The present invention relates to devices for creating holes in the articular processes of the vertebra and the surgical method of using the devices for creation of holes and the use of the holes with facet joint prosthesis retainers.
Traumatic, inflammatory, and degenerative disorders of the spine can lead to severe pain and loss of mobility. According to some studies, back and spinal musculoskeletal impairments are the leading causes of lost work productivity in the United States. Pain as a result of some type of spinal impairment may have its source in a variety of pathologies or clinical conditions.
One source for back and spine pain is related to degeneration of the facets of the spine or facet arthritis. Bony contact or grinding of degenerated facet joint surfaces may play a role in some pain syndromes. While many technological advances have focused on the spinal disc and artificial replacement or repair of the disc, little advancement in facet repair has been made. Facet joint and disc degeneration frequently occur together. Thus, there is a need to address the clinical concerns raised by degenerative facet joints.
The current standard of care to address the degenerative problems with the facet joints is to fuse the two adjacent vertebrae together. By performing this surgical procedure, the relative motion between the two adjacent vertebrae is stopped, thus stopping motion of the facets and any potential pain generated as a result thereof. This surgical procedure has a high rate of morbidity and can potentially lead to further clinical complications such as adjacent segment disorders. This procedure is also not reversible. Therefore, if the patient has an unsatisfactory result, they maybe subject to additional surgical fusion procedures.
The present invention aims at addressing the clinical condition of the patient while allowing the patient to maintain mobility not common with fusion procedures. The device and procedure allow the restoration of the relative spacing between the facets within the facet joint, alleviating the bone on bone contact that is common in degenerative facet joints and often the source of pain generation, while allowing relative motion between the facets to continue post-operatively.
While other implants have been proposed with the objective of addressing facet degeneration by restoring motion, the subject device offers the benefit of requiring little to no bony resection in order for it to be placed within the spine. This advantage provides the opportunity for the patient to rely more on those anatomical structures unaffected by degeneration while providing for very little morbidity in the surgical procedure.
Devices and methods for creating holes in the articular process of the vertebra are provided. Methods of using the resulting holes to anchor or stabilize facet joint prosthesis, and also altering the spacing and motion at the facet joints of the vertebral column, are provided.
In some embodiments, a device for forming a curved lumen in an articular process of a vertebral column can comprise a shaft comprising a proximal section and a distal section. At least one lumen-forming arm can be slideably coupled to the shaft, comprising a tube biased in a curved shape toward the distal section and a flexible drill bit extending axially through the tube and axially rotatable within the tube, the flexible drill bit comprising a drill bit tip configured to cut through a vertebral articular process. A coupler can be disposed toward the proximal section of the shaft and connected to the flexible drill bit, wherein the coupler is configured to transfer axial rotation to the flexible drill bit. The at least one lumen-forming arm can be slideable from a retracted configuration to an advanced configuration, wherein in the advanced configuration the at least one lumen-forming arm extends in the curved shape from the distal section of the shaft.
In some embodiments, the device for forming a curved lumen in an articular process of a vertebral column can comprise an opposing target member. In some embodiments, the arm guide can be distally extendable and comprise a pointed tip configured to secure to the vertebra. Furthermore, the device can comprise a spacing member coupled to the shaft, wherein the spacing member comprises a spacer positioned adjacent the at least one lumen-forming arm.
In some embodiments, a device for forming a lumen in an articular process of a vertebral column can comprise a shaft and at least one lumen-forming arm slideably coupled to the shaft and comprising a drill bit configured to cut through a vertebral articular process. A coupler can be connected to the drill bit, wherein the coupler is configured to transfer axial rotation to the drill bit. The at least one lumen-forming arm can be slideable from a retracted configuration to an advanced configuration, wherein in the advanced configuration the at least one lumen-forming arm can extend from the shaft.
A method for forming a lumen in the articular process of the vertebra can comprise accessing an articular process of a spine and positioning a lumen-forming arm comprising a drill bit against a first articular process. The method can also include the step of rotating the drill bit by coupling a rotational power source to the drill bit and manipulating the lumen-forming arm through the articular process to form a through lumen.
In some embodiments, the method for forming a lumen in the articular process of the vertebra can further comprise positioning a spacer between the first articular process and a second articular process. In some embodiments, the lumen formed in the method can be curved.
One embodiment of the invention comprises a device for treating spinal disorders while preserving movement at a facet joint. The device comprises a prosthesis having a first face and a second face, where the first face is adapted to be secured to the adjacent articular surface of a facet and the second surface is configured for sliding contact with an adjacent structure. In one embodiment, the device is dimensioned to substantially fit within a joint capsule of the facet joint and has a thickness generally equal to the normal anatomic spacing between the two facets of the facet joint. In some embodiments, the device has a curve adapted to match the natural shape of a facet and a size adapted to fit substantially within a joint capsule of the facet joint. The device may comprise at least one material selected from the group consisting of polymers, polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyethylene, fluoropolymers, hydrogels, elastomers, ceramics, zirconia, alumina, silicon nitride; metal(s), titanium, titanium alloy, cobalt chromium, stainless steel, and combinations of these materials. In one embodiment, the second face of the device comprises a highly polished surface. In one embodiment, the first face may comprise a roughened surface or a porous surface. In some embodiments, at least one face of the device is sufficiently malleable to be capable of generally conforming to the shape of an adjacent surface or structure under normal anatomical loads.
In one embodiment of the invention, a device for treating spinal disorders while preserving movement at a facet joint is provided. The device may comprise a prosthesis having a first face and a second face, where the first face is adapted for sliding contact with a first articular process of a facet joint and the second surface is configured for sliding contact with a second articular process of the facet joint. In one embodiment, the device is dimensioned to substantially fit within a joint capsule of the facet joint and has a thickness generally equal to the normal anatomic spacing between the two facets of a facet joint. In one embodiment, the device has a curve adapted to match the natural shape of a facet and a size adapted to fit substantially within a joint capsule of the facet joint. The device has a thickness approximately equal to the normal anatomic spacing between the two facets of the facet joint. In one embodiment, the device has an average thickness within the range of about 0.5 mm to about 3 mm. In one embodiment, the device has an average thickness within the range of about 1 mm to about 2 mm. In another embodiment, the device has a diameter within the range of about 5 mm to about 25 mm. In another embodiment, the device has a size within the range of about 10 mm to about 20 mm in diameter. In one embodiment, at least one face of the device has a bone contacting surface area of about 25 mm2 to about 700 mm2. In another embodiment, at least one face of the device has a bone contacting surface area of about 20 mm2 to about 400 mm2. In still another embodiment of the device, at least one face of the device has a bone contacting surface area of about 20 mm2 to about 100 mm2. In one embodiment, the device has at least one face comprising a highly polished surface. In some embodiments, at least one face of the device is sufficiently malleable to be capable of generally conforming to the shape of at least a portion of an articular process under normal anatomical conditions.
The prosthesis may further comprise an anchoring assembly configured to generally maintain at least a portion of the prosthesis between the first articular process and the second articular process of the facet joint. The anchoring assembly may comprise an elongate member and at least one retaining member. In one embodiment, the elongate member comprises a wire or cable. In another embodiment, the elongate member comprises a solid wire or cable. In still another embodiment, the elongate member comprises a braided cable. The retaining member may comprise a set screw retaining ring. In one embodiment, at least one end of the device comprises a threaded interface. In one embodiment, the retaining member comprises a threaded retainer. In some embodiments, the retaining member is integrally formed with one end of the elongate member.
In another embodiment of the invention, the device for treating facet joint dysfunction is provided. The device comprises a body with a first face and a second face adapted to contact the bony or cartilaginous articular surfaces of the facets of adjacent vertebrae. The device has at least one retaining interface capable of accepting an elongate retainer through it. An elongate retainer is adapted for generally maintaining the location of the body with respect to the facet joint. The retainer has a first portion adapted to engage a first facet of the facet joint and a second portion adapted to engage a second facet of the facet joint. In some embodiments of the invention, the device has a generally circular cross-section and a diameter adapted to fit substantially within a joint capsule of the facet joint. The device has a thickness generally equal to the normal anatomic spacing between the two facets of the facet joint. In still other embodiments of the device, the device has a curve adapted to match the natural shape of the facet and a size adapted to substantially fit within a joint capsule of the facet. The device may comprise at least one material selected from the group consisting of polymers, polyetheretherketone, polyetherketoneketone, polyethylene, fluoropolymers, hydrogels, elastomers, ceramics, zirconia, alumina, silicon nitride; metal(s), titanium, titanium alloy, cobalt chromium, stainless steel, and combinations of these materials. The elongate retainer may comprise a braided polymer, a braided metal, or a solid structure. In some embodiments of the invention, the elongate retainer comprises a flexibility sufficient to tie a knot in the elongate retainer. In another embodiment, at least one end of the elongate retainer has a threaded metal section adapted to accept a threaded knot. A threaded knot is provided to retain the elongate retainer against an articular process. In one embodiment of the invention, the threaded section is pressed or crimped onto the elongate retainer. The threaded section and knot may comprise titanium, titanium alloy, cobalt chromium or stainless steel. In some embodiments of the invention, the device comprises at least one face of the highly polished surface. In some embodiments, the elongate member may comprise at least one element with an enlarged cross-sectional area. The elongate member may comprise at least one end of with a bulbous retainer, a flared retainer, a T-bar retainer or an integral ring retainer. In some embodiments, at least one face of the device is sufficiently malleable to be capable of generally conforming to the shape of at least a portion of an articular surface.
In one embodiment of the invention, a prosthesis for treating facet joint dysfunction is provided. The prosthesis comprises a body with a first face and a second face, where at least one face adapted for sliding contact with the bony or cartilaginous articular surfaces of the facets of adjacent vertebrae or the prosthesis has at least one retaining interface capable of accepting a retainer member. The retaining member is adapted for securing the location of the body with respect to at least of the articular surfaces. The retaining member may comprise a first portion adapted to engage the retaining interface of the body and a second portion adapted to engage a first facet of the facet joint. The retainer may further comprise a third portion adapted to engage a second facet of the facet joint. In one embodiment, the retainer comprises a threaded shaft and a retaining interface of the body comprises a threaded hole with an opening on one face of the body. The retaining member may also comprise a projection extending from the body. In still another embodiment, the retaining member comprises a longitudinal member adapted to engage the retaining interface of the body and at least one retainer being capable of engaging the longitudinal member. The retaining ring may comprise a set screw retaining ring. The set screw of the retaining member may have a blunted tip, curved tip, or piercing tip. Alternatively, at least one of the retaining rings may be a friction fit retaining ring. The body of the prosthesis may be curved. The prosthesis may comprise at least one material selected from the group consisting of polymers, polyetheretherketone, polyetherketoneketone, polyethylene, fluoropolymers, hydrogels, elastomers, ceramics, zirconia, alumina, silicon nitride; metal(s), titanium, titanium alloy, cobalt chromium, stainless steel, and combinations of these materials. In some embodiments, at least one face of the prosthesis is sufficiently malleable to be capable of generally conforming to the shape of at least a portion of an articular surface.
In one embodiment, a prosthesis for treating facet joint dysfunction is provided. The prosthesis comprises a first body with a first face and a second face and a second body within a first face and a second face. The first face of each body is adapted to articulate with the first face of the other body and the second face of each body is adapted to engage a facet of a facet joint. The prosthesis may further comprise a retaining member adapted for securing a location of at least one body. In some embodiments, at least one face of the prosthesis is sufficiently malleable to be capable of generally conforming to the shape of at least a portion of an articular surface.
In another embodiment of the invention, a method for treating vertebral dysfunction is provided. This method comprises opening a facet joint capsule between two facets of adjacent vertebral bodies, distracting the adjacent vertebral bodies from a first spacing to a second spacing and placing the spacer between the two facets to maintain the second spacing. The method may further comprise the steps of securing the spacer to one facet of the facet joint. The method may also comprise securing the spacer in the facet joint capsule. The step of securing the spacer may comprise introducing a hole through each facet, threading a retainer through the hole of the first facet, threading the retainer through the hole in the spacer, threading the retainer through the hole of the second facet, and tying a knot in at least one end of the retainer. The method may further comprise the steps of introducing a hole through a first facet and a second facet, advancing the retainer through the hole of the first facet, advancing the retainer through the hole in the spacer, threading the retainer through the hole of the second facet and threadably engaging an anchor to at least one end of the retainer. The step of securing the spacer may further comprise providing a spacer with a retaining member and advancing the retaining member at least partially into a facet to engage the facet. The method may also further comprise the step of conforming the shape of at least a portion of the spacer to at least a portion of a facet of the facet joint. In a further embodiment, the conforming step is performed after the placing step. In another embodiment, the conforming step is performed while the spacer is generally located between the facets of the facet joint.
In another embodiment of the invention, a method of treating the facet joint is provided. The method comprises providing a prosthesis dimension to fit within a facet joint capsule, accessing a facet joint capsule between two articular prosthesis of two vertebrae, inserting a prosthesis generally within the joint capsule and maintaining the prosthesis generally between the two articular prosthesis without penetrating the surface of a vertebrae. Maintaining the prosthesis may comprise anchoring the prosthesis to the joint capsule tissue, or generally closing the joint capsule over the prosthesis. The prosthesis can also be maintained between the articular prosthesis by suturing the prosthesis to the surrounding soft tissue. The method may also further comprise the step of conforming the shape of at least a portion of the prosthesis to at least a portion of a facet of the facet joint. In a further embodiment, the conforming step is performed after the inserting step. In another embodiment, the conforming step is performed while the prosthesis is generally located between the facets of the facet joint.
The structure and operation of the invention will be better understood with the following detailed description of embodiments of the invention, along with the accompanying illustrations, in which:
A. Anatomy of the Spine
As shown in
The orientation of the facet joints vary, depending on the level of the vertebral column. In the C1 and C2 vertebrae, the facet joints are parallel to the transverse plane.
In addition to guiding movement of the vertebrae, the facet joints also contribute to the load-bearing ability of the vertebral column. One study by King et al. Mechanism of Spinal Injury Due to Caudocephalad Acceleration, Orthop. Clin. North Am., 6:19 1975, found facet joint load-bearing as high as 30% in some positions of the vertebral column. The facet joints may also play a role in resisting shear stresses between the vertebrae. Over time, these forces acting on the facet joints can cause degeneration and arthritis.
B. Joint Prosthesis
In one embodiment of the invention, a device for restoring the spacing between two facets of a facet joint is provided. As shown in
The prosthesis has a thickness generally equal to about the anatomic spacing between two facets of a facet joint. The prosthesis generally has a thickness within the range of about 0.5 mm to about 3.0 mm. In certain embodiments, the prosthesis has a thickness of about 1 mm to about 2 mm. In one preferred embodiment, the prosthesis has a thickness of about 0.5 mm to about 1.5 mm. In one embodiment, the thickness of the prosthesis is nonuniform within the same prosthesis. For example, in
In some embodiments of the invention, the prosthesis is configured to provide an improved fit with the articular process and/or joint capsule. For example, in
In one embodiment, at least a portion of one surface of the prosthesis is highly polished. A highly polished portion of the prosthesis may reduce the surface friction and/or wear in that portion of the prosthesis as it contacts bone, cartilage or another surface of the prosthesis. A highly polished surface on the prosthesis may also decrease the risk of the prosthesis wedging between the articular surfaces of the facet joint, which can cause pain and locking of the facet joint.
In one embodiment, shown in
In one embodiment of the invention, one surface of the prosthesis is roughened or porous and a second surface that is highly polished. The first surface contacts or engages one facet of the facet joint and aids in maintaining the prosthesis between the articular surfaces. The second surface of the prosthesis is highly polished and contacts the other facet of the facet joint to provide movement at that facet joint.
The prosthesis can be manufactured from any of a variety of materials known in the art, including but not limited to a polymer such as polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyethylene, fluoropolymer, hydrogel, or elastomer; a ceramic such as zirconia, alumina, or silicon nitride; a metal such as titanium, titanium alloy, cobalt chromium or stainless steel; or any combination of the above materials.
C. Prosthesis with a Retaining Configuration
In one embodiment of the invention, the prosthesis is maintained between the two facets of the facet joint by taking advantage of the joint capsule and/or other body tissue surrounding the facet joint to limit the migration of the prosthesis out of the facet joint. In some embodiments of the invention, the shape of the prosthesis itself is capable of resisting displacement of the prosthesis from its position generally between the facet joint surfaces. In one embodiment, a concave or biconcave configuration resists displacement of the prosthesis by providing an increased thickness at the periphery of the prosthesis that requires a larger force and/or greater distraction of facet joint surfaces in order to cause displacement. In other embodiments, surface treatments or texturing are used to maintain the prosthesis against a facet of the facet joint, as described previously. In some embodiments, a combination of disc configuration, surface texturing and existing body tissue or structures are used to maintain the position of the prosthesis.
Bone growth facilitators, electrical current, or other known techniques may be used to accelerate osteoincorporation of textured or microporous anchoring surfaces.
D. Prosthesis with a Retaining Member
The prosthesis may be configured with a retaining interface to engage a retaining member that facilitates retention of the prosthesis within the joint capsule of the facet joint. Use of a retaining member may be advantageous for preventing migration of the prosthesis over time use or with the extreme ranges of vertebral movement that may distract the articular surfaces sufficiently to allow the prosthesis to slip out.
1. Wire/Cable Retaining Member
In one embodiment of the invention, shown in
The cross-sectional shape of the retaining member can be any of a variety of shapes, including but not limited to circles, ovals, squares, rectangles, other polygons or any other shape. The wire or cable generally has a diameter of about 0.5 mm to about 2 mm and a length of about 5 mm to about 60 mm. In another embodiment, wire or cable has a diameter of about 0.25 mm to about 1 mm, and preferably about 0.75 mm to about 1.25 mm. The diameter of the wire or cable may vary along the length of the wire or cable. In one embodiment, the wire or cable has a length of about 10 mm to about 40 mm. In another embodiment, the wire or cable has a length of about 20 mm to about 30 mm.
In one embodiment, shown in
In another embodiment, the retaining interface 78 extends only partially through the prosthesis 72. The retaining interface 78 may be located generally in the center of the prosthesis, or it may be located eccentrically, as depicted in
In
In another embodiment, shown in
In another embodiment, depicted in
In one embodiment of the invention, one end of the wire or cable retaining member is preformed with a retainer for engaging the articular process. The retainer may be a preformed ring, bulb, flared end, T-bar end, or any of a variety of shapes having a greater cross sectional area than the other portions of the wire or cable retaining member. This configuration of the wire or cable retaining member is adapted to engage an articular process by passing the free end of a wire or cable retaining member through an articular process such that the end with the preformed retainer can engage the articular process.
In one embodiment, the wire or cable retaining member is secured to the articular processes with sufficient laxity or length between the secured ends or between the prosthesis and one secured end so that the two articular processes are not fixed in position relative to each other and remain capable of performing movements such as flexion, extension, lateral flexion and/or rotation. In one embodiment, the retaining member comprises a cable of braided polymer, including but not limited to a braided polymer such as PEEK or PEKK, or a braided metal, such as braided cobalt chromium or titanium. The cable can be selected with different degrees of flexibility to provide different degrees of movement at that facet joint. The cable has a first segment capable of engaging the prosthesis at its retaining interface to limit the movement
2. Screw/Bolt Retaining Member
In one embodiment of the invention, shown in
3. Projection Retaining Member
In some embodiments of the invention, shown in
In one embodiment of the invention, the joint capsule is closed after placement of the prosthesis. Closure may be performed using adhesives, suturing, stapling or any of a variety of closure mechanisms known in the art.
E. Accessing the Facet Joints
1. Surgical Approach to the Cervical Spine
In one embodiment of the invention, general anesthesia is achieved and the patient is positioned prone on a turning frame or three-point head rest attached to the table. Skeletal traction is performed using tongs. The patient is prepped and draped in the usual sterile fashion. Pre-operative radiographic films are reviewed and any vertebral anomalies or variations are noted. In one embodiment, the spinous processes are palpated to identify the location of the cervical vertebrae and a skin incision is made over the desired vertebrae, as shown in
2. Surgical Approach to the Thoracic Spine
In one embodiment of the invention, general anesthesia is achieved and the patient is positioned prone on a padded spinal operating frame. The patient is prepped and draped in the usual sterile fashion. Pre-operative radiographic films are reviewed and any vertebral anomalies or variations are noted. In one embodiment, shown in
3. Surgical Approach to the Lumbar Spine
In one embodiment of the invention, general anesthesia is achieved and the patient is positioned prone or kneeling on a padded spinal operating frame. In one embodiment, by allowing the abdomen to hang free, intravenous pressure is reduced and blood loss during the procedure is decreased. The patient is prepped and draped in the usual sterile fashion. Pre-operative radiographic films are reviewed and any vertebral anomalies or variations are noted.
4. Minimally Invasive Approach to the Cervical Spine
In one embodiment of the invention, general or local anesthesia is achieved and the patient is positioned prone on a turning frame or three-point head rest attached to the table. Skeletal traction is performed using tongs. The patient is prepped and draped in the usual sterile fashion. Pre-operative radiographic films are reviewed and any vertebral anomalies or variations are noted. The spinous processes are palpated to identify the location of the cervical vertebrae and a small 1 cm skin incision is made over the desired insertion site. Hemostasis is achieved with infiltration of epinephrine 1:500,000 solution around the incision site. Under fluoroscopy, a trocar or needle is inserted through the incision site and joint capsule to the desired facet joint. The needle or trocar is replaced with an introducer. In one embodiment, insertion is performed along the nuchal ligament to avoid cutting into vascular muscle tissue. In another embodiment, insertion is performed directly through the skin and muscle overlying the facet joint. The facets of the facet joint are distracted as required to provide access to the joint space. In one embodiment, the affected facet joint is sized by injecting a radio-contrast agent into the facet joint and a joint prosthesis is selected. In one embodiment, the articular process or processes are prepared for receiving the joint prosthesis, including but not limited to roughening the articular surface of the articular process and/or creating a hole using endoscopic instruments known in the art. The prosthesis is inserted into the facet joint space through the introducer and an anchor or retaining member, if any is attached to the articular process. The steps are repeated until all the joint prostheses have been inserted. The surgical site is closed, cleaned and dressed.
5. Minimally Invasive Approach to the Thoracic Spine
In one embodiment of the invention, general or local anesthesia is achieved and the patient is positioned prone on a padded spinal operating frame. The patient is prepped and draped in the usual sterile fashion. Pre-operative radiographic films are reviewed and any vertebral anomalies or variations are noted. A small 1 cm skin incision is made over the desired insertion site. Hemostasis is achieved by injecting epinephrine 1:500,000 solution around the incision site. Under fluoroscopy, a trocar or needle is inserted through the superficial and lumbodorsal fascia, the erector spinae muscle and joint capsule to access the facet joint. The trocar or needle is replaced with an introducer. The facets of the facet joint are distracted as required to provide access to the joint space. An intra-operative x-ray or fluoroscopy is obtained to confirm access to the desired facet joint. In one embodiment, the affected facet joint is sized and a joint prosthesis is selected. In one embodiment, the articular process or processes are prepared for receiving the joint prosthesis, including but not limited to roughening the articular surface of the articular process and/or creating a hole for the prosthesis anchor or retaining member, using endoscopic instruments known in the art. The prosthesis is inserted into the facet joint space and the anchor or retaining member, if any is attached to the articular process. The steps are repeated until all the joint prostheses have been inserted. The surgical site is closed, cleaned and dressed.
6. Minimally Invasive Approach to the Lumbar Spine
In one embodiment of the invention, general or local anesthesia is achieved and the patient is positioned prone or kneeling on a padded spinal operating frame. In one embodiment, by allowing the abdomen to hang free, intravenous pressure is reduced and blood loss during the procedure is decreased. The patient is prepped and draped in the usual sterile fashion. Pre-operative radiographic films are reviewed and any vertebral anomalies or variations are noted. A small 1 cm skin incision is made over the desired insertion site. Hemostasis is achieved by injecting epinephrine 1:500,000 solution around the incision site. Under fluoroscopy, a trocar or needle is inserted through the lumbodorsal fascia. The trocar or needle is replaced with an introducer. In one embodiment, radio-contrast agent is injected through the introducer to identify the junction between the lumbodorsal fascia and the multifidus and longissimus muscles. A blunt dissector is inserted through the introducer to dissect between the multifidus and longissimus muscles and pierce the joint capsule to access the facet joints. The facets of the facet joint are distracted as required to provide access to the joint space. In one embodiment, the affected facet joint is sized and a joint prosthesis is selected. In one embodiment, the articular process or processes are prepared for receiving the joint prosthesis, including but not limited to roughening the articular surface of the articular process and/or creating a hole for the prosthesis anchor or retaining member. The prosthesis is inserted into the facet joint space and the anchor or retaining member, if any is attached to the articular process. The steps are repeated until all the joint prostheses have been inserted. The surgical site is closed, cleaned and dressed.
F. Facet Drill
Other embodiments of the invention comprise tools and methods for creating holes or lumens through one or more articular processes of the vertebra to facilitate implantation of a prosthesis stabilizer or retainer. Preferably, the holes or lumens have a curved or non-linear configuration. The curved or non-linear configuration allows relatively greater penetration through the thicker portions of the articular process(es) and therefore the articular process(es) may be less likely to fracture during formation of the hole or lumen. While various instruments have been proposed for drilling into and through bone, including for example, the curved drills described in U.S. Pat. Nos. 5,700,265, 6,419,678, and 6,607,530, herein incorporated by reference in their entirety, the subject tool offers the benefits of lumen formation through the articular processes within the limited surgical access available about the vertebra. The preferred devices utilize one or more curved punch members or curved drills that rotate about an axis that is transverse to the movement plane of the curved punch or curved drill member. Unlike traditional orthopedic procedures that require unimpeded access to the surgical site due to the longitudinally-oriented surgical tools, the curved punch or curved drill members also permit access using a limited space or cavity around the articular processes. As used herein, the terms “lumen-forming” and “lumen formation” refer to the creation of a hole, passageway or indentation generally such as by, for example, piercing, punching, boring, puncturing, or drilling.
One embodiment of the tool 200, shown in
The support member 208 permits stabilization of the articular processes as the lumen-forming member 206 passes or punctures through the bone. The support member 208 may comprise a plate 214 that is flat or curved. In some embodiments, the plate 214 may have a concave or convex configuration. The plate 214 may optionally comprise a recess 216, depicted in
Referring to
As mentioned previously, the plate 214 can be fixed, or movable with respect to the frame 218. Various attachment means include, but are not limited to, welding, brazing, gluing, cementing, pin, hinge, and ball and socket. In one embodiment, the punch arm is curved. Different curved shapes of the punch arm are possible. In one embodiment the punch arm 210 is straight. In another embodiment the punch arm 210 has at least one straight segment and at least one curved segment. The segments may lie within the movement plane of the punch arm 210, or alternatively, one or more segments may lie outside the movement plane. Likewise, the movement of both lumen-forming tips 212 typically occurs in the same plane, but in other embodiments, the movement of each tip 212 may occur in different planes that intersect at the intermediate position. In other embodiments of the lumen-forming tool 200, only one arm moves or the two arms may move asymmetrically. In another embodiment of the lumen-forming tool, the lumen-forming arms move sequentially or in an alternating manner.
In one embodiment, the punch arm 210 is sized to be able to pass through the articular processes of the spine and the resulting hole is sized for a prosthesis retainer to be inserted. The size is appropriate for the retainer to slide or not slide in the hole, depending on the retainer design selected.
Referring to
In another embodiment, illustrated in
Referring to
In another embodiment, illustrated in
The tool 300 further comprises a spacing member 310 that can be coupled to the shaft 202 through a detachable clipping member 306. In the illustrated arrangement, the spacing member 310 comprises a spacing member shaft 304 that is connected to the clipping member 306 at the proximal end and a spacer 302 at the distal end. The spacer 302, in turn, may comprise a disk-like member and two indentations 308 on each side of the disk-like member, and the indentations 308 are lined up or aligned with the lumen-forming member 206 to allow the lumen-forming tips 212 of the lumen-forming members 206 to penetrate through the bones and into the indentations 308. In some embodiments, the disk-like member of the spacer 302 may have an opening or a hole instead of the indentations 308, and the two lumen-forming tips 212 could make contact with each other through the opening or the hole after penetrating the bones. The spacer 302 may have a curved shape disk-like member to facilitate positioning between the articular processes 20 and 22. In some embodiments, the disk-like member of the spacer 302 may have different shape, size and thickness for used with different sized vertebra. The clipping member 306 allows the spacing member 310 to be detached from and attached to the facet drill tool with ease.
Although the tool 300 depicted in
In another alternative embodiment, the spacing member 310 may be used with tool 200. The spacing member 310 may be configured to have a bend to allow the spacer 302 to bend into the plane of the lumen-forming arm 210 and the piercing tip 212. In addition, the spacer 302 may also be movably connected to the spacing member shaft 304 through a pivot joint, wherein the disk-like member of the spacer 302 may be tilted out of the plane of the spacing member shaft 304 to allow for adjusting the distance between the plate 214 and the spacer 302 when positioning the tool 200 onto the articular processes 20, 22.
Referring to
Although the embodiment depicted in
In some embodiments of the either tool 200, 232 or 300, the movement of the lumen-forming members 206 and/or plate 214 can be effected by manual force applied by a person, such as by his or her hands, or alternatively it can be supplied or supplemented with a motor, pneumatics, hydraulics, springs, and/or magnetics. A movable grip may be used to manipulate and actuate the lumen-forming members of the tool. The grip may be designed for rotational, pivoting linear relative movement, or combination thereof, depending on the mechanical advantage that may be needed to facilitate movement of the lumen-forming arm(s) and piercing through the articular processes. One embodiment of the tool may comprise a squeeze handle for actuating the tool. In other embodiments, the tool comprises an actuator with a switch or trip mechanism. Movement of the lumen-forming tips can be effected with coaxial shafts, non-coaxial shafts, wires, rods, springs, hydraulics, gas cylinder, piston, gears, motor, electrical signal, magnetics, or other suitable means for communicating a signal or transferring movement or providing the closing force. Other embodiments of the tool include closing mechanisms that include compound leverage, ratcheting, and/or multistep closing.
G. Powered Facet Drill
Another embodiment of the tool 400, shown in
Referring to
The lumen-forming arm 410 can comprise a tubular cover 411 with a rotating drill bit 412 disposed coaxially within the tubular cover's 411 central lumen, as illustrated in
In some embodiments, the lumen-forming arm 410 can be sized to be able to pass through the articular processes of the spine and the resulting hole is sized for a prosthesis retainer to be inserted. The lumen-forming arm 410 can have a diameter in the range of about 1 mm to 5 mm, preferably about 2 mm to 4 mm, and most preferably about 3 mm. At an end of the rotating drill bit 412 can be a drill bit tip 413 with a cutting surface for creating the lumen in the facets. The rotating drill bit tip 413 can be of any appropriate configuration and with any number of points. In some embodiments, the lumen-forming tip 413 may be round, flat, beveled or stepped. In some embodiments, the cutting surface can comprise any configuration that is known in the art for cutting through bone.
The rotating drill bit 412 can be connected to a drill coupler 424 to provide the axial rotation. The drill coupler 424 can have a configuration that is complementary to a coupling of a hand or powered drill. In some embodiments, the drill coupler 424 can have a feature to provide an anti-rotational connection with the coupling on the drill, such as for example a flat surface, or a shaft having a square or hexagonal cross-section. In some embodiments, the drill coupler 424 can have a configuration to fit with a standard drill chuck. In other embodiments, the drill coupler 424 can have any other configuration that is complementary to a coupling on a drill.
A target member 408 having a target plate 414 can be connected to the frame 418. The target plate 414 is in the path of travel of the lumen forming arm 410 and thus the position of the target plate 414 against an articular process can provide indication to the user of where the lumen forming arm 410 will emerge from the articular processes during the drilling procedure. The target member 408 can advantageously help the user avoid neural or other structures in and around the articular processes by visualizing and understanding the trajectory of the lumen forming arm 410 through the articular processes. In some embodiments, the target member 408 can provide some stabilization of the articular processes as the lumen forming arm 410 passes or cuts through the bone. The target plate 414 can be flat or curved. In some embodiments, the target plate 414 can have a concave or convex configuration. The target plate 414 can comprise an aperture 416, depicted in
The tool 400 can further comprise a spacing member 500 that can be coupled to the handle 404, as illustrated in
Preferably, the retention member 506 allows the spacing member 500 to be detached from and attached to the facet drill tool 400 with ease. In the embodiment illustrated in
Although the tool 400 depicted in
In some embodiments, the spacer member 500 can rotate about its longitudinal axis while coupled to the tool 400 to accommodate variations in the shapes and positions of the articular processes 20, 22, as illustrated in
Referring to
With reference to
The tool 400 can be adjusted so that a movable member of the tool 400 can secure to the outside of a facet joint or lamina. In the illustrated embodiment of
A drill motor can be attached to the drill coupler 424 to power the rotating drill bit 412 within the lumen-forming arm 410. While the drill motor rotates the drill bit 412, the proximal actuator 422 can be advanced in the distal direction to extend the lumen-forming arm 410 from the arm guide 406 and form a hole in the articular processes 20, 22, as illustrated in the cross-sectional views of
Once the curved hole is formed, the lumen-forming arm 410 can be retracted by pulling the proximal actuator 422 in the proximal direction. Methods of using the resulting holes to anchor or stabilize facet joint prosthesis, and also altering the spacing and motion at the facet joints of the vertebral column, are provided above.
In another embodiment, the tool can comprise dual lumen-forming arms that can extend toward each other in a pincher-like fashion, similar to the dual-arm tool 232 described above. Each lumen-forming arm can comprise rotating drills that are connected to two separate drill motors or a common drill motor. One of skill in the art will understand that in some embodiments, only one lumen-forming arm may move at a time while the other arm is fixed in position. In other embodiments of the lumen-forming tool, the two arms may move asymmetrically. In some embodiments, both lumen-forming arms may move at the same time until they meet at an intermediate position. The movement of both lumen-forming arms typically occurs in the same plane, but in other embodiments, the movement of each arm may occur in different planes that intersect at the intermediate position.
In some embodiments, the disk-like member of the spacer may have indentations on each side of the disk-like member instead of a spacer aperture, and the indentations can be lined up or aligned with the lumen-forming arms to allow the drill tips to penetrate through the bones and into the indentations. In embodiments where the spacer has a hole instead of indentations, the lumen-forming tips moves until they meet at an intermediate position to form a curved or non-linear passageway through the articular processes 20, 22.
The size of the tool is appropriate for drilling the particular bone in the way that is desired. Smaller devices can be used for smaller vertebra and larger devices for larger vertebra. In addition, the device can be use on bones other than the vertebra and on bones for humans and non-humans. Other applications of the tool are for creating anchor points in bone for sutures and for bone immobilization such as with pins.
Other means of attaching the actuator to the inner shaft or other movement-transmitting member such that a movement of the actuator results in a desired corresponding movement of the inner shaft are possible and are considered within the scope of the invention.
The tool can be made of any appropriate material for the particular part. Exemplary materials include, but are not limited to, stainless steel, surgical steel, cutlery steel, tool steel, cobalt and its alloys, nickel and its alloys, chromium and its alloys, titanium and its alloys, zirconium and its alloys, aluminum and its alloys, magnesium and its alloys, polymers, elastomers, and ceramics. Ceramics may include, but are not limited to silicon carbide, silicon oxide(s), silicon nitride, aluminum oxide, alumina, zirconia, tungsten carbide, other carbides.
Other embodiments of the invention comprise a method of forming a passageway in the articular processes of the vertebra using a facet lumen-forming tool described herein. The method may comprise placing the lumen-forming tips of the facet lumen-forming against a pair of articular processes of the vertebra, and actuating the lumen-forming member(s). Another embodiment may comprise placing the lumen-forming tip and plate of the single-arm facet lumen-forming against the articular processes of the vertebra, and actuating the lumen-forming.
A further embodiment of the invention is a method of anchoring or restraining a prosthesis between the facet joints of the vertebra comprising forming a curved lumen through the articular processes with the facet lumen-forming tool described herein, positioning a facet joint implant into the facet joint associated with the articular processes and inserting an anchoring member through the curved lumen.
While embodiments of this invention have been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially.
The present application is a divisional of U.S. application Ser. No. 12/859,009 filed on Aug. 18, 2010, which is a continuation-in-part of U.S. application Ser. No. 12/035,366 filed on Feb. 21, 2008, now U.S. Pat. No. 8,652,137, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/891,159 filed on Feb. 22, 2007, the disclosures of each are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
86016 | Howell | Jan 1869 | A |
1822280 | Ervay | Sep 1931 | A |
1822330 | Anslie | Sep 1931 | A |
2486303 | Longfellow | Oct 1949 | A |
3111945 | Von Solbrig | Nov 1963 | A |
3570497 | Lemole | Mar 1971 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
3875595 | Froning | Apr 1975 | A |
3879767 | Stubstad | Apr 1975 | A |
4001896 | Arkangel | Jan 1977 | A |
4037603 | Wendorff | Jul 1977 | A |
4085466 | Goodfellow et al. | Apr 1978 | A |
4119091 | Partridge | Oct 1978 | A |
4156296 | Johnson et al. | May 1979 | A |
4231121 | Lewis | Nov 1980 | A |
D261935 | Halloran | Nov 1981 | S |
4312337 | Donohue | Jan 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4502161 | Wall | Mar 1985 | A |
D279502 | Halloran | Jul 1985 | S |
D279503 | Halloran | Jul 1985 | S |
4535764 | Ebert | Aug 1985 | A |
4573458 | Lower | Mar 1986 | A |
4634445 | Helal | Jan 1987 | A |
4662371 | Whipple et al. | May 1987 | A |
4706659 | Matthews et al. | Nov 1987 | A |
4714469 | Kenna | Dec 1987 | A |
4722331 | Fox | Feb 1988 | A |
4730615 | Sutherland et al. | Mar 1988 | A |
4759766 | Buettner-Janz et al. | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4772287 | Ray et al. | Sep 1988 | A |
4773402 | Asher et al. | Sep 1988 | A |
4834757 | Brantigan | May 1989 | A |
4863477 | Monson | Sep 1989 | A |
4904260 | Ray et al. | Feb 1990 | A |
4907577 | Wu | Mar 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4919667 | Richmond | Apr 1990 | A |
4923471 | Morgan | May 1990 | A |
4936848 | Bagby | Jun 1990 | A |
4941466 | Romano | Jul 1990 | A |
4959065 | Arnett et al. | Sep 1990 | A |
4969909 | Barouk | Nov 1990 | A |
5000165 | Watanabe | Mar 1991 | A |
5002546 | Romano | Mar 1991 | A |
5011484 | Bréard | Apr 1991 | A |
5015255 | Kuslich | May 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5062845 | Kuslich | Nov 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5112346 | Hiltebrandt et al. | May 1992 | A |
5127912 | Ray et al. | Jul 1992 | A |
5147404 | Downey | Sep 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5192326 | Bao et al. | Mar 1993 | A |
5209755 | Abrahan et al. | May 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5300073 | Ray et al. | Apr 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5306308 | Gross et al. | Apr 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5330479 | Whitmore | Jul 1994 | A |
5360431 | Puno et al. | Nov 1994 | A |
5368596 | Burkhart | Nov 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5372598 | Luhr et al. | Dec 1994 | A |
5400784 | Durand et al. | Mar 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5413576 | Rivard | May 1995 | A |
5415661 | Holmes | May 1995 | A |
5425773 | Boyd et al. | Jun 1995 | A |
5437672 | Alleyne | Aug 1995 | A |
5445639 | Kuslich et al. | Aug 1995 | A |
5458642 | Beer et al. | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5462542 | Alesi, Jr. | Oct 1995 | A |
5487756 | Kallesoe et al. | Jan 1996 | A |
5491882 | Walston et al. | Feb 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5507823 | Walston et al. | Apr 1996 | A |
5509918 | Romano | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5527312 | Ray | Jun 1996 | A |
5527314 | Brumfield et al. | Jun 1996 | A |
5534028 | Bao et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5549619 | Peters et al. | Aug 1996 | A |
5556431 | Buttner-Janz | Sep 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5571131 | Ek et al. | Nov 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5571191 | Fitz | Nov 1996 | A |
5577995 | Walker et al. | Nov 1996 | A |
5586989 | Bray, Jr. | Dec 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5603713 | Aust et al. | Feb 1997 | A |
5638700 | Shechter | Jun 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5649947 | Auerbach et al. | Jul 1997 | A |
5653762 | Pisharodi | Aug 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5683466 | Vitale | Nov 1997 | A |
5700265 | Romano | Dec 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5707373 | Sevrain et al. | Jan 1998 | A |
5716415 | Steffee | Feb 1998 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5741260 | Songer et al. | Apr 1998 | A |
5741261 | Moskovitz et al. | Apr 1998 | A |
D395138 | Ohata | Jun 1998 | S |
5766251 | Koshino | Jun 1998 | A |
5766253 | Brosnahan | Jun 1998 | A |
5772663 | Whiteside et al. | Jun 1998 | A |
5797916 | McDowell | Aug 1998 | A |
5824093 | Ray et al. | Oct 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5851208 | Trott | Dec 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5868745 | Alleyne | Feb 1999 | A |
5876404 | Zucherman et al. | Mar 1999 | A |
5879396 | Walston et al. | Mar 1999 | A |
5888203 | Goldberg | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895428 | Berry | Apr 1999 | A |
RE36221 | Breard et al. | Jun 1999 | E |
5918604 | Whelan | Jul 1999 | A |
5951555 | Rehak et al. | Sep 1999 | A |
5964765 | Fenton et al. | Oct 1999 | A |
5997542 | Burke | Dec 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6014588 | Fitz | Jan 2000 | A |
6019763 | Nakamura et al. | Feb 2000 | A |
6019792 | Cauthen | Feb 2000 | A |
6039763 | Shelokov | Mar 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6050998 | Fletcher | Apr 2000 | A |
6063121 | Xavier et al. | May 2000 | A |
6066325 | Wallace et al. | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
RE36758 | Fitz | Jun 2000 | E |
6080157 | Cathro et al. | Jun 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6106558 | Picha | Aug 2000 | A |
6113637 | Gill et al. | Sep 2000 | A |
6132464 | Martin | Oct 2000 | A |
6132465 | Ray et al. | Oct 2000 | A |
6146422 | Lawson | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6179839 | Weiss et al. | Jan 2001 | B1 |
D439340 | Michelson | Mar 2001 | S |
6200322 | Branch et al. | Mar 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
D450122 | Michelson | Nov 2001 | S |
6325803 | Schumacher et al. | Dec 2001 | B1 |
D454953 | Michelson | Mar 2002 | S |
6368325 | McKinley et al. | Apr 2002 | B1 |
6368350 | Erickson et al. | Apr 2002 | B1 |
6371958 | Overaker | Apr 2002 | B1 |
6375573 | Romano | Apr 2002 | B2 |
6379386 | Resch et al. | Apr 2002 | B1 |
D460188 | Michelson | Jul 2002 | S |
D460189 | Michelson | Jul 2002 | S |
6419678 | Asfora | Jul 2002 | B1 |
6419703 | Fallin et al. | Jul 2002 | B1 |
6436099 | Drewry et al. | Aug 2002 | B1 |
6436101 | Hamada et al. | Aug 2002 | B1 |
6436146 | Hassler et al. | Aug 2002 | B1 |
D463560 | Michelson | Sep 2002 | S |
6470207 | Simon et al. | Oct 2002 | B1 |
6565605 | Goble et al. | May 2003 | B2 |
6572617 | Senegas | Jun 2003 | B1 |
6579318 | Varga et al. | Jun 2003 | B2 |
6579319 | Goble et al. | Jun 2003 | B2 |
6589244 | Sevrain et al. | Jul 2003 | B1 |
6600956 | Maschino et al. | Jul 2003 | B2 |
6607530 | Carl | Aug 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
D479331 | Pike et al. | Sep 2003 | S |
6626944 | Taylor | Sep 2003 | B1 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6656195 | Peters et al. | Dec 2003 | B2 |
6669697 | Pisharodi | Dec 2003 | B1 |
6669729 | Chin | Dec 2003 | B2 |
6706068 | Ferree | Mar 2004 | B2 |
6743232 | Overaker et al. | Jun 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6764491 | Frey et al. | Jul 2004 | B2 |
6770095 | Grinberg et al. | Aug 2004 | B2 |
6783527 | Drewry et al. | Aug 2004 | B2 |
6790210 | Cragg et al. | Sep 2004 | B1 |
6802863 | Lawson et al. | Oct 2004 | B2 |
6811567 | Reiley | Nov 2004 | B2 |
6902566 | Zucherman et al. | Jun 2005 | B2 |
6908484 | Zubok et al. | Jun 2005 | B2 |
6966930 | Arnin et al. | Nov 2005 | B2 |
6974478 | Reiley et al. | Dec 2005 | B2 |
6974479 | Trieu | Dec 2005 | B2 |
D517404 | Schluter | Mar 2006 | S |
7008429 | Golobek | Mar 2006 | B2 |
7013675 | Marquez-Pickering | Mar 2006 | B2 |
7051451 | Augostino et al. | May 2006 | B2 |
7074238 | Stinson et al. | Jul 2006 | B2 |
7101375 | Zucherman et al. | Sep 2006 | B2 |
7223269 | Chappuis | May 2007 | B2 |
D565180 | Liao | Mar 2008 | S |
7371238 | Sololeski et al. | May 2008 | B2 |
7458981 | Fielding et al. | Dec 2008 | B2 |
7517358 | Petersen | Apr 2009 | B2 |
7537611 | Lee | May 2009 | B2 |
7559940 | McGuire et al. | Jul 2009 | B2 |
7563286 | Gerber et al. | Jul 2009 | B2 |
7585300 | Cha | Sep 2009 | B2 |
7608104 | Yuan et al. | Oct 2009 | B2 |
7695472 | Young | Apr 2010 | B2 |
7799077 | Lang et al. | Sep 2010 | B2 |
7806895 | Weier et al. | Oct 2010 | B2 |
7846183 | Blain | Dec 2010 | B2 |
7862590 | Lim et al. | Jan 2011 | B2 |
7935136 | Alamin et al. | May 2011 | B2 |
D643121 | Milford et al. | Aug 2011 | S |
7993370 | Jahng | Aug 2011 | B2 |
7998172 | Blain | Aug 2011 | B2 |
8052728 | Hestad | Nov 2011 | B2 |
8109971 | Hale | Feb 2012 | B2 |
8133225 | Pieske | Mar 2012 | B2 |
8163016 | Linares | Apr 2012 | B2 |
8192468 | Biedermann et al. | Jun 2012 | B2 |
8216275 | Fielding et al. | Jul 2012 | B2 |
8246655 | Jackson et al. | Aug 2012 | B2 |
8292954 | Robinson et al. | Oct 2012 | B2 |
8306307 | Koike et al. | Nov 2012 | B2 |
8394125 | Assell | Mar 2013 | B2 |
8486078 | Carl | Jul 2013 | B2 |
8496691 | Blain | Jul 2013 | B2 |
8579903 | Carl | Nov 2013 | B2 |
8652137 | Blain et al. | Feb 2014 | B2 |
8740942 | Blain | Jun 2014 | B2 |
8740949 | Blain | Jun 2014 | B2 |
8784423 | Kowarsch et al. | Jul 2014 | B2 |
8858597 | Blain | Oct 2014 | B2 |
8882804 | Blain | Nov 2014 | B2 |
8961613 | Assell et al. | Feb 2015 | B2 |
D724733 | Blain et al. | Mar 2015 | S |
8992533 | Blain et al. | Mar 2015 | B2 |
8998953 | Blain | Apr 2015 | B2 |
9017389 | Assell et al. | Apr 2015 | B2 |
9060787 | Blain et al. | Jun 2015 | B2 |
D739935 | Blain et al. | Sep 2015 | S |
9149283 | Assell et al. | Oct 2015 | B2 |
9161763 | Assell et al. | Oct 2015 | B2 |
9179943 | Blain | Nov 2015 | B2 |
D748262 | Blain | Jan 2016 | S |
9233006 | Assell et al. | Jan 2016 | B2 |
D748793 | Blain | Feb 2016 | S |
9265546 | Blain | Feb 2016 | B2 |
9271765 | Blain | Mar 2016 | B2 |
9301786 | Blain | Apr 2016 | B2 |
9314277 | Assell et al. | Apr 2016 | B2 |
9345488 | Assell et al. | May 2016 | B2 |
20010018614 | Bianchi | Aug 2001 | A1 |
20020018799 | Spector et al. | Feb 2002 | A1 |
20020019637 | Frey et al. | Feb 2002 | A1 |
20020029039 | Zucherman et al. | Mar 2002 | A1 |
20020040227 | Harari | Apr 2002 | A1 |
20020065557 | Goble et al. | May 2002 | A1 |
20020072800 | Goble et al. | Jun 2002 | A1 |
20020077700 | Varga et al. | Jun 2002 | A1 |
20020086047 | Mueller et al. | Jul 2002 | A1 |
20020120335 | Angelucci et al. | Aug 2002 | A1 |
20020123806 | Reiley | Sep 2002 | A1 |
20020151895 | Soboleski et al. | Oct 2002 | A1 |
20020173800 | Dreyfuss et al. | Nov 2002 | A1 |
20020173813 | Peterson et al. | Nov 2002 | A1 |
20020198527 | Muckter | Dec 2002 | A1 |
20030004572 | Goble et al. | Jan 2003 | A1 |
20030028250 | Reiley et al. | Feb 2003 | A1 |
20030040797 | Fallin et al. | Feb 2003 | A1 |
20030120343 | Whelan | Jun 2003 | A1 |
20030176919 | Schmieding | Sep 2003 | A1 |
20030176922 | Lawson et al. | Sep 2003 | A1 |
20030187454 | Gill et al. | Oct 2003 | A1 |
20030191532 | Goble et al. | Oct 2003 | A1 |
20030204259 | Goble et al. | Oct 2003 | A1 |
20030216669 | Lang et al. | Nov 2003 | A1 |
20030233146 | Grinberg et al. | Dec 2003 | A1 |
20040006391 | Reiley | Jan 2004 | A1 |
20040010318 | Ferree | Jan 2004 | A1 |
20040024462 | Ferree et al. | Feb 2004 | A1 |
20040049271 | Biedermann et al. | Mar 2004 | A1 |
20040049272 | Reiley | Mar 2004 | A1 |
20040049273 | Reiley | Mar 2004 | A1 |
20040049274 | Reiley | Mar 2004 | A1 |
20040049275 | Reiley | Mar 2004 | A1 |
20040049276 | Reiley | Mar 2004 | A1 |
20040049277 | Reiley | Mar 2004 | A1 |
20040049278 | Reiley | Mar 2004 | A1 |
20040049281 | Reiley | Mar 2004 | A1 |
20040059429 | Amin et al. | Mar 2004 | A1 |
20040087954 | Allen et al. | May 2004 | A1 |
20040116927 | Graf | Jun 2004 | A1 |
20040127989 | Dooris et al. | Jul 2004 | A1 |
20040143264 | McAfee | Jul 2004 | A1 |
20040176844 | Zubok et al. | Sep 2004 | A1 |
20040199166 | Schmieding et al. | Oct 2004 | A1 |
20040215341 | Sybert et al. | Oct 2004 | A1 |
20040230201 | Yuan et al. | Nov 2004 | A1 |
20040230304 | Yuan et al. | Nov 2004 | A1 |
20050010291 | Stinson et al. | Jan 2005 | A1 |
20050015146 | Louis et al. | Jan 2005 | A1 |
20050043797 | Lee | Feb 2005 | A1 |
20050043799 | Reiley | Feb 2005 | A1 |
20050049705 | Hale et al. | Mar 2005 | A1 |
20050055096 | Serhan et al. | Mar 2005 | A1 |
20050059972 | Biscup | Mar 2005 | A1 |
20050131409 | Chervitz et al. | Jun 2005 | A1 |
20050131538 | Chervitz et al. | Jun 2005 | A1 |
20050143818 | Yuan et al. | Jun 2005 | A1 |
20050159746 | Grab et al. | Jul 2005 | A1 |
20050177240 | Blain | Aug 2005 | A1 |
20050197700 | Boehem et al. | Sep 2005 | A1 |
20050216017 | Fielding et al. | Sep 2005 | A1 |
20050240201 | Yeung | Oct 2005 | A1 |
20050251256 | Reiley | Nov 2005 | A1 |
20050256494 | Datta | Nov 2005 | A1 |
20060004367 | Alamin et al. | Jan 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060041311 | McLeer | Feb 2006 | A1 |
20060084985 | Kim | Apr 2006 | A1 |
20060085006 | Ek | Apr 2006 | A1 |
20060085072 | Funk et al. | Apr 2006 | A1 |
20060111782 | Petersen | May 2006 | A1 |
20060116684 | Whelan | Jun 2006 | A1 |
20060149375 | Yuan et al. | Jul 2006 | A1 |
20060200137 | Soboleski et al. | Sep 2006 | A1 |
20060241601 | Trautwein et al. | Oct 2006 | A1 |
20060241758 | Peterman et al. | Oct 2006 | A1 |
20060293691 | Mitra et al. | Dec 2006 | A1 |
20070055236 | Hudgins et al. | Mar 2007 | A1 |
20070078464 | Jones et al. | Apr 2007 | A1 |
20070118218 | Hooper | May 2007 | A1 |
20070149976 | Hale et al. | Jun 2007 | A1 |
20070179619 | Grab | Aug 2007 | A1 |
20070250166 | McKay | Oct 2007 | A1 |
20070270812 | Peckham | Nov 2007 | A1 |
20080009866 | Alamin et al. | Jan 2008 | A1 |
20080058929 | Whelan | Mar 2008 | A1 |
20080177264 | Alamin et al. | Jul 2008 | A1 |
20080183211 | Lamborne et al. | Jul 2008 | A1 |
20080208249 | Blain et al. | Aug 2008 | A1 |
20080228225 | Trautwein | Sep 2008 | A1 |
20080287996 | Soholeski et al. | Nov 2008 | A1 |
20090005818 | Chin et al. | Jan 2009 | A1 |
20090018662 | Pasquet et al. | Jan 2009 | A1 |
20090024166 | Carl et al. | Jan 2009 | A1 |
20090076617 | Ralph et al. | Mar 2009 | A1 |
20090125066 | Kraus et al. | May 2009 | A1 |
20090138048 | Baccelli et al. | May 2009 | A1 |
20090171360 | Whelan | Jul 2009 | A1 |
20090198282 | Fielding et al. | Aug 2009 | A1 |
20090264928 | Blain | Oct 2009 | A1 |
20090264929 | Alamin et al. | Oct 2009 | A1 |
20090270918 | Attia et al. | Oct 2009 | A1 |
20100010548 | Hermida Ochoa | Jan 2010 | A1 |
20100076503 | Beyar | Mar 2010 | A1 |
20100185241 | Malandain et al. | Jul 2010 | A1 |
20100204700 | Falahee | Aug 2010 | A1 |
20100204732 | Aschmann et al. | Aug 2010 | A1 |
20100234894 | Alamin et al. | Sep 2010 | A1 |
20100274289 | Carls et al. | Oct 2010 | A1 |
20100298829 | Schaller et al. | Nov 2010 | A1 |
20100318133 | Tornier | Dec 2010 | A1 |
20110022089 | Assell et al. | Jan 2011 | A1 |
20110082503 | Blain | Apr 2011 | A1 |
20110098816 | Jacob et al. | Apr 2011 | A1 |
20110172712 | Chee et al. | Jul 2011 | A1 |
20110295318 | Alamin et al. | Dec 2011 | A1 |
20110313456 | Blain | Dec 2011 | A1 |
20120035658 | Goble et al. | Feb 2012 | A1 |
20120046749 | Tatsumi | Feb 2012 | A1 |
20120101502 | Kartalian et al. | Apr 2012 | A1 |
20120150231 | Alamin et al. | Jun 2012 | A1 |
20120221048 | Blain | Aug 2012 | A1 |
20120221049 | Blain | Aug 2012 | A1 |
20120221060 | Blain | Aug 2012 | A1 |
20120245586 | Lehenkari et al. | Sep 2012 | A1 |
20120271354 | Baccelli et al. | Oct 2012 | A1 |
20120310244 | Blain et al. | Dec 2012 | A1 |
20130023878 | Belliard et al. | Jan 2013 | A1 |
20130041410 | Hestad et al. | Feb 2013 | A1 |
20130245693 | Blain | Sep 2013 | A1 |
20130325065 | Malandain et al. | Dec 2013 | A1 |
20140228883 | Blain | Aug 2014 | A1 |
20140257397 | Akbarnia et al. | Sep 2014 | A1 |
20140277142 | Blain | Sep 2014 | A1 |
20140277148 | Blain | Sep 2014 | A1 |
20140277149 | Rooney et al. | Sep 2014 | A1 |
20140336653 | Bromer | Nov 2014 | A1 |
20150081023 | Blain | Mar 2015 | A1 |
20150094766 | Blain et al. | Apr 2015 | A1 |
20150094767 | Blain et al. | Apr 2015 | A1 |
20150119988 | Assell et al. | Apr 2015 | A1 |
20150164652 | Assell et al. | Jun 2015 | A1 |
20150190149 | Assell et al. | Jul 2015 | A1 |
20150196330 | Blain | Jul 2015 | A1 |
20150257773 | Blain | Sep 2015 | A1 |
20150327872 | Assell et al. | Nov 2015 | A1 |
20160051294 | Blain | Feb 2016 | A1 |
20160128739 | Blain et al. | May 2016 | A1 |
20160128838 | Assell et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2 437 575 | Apr 2009 | CA |
93 04 368 | May 1993 | DE |
201 12 123 | Sep 2001 | DE |
101 35 771 | Feb 2003 | DE |
0 238 219 | Sep 1987 | EP |
0 322 334 | Jun 1989 | EP |
0 392 124 | Oct 1990 | EP |
0 610 837 | Aug 1994 | EP |
1 201 202 | May 2002 | EP |
1 201 256 | May 2002 | EP |
2 813 190 | Dec 2014 | EP |
2 822 482 | Jan 2015 | EP |
2 919 717 | Sep 2015 | EP |
2 722 980 | Feb 1996 | FR |
2 366 736 | Mar 2002 | GB |
62-270147 | Nov 1987 | JP |
08-502668 | Mar 1996 | JP |
10-179622 | Jul 1998 | JP |
2004-508888 | Mar 2004 | JP |
2007-503884 | Mar 2007 | JP |
2007-518524 | Jul 2007 | JP |
2007-190389 | Aug 2007 | JP |
2007-521881 | Aug 2007 | JP |
2008-510526 | Apr 2008 | JP |
6012309 | Jan 2007 | MX |
WO 9314721 | Aug 1993 | WO |
WO 9404088 | Mar 1994 | WO |
WO 9848717 | Nov 1998 | WO |
WO 9923963 | May 1999 | WO |
WO 0038582 | Jul 2000 | WO |
WO 0053126 | Sep 2000 | WO |
WO 0130248 | May 2001 | WO |
WO 0245765 | Jun 2002 | WO |
WO 02065954 | Aug 2002 | WO |
WO 02096300 | Dec 2002 | WO |
WO 03101350 | Dec 2003 | WO |
WO 2004071358 | Aug 2004 | WO |
WO 2005020850 | Mar 2005 | WO |
WO 2005072661 | Aug 2005 | WO |
WO 2006023980 | Mar 2006 | WO |
WO 2006096803 | Sep 2006 | WO |
WO 2008103843 | Aug 2008 | WO |
WO 2011011621 | Jan 2011 | WO |
WO 2012116266 | Aug 2012 | WO |
WO 2012116267 | Aug 2012 | WO |
WO 2013138655 | Sep 2013 | WO |
WO 2014078541 | May 2014 | WO |
WO 2016044432 | Mar 2016 | WO |
Entry |
---|
3rd Party Lab Notebook, “Facet Cartilage Repair,” dated May 20, 2003 in 2 pages. |
ArthroTek, “CurvTek® Bone Tunneling System,” Surgical Technique, 2000, pp. 6. |
E-mail from 3rd Party citing U.S. Appl. Nos. 60/721,909; 60/750,005 and 60/749,000, initial e-mail dated May 11, 2009, reply e-mail dated May 18, 2009. |
King et al., “Mechanism of Spinal Injury Due to Caudocephalad Acceleration,” Symposium on the Lumbar Spine, Orthopedic Clinic of North America, Jan. 1975, vol. 6, pp. 19-31. |
PARTEQ Innovations, “Facet Joint Implants & Resurfacing Devices,” Technology Opportunity Bulletin, Tech ID 1999-012, Queen's University, Ontario Canada. |
Official Communication in Australian Application No. 2005213459, dated Dec. 11, 2009. |
Official Communication in Australian Application No. 2005213459, dated Dec. 15, 2010. |
Official Communication in Australian Application No. AU2013237744, dated Sep. 2, 2014. |
Official Communication in Canadian Application No. 2,555,355, dated Sep. 2, 2011. |
Official Communication in Canadian Application No. 2,803,783, dated Sep. 29, 2014. |
Official Communication in European Application No. 05712981.9, dated Jul. 24, 2007. |
Official Communication in European Application No. 05712981.9, dated Mar. 10, 2008. |
Official Communication in European Application No. 05712981.9, dated Apr. 6, 2009. |
Official Communication in European Application No. 05712981.9, dated Jun. 15, 2010. |
Official Communication in European Application No. 10178979.0, dated Mar. 14, 2011. |
Official Communication in European Application No. 14175088.5, dated Sep. 8, 2014. |
Official Communication in Japanese Application No. 2006-552309, dated May 25, 2010. |
Official Communication in Japanese Application No. 2006-552309, dated Feb. 15, 2011. |
Official Communication in Japanese Application No. 2010-221380, dated Feb. 15, 2011. |
Official Communication in Japanese Application No. 2012-272106, dated Dec. 3, 2013. |
Official Communication in Japanese Application No. 2012-272106, dated May 26, 2014. |
Official Communication in Japanese Application No. 2012-272106, dated Feb. 23, 2015. |
International Search Report and Written Opinion in International Application No. PCT/US2005/003753, dated Dec. 5, 2006. |
Official Communication in European Application No. 14177951.2, dated Nov. 13, 2014. |
International Search Report and Written Opinion in International Application No. PCT/US2008/054607, dated Jul. 10, 2008. |
Official Communication in Australian Application No. 2011292297, dated Jul. 10, 2013. |
Official Communication in European Application No. 11818586.7, dated Nov. 6, 2014. |
Official Communication in Japanese Application No. 2013-524882, dated Mar. 2, 2015. |
International Search Report and Written Opinion in International Application No. PCT/US2011/047432, dated Dec. 12, 2011. |
International Preliminary Report on Patentability in International Application No. PCT/US2011/047432, dated Feb. 28, 2013. |
International Search Report in International Application No. PCT/US2012/026470, dated May 30, 2012. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2012/026470, dated Sep. 6, 2013. |
International Search Report and Written Opinion in International Application No. PCT/US2012/026472, dated Jun. 20, 2012. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2012/026472, dated Mar. 12, 2014. |
International Search Report and Written Opinion in International Application No. PCT/US2014/019325, dated Jun. 17, 2014. |
International Search Report and Written Opinion in International Application No. PCT/US2014/056598, dated Dec. 29, 2014. |
Official Communication in Japanese Application No. 2009-074336, dated Feb. 15, 2011. |
International Search Report in International Application No. PCT/CA2002/000193 filed Feb. 15, 2002, dated Jun. 18, 2002. |
International Search Report and Written Opinion in International Application No. PCT/US2004/028094, dated May 16, 2005. |
International Preliminary Report on Patentability in International Application No. PCT/US2004/028094, dated Feb. 25, 2013. |
International Search Report in International Application No. PCT/US2005/000987 filed Jan. 13, 2005, dated May 24, 2005. |
International Preliminary Report on Patentability in International Application No. PCT/US2005/000987 filed Jan. 13, 2005, dated Jan. 17, 2006. |
Ash, H.E., “Proximal Interphalangeal Joint Dimensions for the Design of a Surface Replacement Prosthesis”, School of Engineering, University of Durham, Proceedings of the Institution of Mechanical Engineers Part H Journal of Engineering in Medicine Feb. 1996, vol. 210, No. 2, pp. 95-108. |
Official Communication in Australian Application No. 2011226832, dated Sep. 4, 2012. |
Official Communication in Australian Application No. 2011226832, dated Oct. 31, 2012. |
Notice of Acceptance in Australian Application No. AU2013237744, dated Apr. 23, 2015. |
Official Communication in Australian Application No. AU2015205875, dated Apr. 2, 2016. |
Official Communication in Canadian Application No. 2,803,783, dated Aug. 5, 2015. |
Official Communication in European Application No. 10178979.0, dated Nov. 13, 2012. |
Official Communication in European Application No. 10178979.0, dated Aug. 5, 2013. |
Official Communication in European Application No. 14175088.5, dated Nov. 18, 2015. |
Official Communication in Japanese Application No. 2012-272106, dated Nov. 2, 2015. |
International Preliminary Report and Written Opinion in International App No. PCT/US2005/003753, dated Jan. 9, 2007. |
Official Communication in European Application No. 08730413.5, dated Feb. 16, 2012. |
International Preliminary Report on Patentability in International Application No. PCT/US2008/054607, dated Sep. 3, 2009. |
Official Communication in Japanese Application No. 2013-524882, dated Nov. 16, 2015. |
Official Communication in Australian Application No. AU2012222229, dated Aug. 21, 2015. |
Official Communication in Australian Application No. AU2012222229, dated May 11, 2016. |
Official Communication in Australian Application No. AU201222223, dated Aug. 21, 2015. |
Official Communication in Japanese Application No. JP 2013-555591, dated Jan. 4, 2016. |
Official Communication in Japanese Application No. JP 2013-555592, dated Dec. 7, 2015. |
International Search Report and Written Opinion in International Application No. PCT/US2014/019302, dated May 18, 2015. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/019325, dated Sep. 24, 2015. |
International Preliminary Report on Patentability and Written Opinion in International Application No. PCT/US2014/056598, dated Apr. 7, 2016. |
International Search Report and Written Opinion in International Application No. PCT/US2015/050441, dated Dec. 28, 2015. |
International Search Report and Written Opinion in International Application No. PCT/US2016/013062, dated Mar. 16, 2016. |
Number | Date | Country | |
---|---|---|---|
20150164516 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
60891159 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12859009 | Aug 2010 | US |
Child | 14629830 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12035366 | Feb 2008 | US |
Child | 12859009 | US |