Spinal implants are often used in the surgical treatment of spinal disorders such as degenerative disc disease, disc herniations, curvature abnormalities, and trauma. Many different types of treatments are used. In some cases, spinal fusion is indicated to inhibit relative motion between vertebral bodies. In other cases, dynamic implants are used to preserve motion between vertebral bodies. In yet other cases, relatively static implants that exhibit some degree of flexibility may be inserted between vertebral bodies.
Implants such as these may be positioned between vertebral bodies, with superior and inferior surfaces placed in contact with the vertebral bodies. Often, the bone-contact surfaces of these implants are configured with a surface texture, surface features, and natural or synthetic bone growth stimulators to promote osseointegration of the implant. Recent innovations in implant materials have produced a new generation of implants constructed from polymers such as UHMWPE or PEEK. These polymer materials may offer a variety of advantages, including improved strength, reduced weight, and desirable mechanical characteristics. Unfortunately, the polymers are not naturally osteoconductive. Thus, implant constructed from these polymers may not sufficiently fuse with the vertebral bodies. Ineffective fusion at the bone-contact surface may lead to subsidence of the vertebral implants over time, and often leads to spinal instability, angular deformities, and planar translations.
Illustrative embodiments disclosed herein are directed to a vertebral implant device for insertion into a patient. One embodiment of a vertebral implant device may include an insert with a first bone contact surface and an opposing second surface. The insert may be constructed from an osteoconductive material with fibers with some of the fibers including a first section positioned in the insert and a second section that extends outward from the second surface. The insert may also include an anchor that extends outward from the second surface a greater distance than the second sections of the fibers. A non-osteoconductive body may be attached to the second surface of the insert and may be formed from a different material than the insert. The second sections of the fibers and the anchor may be positioned in the body. The insert and the anchor may have a unitary construction formed from the osteoconductive material.
An embodiment of the vertebral implant device may include a body constructed from a first material with a first side and an opposing second side. An insert may be attached to the first side of the body and may be constructed from a second material having a plurality of fibers. An anchor may extend outward from the insert into the body and may include a stem adjacent to the insert and a head spaced away from the insert and positioned at an end of the stem. The stem may include a smaller width than the head. The anchor and a portion of the fibers may be positioned to extend outward from the insert and into the body to improve adhesion between the body and the insert.
An embodiment of the vertebral implant device may also include an intermediate portion constructed of a first material and including a first side and a second side. A first insert may be attached to the first side of the intermediate portion and may include a first contact surface configured to contact against the first vertebral body when the vertebral implant device is inserted in the patient. A second insert may be attached to the second side of the intermediate portion and may include a second contact surface configured to contact against the second vertebral body when the vertebral implant device is inserted in the patient. Each of the inserts may be constructed from a second material with a plurality of fibers. A portion of the plurality of fibers of each of the first and second inserts may extend into the intermediate portion. A plurality of anchors may extend outward from the first and second inserts and into the intermediate portion. Each of the plurality of anchors may include a stem adjacent to the insert and a head spaced away from the insert and positioned at an end of the stem.
The various embodiments disclosed herein relate to a vertebral implant in which bone-contact surfaces are constructed with an osteoconductive insert. The number 10 in
The vertebral implant 10 shown in
The exemplary vertebral implant 10 includes one or more apertures 18 disposed about the perimeter wall 12 that provide a location at which to grasp the vertebral implant 10 during surgical installation. In some instances, the vertebral implant 10 is constructed of a material that is solid, but somewhat flexible or compressible. Thus, the apertures 18 may contribute to the overall flexibility and/or compressibility of the vertebral implant 10.
Where the implant 10 is constructed of a generally non-osteoconductive material, an osteoconductive insert may be formed into the implant to promote bone growth at the superior 14 and inferior 16 surfaces of the implant 10. To that end,
The inserts 20, 22 may be constructed from an osteoconductive or osteoinductive matrix that includes materials such as collagen, carbon fibers, including continuous or chopped carbon fibers. The inserts may include carbon nano-fibers, or metallic filaments including titanium, tantalum, or stainless steel. The inserts 20, 22 may be constructed from a composite matrix of non-osteoconductive polymers filled with osteoconductive materials. The inserts 20, 22 may be constructed from a braided or woven fabric of biocompatible material. In general, the inserts 20, 22 may be thin relative to the overall height of the implant 10. For example, the inserts 20, 22 may have a thickness between about 1 and 10 mm In one embodiment, the inserts 20, 22 have a thickness between about 3 mm and about 5 mm. The relatively thin nature of the inserts advantageously permits osseointegration while preserving the overall structural characteristics of the implant 10.
As indicated, the inserts 20, 22 may include osteoconductive fibers. These fibers 26 are depicted graphically in
For the various embodiments disclosed herein,
The exemplary process contemplates a mold 100 that is used to injection mold the intermediate portion 24 onto the inserts 20, 22. Other techniques may be used and the present illustration is provided merely as one possible approach. In a first step shown in
Once the mold 100 is closed, resin material 112 from which the intermediate portion is formed is injected through the injection ports 110 and into the mold cavities 106, 108.
In the embodiment illustrated in
Similarly
In embodiments described above, the inserts 20, 22 have formed substantially the entire superior 14 and inferior surfaces 16 of the implant 10. However, this is not expressly required. The inserts 20, 22 may extend over some area that is less than the entire bone-contact surface. For instance,
In addition, there is no express limitation on the number of inserts 20, 22 that are included at the bone contact surfaces of the implant 10. Thus, for example,
Embodiments described above have pertained to vertebral implants 10 in which superior and inferior bone contact surfaces are located on the same body. However, this is not expressly required. The curvature of the respective bone contact surfaces may be disposed in separate implants or separate implant members such as the vertebral implant 110 shown in
The vertebral implant 110 shown in
An exemplary process for making the vertebral implants may include steps of providing an osteoconductive insert comprising a bone contact surface and a substrate interface, orienting a matrix of fibers to extend outward from the interface surface, and forming a body constructed at least partially from a biocompatible polymer into the substrate interface and around the matrix of fibers. Forming the body in this manner may include extending the matrix of fibers into the body between about one and two millimeters. Furthermore, it may be appropriate to orienting the matrix of fibers substantially transverse to the substrate interface. The osteoconductive insert may be positioned to cover substantially the entire bone contact surface of the vertebral implant. The matrix of fibers may comprise carbon fibers or metal fibers.
Another exemplary process for making the vertebral implants may include steps of preforming an osteoconductive insert, inserting the osteoconductive insert into a mold, introducing a biocompatible polymer into the mold and forcing the biocompatible polymer into contact with the insert, and causing the polymer to cure within the insert so that the insert forms a bone contact surface of the vertebral implant. These process steps may further include positioning the osteoconductive insert to form substantially all of the bone contact surface of the vertebral implant. The preforming process may include exemplary processes such as molding osteoconductive material to form the osteoconductive insert and forming a porous matrix of fibers into the osteoconductive insert. Furthermore, the step of forcing the polymer into contact with the insert further may cause the polymer to cure around a matrix of fibers that extend outward from an outer surface of the osteoconductive insert.
The osteoconductive inserts are not limited to vertebral implants. For example, osteoconductive inserts may be incorporated into other orthopedic implants formed from a non-osteoconductive resin such as tibial and femoral knee components, hip stems, and acetabular cups 300 such as that shown in
Furthermore, embodiments disclosed above have not included any particular surface geometry, coating, or porosity as are found in conventionally known vertebral implants. Surface features such as these are used to promote bone growth and adhesion at the interface between an implant and a vertebral end plate. Examples of features used for this purpose include, for example, teeth, scales, keels, knurls, and roughened surfaces. Some of these features may be applied through post-processing techniques such as blasting, chemical etching, and coating, such as with hydroxyapatite. The bone interface surfaces, including the osteoconductive inserts, may also include growth-promoting additives such as bone morphogenetic proteins. Alternatively, pores, cavities, or other recesses into which bone may grow may be incorporated via a molding process. Other types of coatings or surface preparation may be used to improve bone growth into or through the bone-contact surfaces. However, the inserts that include these types of features may still be formed and characterized by the aspects disclosed herein.
Spatially relative terms such as “under”, “below”, “lower”, “over”, “upper”, and the like, are used for ease of description to explain the positioning of one element relative to a second element. These terms are intended to encompass different orientations of the device in addition to different orientations than those depicted in the figures. Further, terms such as “first”, “second”, and the like, are also used to describe various elements, regions, sections, etc and are also not intended to be limiting. Like terms refer to like elements throughout the description.
As used herein, the terms “having”, “containing”, “including”, “comprising” and the like are open ended terms that indicate the presence of stated elements or features, but do not preclude additional elements or features. The articles “a”, “an” and “the” are intended to include the plural as well as the singular, unless the context clearly indicates otherwise.
The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. For instance, the implant 10 depicted in
The present application is a divisional application of co-pending application Ser. No. 11/485,259, filed on Jul. 12, 2006, and incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 11485259 | Jul 2006 | US |
Child | 13051795 | US |