This application is a filing under 35 USC 371 of PCT/FR2004/000262 filed Feb. 5, 2004.
The present invention pertains to a medical implant intended to replace a vertebra, at least in part, with a view to maintaining the normal spacing between the adjacent vertebrae.
The subject of the invention finds application for vertebral replacement in the cervical, thoracic or lumbar region.
In the prior art, various variants are known for fabricating a replacement implant also called a corporectomy implant. Patent application FR 2 730 158 for example describes a spacer implant comprising two telescoping hollow elements having complementary shapes on their mutually opposite faces which engage to allow distraction movement of the elements while preventing their compression movement.
Said spacer implant makes it possible to adjust the length of the implant in situ while ensuring relative distancing between the two elements by sliding the elements as far as their final locking position. Said implant therefore has irreversible locking preventing any possible withdrawal which is a major drawback under certain inserting conditions.
Document WO 00/23 013 describes an implant comprising two hollow longitudinal elements, male and female, slidably mounted with respect to each other. This replacement implant comprises a coupling ring intended to take up a first position of non-engagement with complementary coupling means to allow free sliding of the elements with respect to each other, and a second position when it engages with the complementary coupling means to ensure locking of the elements together. The main disadvantage of said replacement implant pertains to the difficulty in rotationally commanding the coupling ring to change over from one position to the other.
The object of the invention is to overcome these prior art shortcomings by proposing a vertebral replacement implant designed to allow its length adjustment in situ while permitting possible fast, easy, reversible changeover from a length adjustment position to a locking position.
To achieve this objective, the vertebral replacement implant comprises:
According to the invention, the locking means comprise:
Advantageously, the movement conversion system is of screw/nut type.
According to one preferred characteristic of embodiment, the conversion system of screw/nut type comprises a pin guided in rotation and locked in translation, this pin being provided with a threaded part cooperating with tapping on the anchor shoe guided in translation and locked in rotation.
Advantageously, the pin extends diametrically inside the male element and comprises:
Advantageously, the means for receiving the command instrument lead into a lumen arranged in a wall of the female element to be accessible from outside the implant; the wall of the female element, on the inside in its part opposite the part provided with the lumen, being provided with the anchor surface.
Preferably, each male and female element is provided with an end wall intended to cooperate with a vertebral plateau.
A further object of the invention is to propose a replacement implant with which to optimise the contact between at least one of the end walls of the implant and the vertebral plateau. To achieve this objective, at least one end wall is equipped with an inclining system in the sagittal plane.
Advantageously, the inclining system is of screw/nut type and comprises a threaded rod guided in rotation and locked in translation, to cooperate with a tapped ring locked in rotation and connected to the end wall guided in its incline.
Advantageously the threaded rod extends diametrically inside an element and comprises means for receiving a command instrument accessible from outside the element.
A further object of the invention is to propose a distractor adapted to ensure the relative sliding between the male and female elements of the implant of the invention, even with a limited portal.
For this purpose the replacement implant, for each male and female element, comprises a grasping zone for a distractor ensuring the relative sliding between the male and female elements, these grasping zones being formed of two flats extending in diametrically opposite fashion on the male and female elements.
According to a further object of the invention, the distractor for inserting the replacement implant of the invention comprises:
According to the invention, one of the jaws is fixedly mounted whilst the other jaw is mobile mounted at a relative distance from the fixed jaw, and in that the movement conversion system is performed by a rack connected to the mobile jaw and cooperating with a toothed wheel connected by a command rod to a handle.
According to another characteristic of embodiment, the movement conversion system is equipped with a no-return device preventing movement in an opposite direction to the separating of the male and female elements.
Advantageously the no-return device can be released, allowing movement in the direction in which the male and female elements are drawn together.
Various other characteristics will become apparent from the following description with reference to the appended drawings showing non-limitative examples of embodiment of the subject of the invention.
As shown more precisely
According to one characteristic of the invention, the male 2 and female 3 elements are slidably mounted with respect to each other along their common longitudinal axis X. In the illustrated example, the sliding assembly between the male 2 and female 3 elements is made via a guiding abutment 5 fitted to the male element 2 and engaged in an open lumen 6 arranged on the female element 3 along a longitudinal direction parallel to the longitudinal axis X.
According to one characteristic of the invention, the replacement implant 1 comprises means 8 ensuring firstly the free sliding of elements 2, 3 between each other and secondly their relative locking. These locking means 8 on one of the elements, namely the female element 3 in the illustrated example, comprise an anchor surface 10 arranged on a longitudinal part 11 of the wall. This anchor surface 10 extends inside the wall of the female element 3 opposite an anchor shoe 12 mounted on the other element, namely the male element 2 in the illustrated example. The anchor screw 12 is guided in translation to take up a first position in which the male 2 and female 3 elements can slide freely with respect to each other (
According to a further characteristic of the invention, the locking means 8 also comprise a movement conversion system 15 converting a rotational movement into a translational movement which is transmitted to the anchor shoe 12 so that it takes up its released position or its cooperation position with the anchor surface 10. The conversion system 15 is fitted with means 16 for receiving an instrument, not shown, adapted for commanding system 15 in rotation in the two opposite directions. Therefore, in relation to the direction of the rotational command given by the command instrument, the anchor shoe 12 is able to take up one of its two characteristic positions.
In a preferred example of embodiment illustrated in the drawings, the conversion system 15 is of screw/nut type. In this preferred example of embodiment, the conversion system 15 comprises a pin 17 guided in rotation and locked in translation and mounted so that it extends diametrically inside the male element 2 in the part thereof which remains engaged in the female element at all times. Pin 17 comprises a first end 18 of straight circular section mounted with clearance in a bore 19 made in the wall of the male element 2. The first end 18 is edged on one side by a shoulder 21 and on the other side by an abutment 5. Pin 17 is therefore locked in translation by the abutment 5 and shoulder 21, while being guided in rotation.
Advantageously, the first end 18 of pin 17 is provided with receiving means 16 to receive the instrument commanding rotation of the pin. In the illustrated example, the receiving means 16 are formed of a prismatic hole arranged in the transverse face delimiting the first end of pin 17. The hole 16 leads into the open lumen opening into the outer face of the female element 3 so that the hole 16 is accessible from outside the implant, using a command instrument such as a screwdriver for example.
Pin 17 is provided with a threaded part 25 cooperating with tapping 26 on the anchor shoe 12 which is guided in translation and locked in rotation. In the illustrated example, the second end 27 of the pin 17 opposite the first end 18, is provided with the threaded part 25. Therefore, as can be seen more clearly
According to a further characteristic of the invention, each male 2 and female 3 element is provided with an end wall 2a, 3a intended to cooperate with a vertebral plateau. Preferably, each end wall 2a, 3a is provided with notching to promote anchoring of the implant on over- and underlying vertebral plateaux.
According to a preferred variant of embodiment, at least one end wall, namely end wall 2a carried by the male element 2 in the illustrated example is equipped with a system 30 ensuring its inclining in the anatomical sagittal plane, represented by reference S in the drawings. According to a preferred characteristic of embodiment, the inclining system 30 is of screw/nut type. This inclining system 30 comprises a threaded rod 31 guided in rotation and locked in translation to cooperate with a tapped ring 32 locked in rotation and connected to end wall 2a in the illustrated example. More precisely, the threaded rod 31 extends diametrically inside the male element 2 along a direction parallel to the direction of extension of pin 17. The threaded rod 31 is provided at one end with a head 34 passing via a passageway 35 through the wall of the male element 2. The other end of the threaded rod 31 is provided with a translation stop abutment 37. The threaded rod 31 cooperates with the tapped ring 32 which is provided on either side with extensions 321 engaged in complementary holes arranged in lugs 40 extending at right angles from end wall 2a.
As can be seen more clearly
As arises clearly from a comparison between
According to a characteristic of the invention, the threaded rod 31 comprises receiving means 48 to receive a command instrument accessible from outside the male element 2. In the illustrated example, the receiving means 48 consist of a hole of prismatic section arranged in the transverse wall delimiting the head 34 of the threaded rod 31. The hole 48 is therefore accessible from outside the male element 2 and is preferably aligned with the receiving means 16 along a longitudinal direction. The receiving means 16 and 48 which occupy a close superimposed position, are preferably of identical shape so that they can be handled by one same command instrument, such as a screwdriver for example.
According to a further characteristic of the invention, the intervertebral implant 1 is adapted to ensure the easy, efficient sliding movement of the male 2 and female 3 elements. For this purpose, each male 2 and female 3 element comprises grasping zones 50 for a distractor 51 ensuring relative sliding between the male 2 and female 3 elements. These grasping zones 50 are made on each element via two flats extending in diametrically opposite fashion on the male 2 and female 3 elements.
As can be seen more precisely
According to a preferred characteristic of embodiment, the conversion system 62 is ensured by a rack 65 connected to the mobile jaw 59 and cooperating with a toothed wheel 67 wedged in rotation with a command rod 69 extending inside the tube 56. Rotation in one direction of the rod 69 ensures relative spacing between the male 2 and female 3 element, whilst rotation in an opposite direction leads to relative drawing together of the male 2 and female 3 elements.
According to a preferred characteristic of embodiment illustrated more precisely
As can be seen more clearly
The invention is not limited to the examples described and illustrated since various modifications may be made thereto without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
03 01339 | Feb 2003 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2004/000262 | 2/5/2004 | WO | 00 | 10/17/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/071355 | 8/26/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
8486 | Hammitt | Nov 1851 | A |
3987499 | Scharbach et al. | Oct 1976 | A |
4078441 | Mazur | Mar 1978 | A |
4401112 | Rezaian | Aug 1983 | A |
4553273 | Wu | Nov 1985 | A |
4807888 | Pidde et al. | Feb 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
5253637 | Maiden | Oct 1993 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5989290 | Biedermann et al. | Nov 1999 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6176881 | Schar et al. | Jan 2001 | B1 |
6176882 | Biedermann et al. | Jan 2001 | B1 |
6190413 | Sutcliffe | Feb 2001 | B1 |
6193755 | Metz-Stavenhagen et al. | Feb 2001 | B1 |
6375683 | Crozet et al. | Apr 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6524341 | Lang et al. | Feb 2003 | B2 |
6616695 | Crozet et al. | Sep 2003 | B1 |
6723126 | Berry | Apr 2004 | B1 |
6730088 | Yeh | May 2004 | B2 |
6808538 | Paponneau | Oct 2004 | B2 |
6866682 | An et al. | Mar 2005 | B1 |
7018415 | McKay | Mar 2006 | B1 |
20020082696 | Harms et al. | Jun 2002 | A1 |
20030045877 | Yeh | Mar 2003 | A1 |
20040049271 | Biedermann et al. | Mar 2004 | A1 |
20040181283 | Boyer et al. | Sep 2004 | A1 |
20040220582 | Keller | Nov 2004 | A1 |
20050085910 | Sweeney | Apr 2005 | A1 |
20050113921 | An et al. | May 2005 | A1 |
20060058877 | Gutlin et al. | Mar 2006 | A1 |
20060064167 | Keller | Mar 2006 | A1 |
20060074490 | Sweeney | Apr 2006 | A1 |
20070191954 | Hansell et al. | Aug 2007 | A1 |
20070255407 | Castleman et al. | Nov 2007 | A1 |
20070270968 | Baynham et al. | Nov 2007 | A1 |
20080004705 | Rogeau et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
198 56 013 | Jun 2000 | DE |
WO 9849975 | Nov 1998 | WO |
9963913 | Dec 1999 | WO |
02071986 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060200244 A1 | Sep 2006 | US |