The present invention generally relates to devices and surgical methods for the treatment of various types of spinal pathologies. More specifically, the present invention is directed to facet stabilization, such as in connection with facet replacement or facet resurfacing.
Back pain is a common human ailment. In fact, approximately 50% of persons who are over 60 years old suffer from lower back pain. Although many incidences of back pain are due to sprains or muscle strains which tend to be self-limited, some back pain is the result of more chronic fibromuscular, osteoarthritic, or ankylosing spondolytic processes of the lumbosacral area. Particularly in the population of over 50 year olds, and most commonly in women, degenerative spine diseases such as degenerative spondylolisthesis (during which one vertebra slides forward over the top of another vertebra) and spinal stenosis (during which the spinal canal markedly—narrows) occurs in a high percentage of the population.
Degenerative changes of the adult spine have traditionally been determined to be the result of the interrelationship of the three joint complex; the disk and the two facet joints. Degenerative changes in the disc lead to arthritic changes in the facet joint and vice versa. One cadaver study of nineteen cadavers with degenerative spondylolisthesis showed that facet degeneration was more advanced than disc degeneration in all but two cases. In mild spondylolisthetic cases, the slip appeared to be primarily the result of predominantly unilateral facet subluxation. Other studies into degenerative changes of the spine have revealed extensive contribution of facet joint degeneration to degenerative spinal pathologies such as degenerative spondylolisthesis, central and lateral stenosis, degenerative scoliosis (i.e., curvature of the spine to one side), and kypho-scoliosis, at all levels of the lumbar spine.
It has been determined that facet joint degeneration particularly contributes to degenerative spinal pathologies in levels of the lumbar spine with sagittally oriented facet joints, i.e. the L4-L5 level.
When intractable pain or other neurologic involvement results from adult degenerative spine diseases, such as the ones described above, surgical procedures may become necessary. Traditionally, the surgical management of disease such as spinal stenosis consisted of decompressive laminectomy alone. Wide decompressive laminectomies remove the entire lamina, and the marginal osteophytes around the facet joint. Degenerative spine disease has been demonstrated to be caused by facet joint degeneration or disease. Thus, this procedure removes unnecessary bone from the lamina and insufficient bone from the facet joint. Furthermore, although patients with one or two levels of spinal stenosis tend to do reasonably well with just a one to two level wide decompressive laminectomy, patients whose spinal stenosis is associated with degenerative spondylolisthesis have not seen good results. Some studies reported a 65% increase in degree of spondylolisthesis in patients treated with wide decompressive laminectomy. The increase in spinal slippage especially increased in patients treated with three or more levels of decompression, particularly in patients with radical laminectomies where all of the facet joints were removed.
To reduce the occurrence of increased spondylolisthesis resulting from decompressive laminectomy, surgeons have been combining laminectomies, particularly in patients with three or more levels of decompression, with multi-level arthrodesis, which surgically fuses the facet joints to eliminate motion between adjacent vertebrae. Although patients who undergo concomitant arthrodesis do demonstrate a significantly better outcome with less chance of further vertebral slippage after laminectomy, arthrodesis poses problems of its own. Aside from the occurrence of further spondylolisthesis in some patients, additional effects include non-unions, slow rate of fusion even with autografts, and significant morbidity at the graft donor site. Furthermore, even if the fusion is successful, joint motion is totally eliminated at the fusion site, creating additional stress on healthy segments of the spine which can lead to disc degeneration, herniation, instability spondylolysis, and facet joint arthritis in the healthy segments.
An alternative to spinal fusion has been the use of invertebral disc prosthesis. Although different designs achieve different levels of success with patients, disc replacement mainly helps patients with injured or diseased discs; disc replacement does not address spine pathologies such as spondylolisthesis and spinal stenosis caused by facet joint degeneration or disease.
While facet replacement or facet resurfacing may address degenerative facet arthrosis, spondylolisthesis and spinal stenosis, it has been discovered that significant improvements may be made by provided additional stabilization of the facet joint.
One or more embodiments of the present invention provides a posteriorly disposed system that is designed to stabilize (but not to fuse) the affected vertebral level to alleviate pain stemming from degenerative facet arthrosis, spondylolisthesis and spinal stenosis. Among the functions of some embodiments of the invention is either to replace spinal facet function in connection with a facetechtomy (defined as “facet replacement”) or to work in conjunction with resurfaced facets (defined as “facet supplementation”).
The embodiments of the invention illustrated and described herein permit single level facet replacement and supplementation. It is understood, however, that the system can be applied for multi-level spinal stabilization, where the number of levels is not limited to one, two, three, or more.
The facet replacement and supplementation devices are used single-or bi-laterally (with respect to the spinal process) to augment or substitute spinal facet functions such as providing constraint to the vertebral body within or beyond the biological range of motion and proper disk and soft tissue loading. Various embodiments of the invention can be used with any of the known pedicle screw systems presently utilizing a solid fixation rod of any diameter and are compatible as an integral part of the hybrid multilevel system of spinal fixation. The facet replacement and supplementation devices provide a component of the reactive force in a direction normal to the plane defined by the facet joint by providing a skewed helical spring element in an orientation corresponding to the facet joint angulation. Angulation of the skewed helical-cut or skewed through-cut is oriented such that the cut plane is similar (parallel or acute angle less than 90 degrees) to the plane generated by facets on the instrumented level (“facet plane”).
The reactive force may provide various degrees of rigidity or stiffness to address any physiological condition. The rigidity or stiffness of the device can be achieved through rod geometry (cylinder, hourglass, barrel, etc); rod cross-sectional geometry (rectangular; circular with large or small diameter, etc); cut design and orientation; rod material; elastic inserts between rigid parts; etc.
The skewed helical cut or skewed through cut provides proper anatomical and physiological constraints for vertebral range of motion. The spring element may be offset from the pedicle screws. The offset provides proper orientation of the slots or cuts for restoration of proper kinematics. For example, the orientation of the skewed cut plane should be similar to the plane generated by facets on the instrumented level (facet plane). The offset also provides an increase in the moment arm and minimizes the reaction on the device due to rotation of the spinal column. Embodiments without the offset, but with the skewed helical-cut or skewed through-cut can also be used; however, they will not maximize posterior offset and will require additional care for proper orientation of the cut with respect to the facet plane.
Various embodiments may include different cut orientation methods—markings, special keying or locking features.
The flexibility of one or more embodiments may be enhanced by including an elastic insert either inside the cylindrical section of the rod or between through-cut surfaces.
Other aspects, features, advantages, etc. will become apparent to one skilled in the art when the description of the preferred embodiments of the invention herein is taken in conjunction with the accompanying drawings.
For the purposes of illustrating the invention, there are shown in the drawings forms that are presently preferred, it being understood, however, that the precise arrangements and instrumentalities are not intended to limit the invention.
FIGS. 8A-C are force diagrams illustrating the physical properties of the spring of
FIGS. 11A-B illustrate a through-cut spring that includes an offset as is illustrated in the stabilizer of
FIGS. 13A-C are side views of various through-cut springs that may be utilized in the stabilizer of
FIGS. 14A-B are perspective views of further alternative embodiments of a spring-like system that may be employed in the stabilizer of
FIGS. 16A-B are perspective and partially cross-sectional views, respectively of a cascaded pair of spring elements that are suitable for use in the facet stabilizer of
FIGS. 18A-B are perspective and partially cross-sectional views, respectively, of the sleeve element of
Reference is now made to
The vertebral body 14 includes superior facet 20A on one side of the spinous process 32 and another superior facet 20B on the other side of the spinous process 32. The vertebral body 14 also includes a pedicle 28A on one side and pedicle 28B on the other side of the spinous process. The next lower vertebral body 12 includes an inferior facet 22A on one side of the spinous process 32 forming a joint with the superior facet 20A, and another inferior facet 22B (on the other side of the spinous process 32) forming a facet joint with the superior facet 20B. The vertebral body 12 also includes pedicles 26A, 26B.
Reference is now made to
The screws 104, 106 may be pedicle screws that are operable to engage a bore made in the vertebral bone, typically at the pedicles 26, 28. Preferably, the heads of the screws 104, 106 are designed such that the respective anchor seats (or tulips) 108, 110 may articulate with respect to the threaded shaft of the screws 104, 106. It is understood, however, that non-articulating screw and tulip systems (or one-piece systems) may alternatively be employed. Indeed, any of the known or hereafter developed pedicle screws and tulips may be employed to implement the screws 104, 106, and tulips 108, 110 without departing from the spirit and scope of the present invention. For example, it is noted that many of the existing pedicle screw and tulip designs for fixing rods between vertebral bones may be employed to implement this and other embodiments of the present invention.
It is understood that alternative embodiments of the present invention may employ a single stabilizer 102 in a unilateral position (on one side or the other of the spinous processes of adjacent vertebral bones).
The spring elements 112 preferably include a generally longitudinally directed (or extending) body having respective ends 114, 116 for engagement with the screws 104, 106. The spring elements 112 also include a skewed or slanted coil 118 disposed between the ends 114, 116. The skewed or slanted coils 118A, 118B of properly oriented spring elements 112A, 112B preferably mimic the angulation of the facet joints of which they stabilize (or replace). In particular, the skewed coil 118 A is preferably disposed such that it provides a component of the reaction force Fa in a direction substantially normal to a plane defined by the facet joint for which it provides stabilization. Thus, the skewed coil 118A produce the reaction force Fa in a direction transverse to the longitudinal axis of the spring element 112. For example, when the stabilizer 102 A is coupled to vertebral bones 12, 14 on the left side of the spinous processes 30, 32 of the spinal column 10 (
As will be discussed in more detail herein below, the spring characteristics of the skewed coil 118A are preferably such that substantially similar functionality is achieved as compared with the natural anatomy of the facet joint for which stabilization is provided. Among these characteristics is the direction of the reactive force Fa discussed above. Similarly, the skewed coil 118B of a bilaterally disposed system 100 preferably produces a component of the reactive force Fb in a direction that is substantially normal to a plane defined by the opposite facet joint.
In order to more fully understand that characteristics of the spring element 112 of the stabilizers 102, a brief description of prior art helical springs is now provided with reference to
The ratio of mean coil diameter to wire diameter is known as the spring index, C=D/d.
The free length Lo of a compression spring is the spring's maximum length when lying freely prior to assembly into its operating position and hence prior to loading. The solid length Ls of a compression spring is its minimum length when the load is sufficiently large to close all the gaps between the coils.
The performance of a spring is characterized by the relationship between the loads (F) applied to it and the deflections (δ) which result, deflections of a compression spring being reckoned from the unloaded free length as shown in the animation.
The F-δ characteristic is approximately linear provided the spring is close-coiled and the material elastic. The slope of the characteristic is known as the stiffness of the spring k =F/δ (also known as spring “constant,” “rate,” “scale,” or “gradient”) and is determined by the spring geometry and modulus of rigidity as will be shown.
The free body
The wire axis is inclined at the helix angle a at the free body boundary in the side view,
Assuming the helix inclination a to be small for close-coiled springs—then sinα≈0, cosα≈1, and the significant loading reduces to torsion plus direct shear. The maximum shear stress at the inside of the coil will be the sum of these two component shears:
The stress factor, K, assumes one of three values, either: K=1 when torsional stresses only are significant—ie. the spring behaves essentially as a torsion bar; K=Ks≡1+0.5/C which accounts approximately for the relatively small direct shear component noted above, and is used in static applications where the effects of stress concentration can be neglected; or K=Kh≈(C+0.6)/(C−0.67), which accounts for direct shear and also the effect of curvature-induced stress concentration on the inside of the coil (similar to that in curved beams). Kh should be used in fatigue applications; it is an approximation for the Henrici factor, which follows from a more complex elastic analysis as reported in Wahl op cit. It is often approximated by the Wahl factor Kw=(4C−1)/(4C−4)+0.615/C. The factors increase with decreasing index:
The deflection δ of the load F follows from Castigliano's theorem. Neglecting small direct shear effects in the presence of torsion:
which leads to:
k=F/δ=Gd/8naC3, (2)
in which na is the number of active coils (Table 1)
Despite many simplifying assumptions, equation (2) tallies well with the experiment provided that the correct value of rigidity modulus is incorporated, e.g., G=79GPa for cold drawn carbon steel.
Standard tolerance on wire diameters less than 0.8mm is 0.01 mm, so the error of theoretical predictions for springs with small wires can be large due to the high exponents which appear in the equations. It must be appreciated also that flexible components such as springs cannot be manufactured to the tight tolerances normally associated with rigid components. The spring designer must allow for these peculiarities. Variations in length and number of active turns can be expected, so critical springs are often specified with a tolerance on stiffness rather than on coil diameter. The reader is referred to BS 1726 or AE-11 for practical advice on tolerances.
Compression springs are no different from other members subject to compression in that they will buckle if the deflection (i.e., the load) exceeds some critical value δcritwhich depends upon the slenderness ratio Lo/D rather like Euler buckling of columns, thus:
C1δcrit/Lo=1−√[1−(C2D/λLo)2], (3a)
in which the constants are defined as follows:
c1=(1+2ν/(1+ν)=1.23 for steel; and
c2=Π√[(1+2ν/(2+ν)]=2.62 for steel.
The end support parameter λreflects the method of support. If both ends are guided axially but are free to rotate (like a hinged column) then λ=1. If both ends are guided and prevented from rotating then λ=0.5. Other cases are covered in the literature. The plot of the critical deflection is very similar to that for Euler columns.
A rearrangement of (3a) suitable for evaluating the critical free length for a given deflection is:
Lo.crit=[1+(c2D/c1λδ)2]c1δ/2 (3b)
With reference to
The skewed coil 118 of
The above-described structure and function of the spring elements 112A, 112B result in at least the following characteristics: (i) the slanted coils 18A, 118B may be slanted at least partially toward one another; (ii) at least one vector component of each the reaction forces Fa, Fb is at least parallel to (and potentially co-axial with)the longitudinal axes of the spring elements 112A, 112B, respectively; (iii) at least one vector component of each the reaction forces Fa, Fb is at least transverse to the longitudinal axes of the spring elements 112A, 112B, respectively; (iv) and at least one vector component of each the reaction forces Fa, Fb are at least parallel to (and potentially co-axial with) one another.
Further, the articulation of the respective tulips 108, 110 and the rotatability of the ends 114, 116 that engage same permit adjustability of the reaction force F such that it may be directed in a position substantially normal to the facet joint for which stabilization is provided or for which facet replacement has been made.
As is depicted in
As can be seen in
The skewed coil 118 of the various embodiments of the present invention may be implemented utilizing a helical coil of the type illustrated in
With reference to FIGS. 14A-B, the spring element 112F, 112G may be implemented by way of a pair of angularly spaced-apart surfaces 140, 142. In other words, the surfaces 140, 142 are slanted with respect to the longitudinal axes of the elements 112F, 112G. In one or more embodiments, the bearing surfaces 140, 142 are substantially parallel to one another. Alternatively or additionally, the bearing surfaces 140, 142 are slidingly engageable with one another such that they mimic anatomical motion of superior and inferior facets of a facet joint. Additionally or alternatively, a resilient material 144, such as a polymeric material, may be disposed between the surfaces 140, 142 (
It noted that a single stage stabilizer system 100 has been illustrated and discussed above. It is contemplated, however, that multi-stage systems may be implemented by cascading additional levels of the stabilizers 102, as is shown in
While the illustrated vertebral stabilizer 110B is a two-level system, those skilled in the art will appreciate from the description herein that the number of levels may be increased as desired by cascading additional spring elements together.
In this regard, the vertebral stabilizer 110B further includes a coupling element 200 operable to join the end 116 of the first spring element 112H-1 to the end 114 of the second spring element 112H-2. Although any number of mechanical implementations may be employed to form the coupling element 200, one example is best seen in FIGS. 16A-B and 17. The coupling feature 200 includes a bore 202 disposed at at least one end (for example, end 116 ) of one of the spring elements 112H-1, and a shaft 204 disposed at at least one end (for example, end 114 ) of the spring element 112H-2. The bore 202 and the shaft 204 are sized and shaped such that the shaft 204 may slide into the bore 202 to couple the ends 114, 116 of the first and second spring elements 112H-1, 112H-2 together.
The bore 202 may be slotted by way of one or more slots 206 such that a compressive force thereon causes a diameter of the bore 202 to reduce, and interior surfaces of the bore 202 to be urged against the shaft 204 to fix the ends 114, 116 of the first and second spring elements together 112H-1, 112H-2. Thus, the coupling element 200 is operable to fix the ends 114, 116 of the first and second spring elements 112H-1, 112H-2 together in response to pressure applied thereto when coupled to the bone anchors 104, e.g., by way of tightening the tulip 108 thereof.
It is noted that any un-mated shaft 204 may be treated using a sleeve 208 including a bore 210 that is sized and shaped to receive the shaft 204. It is preferred that the sleeve 210 is sized and shaped to complement one or more cross-sectional dimensions (e.g., the diameter) of the shaft 204 to substantially match one or more cross-sectional dimensions (e.g., the diameter) of the end 114 to which it is attached. The sleeve 208 may include at least one slot 212 extending from the bore 210 to a surface of the sleeve 208 such that a compressive force about the sleeve 208 causes a diameter of the bore 210 to reduce. The sleeve 208 may be employed in a single level configuration as is illustrated in
As is illustrated in
With reference to
In the vertebral stabilizer system 110E illustrated in
Among the aspects and functionality of one or more of the embodiments of the invention are:
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application No. 60/688,421, filed Jun. 8, 2005, the entire disclosure of which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60688421 | Jun 2005 | US |