et al. Shock Absorption in Lumber Disc Prosthesis. Journal of Spinal Disorders & Techniques. 2003; 16(4):346-351. |
Office action dated Aug. 14, 2013 for U.S. Appl. No. 12/255,731. |
Number | Date | Country | |
---|---|---|---|
20090105835 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60981665 | Oct 2007 | US |